
Educating Novice Developers in Video Game Projects - An Experience Report

Samia Capistrano Gomes, Caio Machado, Victor Silva,
Matheus Silva, and Eduardo Santana de Almeida

Computer Science Department
Federal University of Bahia, UFBA

Salvador, Brazil
samia.capistrano@ufba.br, caiopinheiro@protonmail.com,

{vpinheiro.aguiar, matheuscardimdasilva}@gmail.com, esa@dcc.ufba.br

Abstract—Over the last decade, the video games industry
has become the most lucrative industry of entertainment. The
number of people playing games continues to grow every year.
Games are not only being used as entertainment, but as tools
in many other fields, such as education, medicine and fitness.
Games are considered a rich and complex domain due to
their multidisciplinary nature and distinct development process
when compared to traditional software.

Thus, learning how to develop games is a big challenge for
both newcomers and experienced developers that come from
typical software development projects. In this paper, we present
a report on the experience of learning game development
through the reimplementation of existing games by students.
We present a description of the development process, what
went right and wrong, the lessons learned and SE techniques
that were viable to apply for each game. Finally, we provide
a discussion about the benefits for the learning curve from
reimplementing existing games.

Keywords-game reimplementation; learning newcomers;
good practices software; software engineering;

I. INTRODUCTION

In the last decade, the video game industry has become
the most lucrative industry of entertainment. In 2018, more
than 2.3 billion people played games, with a forecast to
reach the revenue of US $ 137.9 billion [1]. Games are also
becoming more and more diverse, being applied not only
focused on entertainment, but also on education, business
and even medical care. [2].

Due to the multitude of applications in multiple fields,
games are considered a rich multidisciplinary domain. It
often combines audio, graphics, control systems, artificial
intelligence (AI) and human factors into a single product.
It is an intrinsic peculiarity of game development, which
distinguishes it from traditional software. [2], [3].

The complexity of video games make them interesting
tools to support learning and knowledge. Game-based learn-
ing is a practical learning experience that facilitates teaching
certain skills and concepts. Its application is attractive and
motivating for students [4], [5]. Nevertheless, even with the
large amount of information about how to develop games,
the high number of engines and frameworks which can be
used may confuse newcomers.

Consequently, they may face several difficulties at the
beginning of their game development journey [6]. New-
comers should use software engineering good practices and
reuse techniques to help minimize the difficulties. In typical
software development, those practices have been used for
years. However, when it comes to games, there are very
few studies proving their effectiveness in this field. In
2014, Murphy et al. [7] identified that despite the large
complexity, richness and impact of video games in software
industry, they rarely are studied by the software engineering
community. Three years later, Scacchi [3] continued to verify
that software engineering for games is often neglected in
curricula.

Therefore, how can we understand the learning curve of
beginners in game development and guide them based on
good development practices? How to facilitate this learning
process? In this paper, we aim to answer those questions by
understanding the relationship between good development
practices and game complexity. For this, it was necessary
to experience the newcomer’s learning process in a practical
way through the game development, so that those practices
and challenges could be identified. We built this experience
by having students developing two distinct games with
different degrees of complexity, and documented it on this
report. Instead of making brand new projects, we chose to
reimplement existing games, keeping our focus mainly on
the software development aspect. The selected games were
Pong and Super Mario Bros..

Our study provides the following contributions:

1) Clarify whether reimplementing games is a valid pro-
cess for teaching game development;

2) Investigate how implementing existent games works
as a way to teach a development process that follows
good Software Engineering practices; and

3) Report how reimplementing games of different com-
plexities worked for our students.

This experience report may serve as a starting point for
beginners who just started making their first game and
wonder what their next step might be. It is also helpful
for educators who wish to follow a similar process in

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Education Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 936

classrooms.
The remainder of this paper is organized as follows.

Section 2 discusses related work. In section 3, we describe
our experience report in detail and how the reimplementa-
tions were conducted. In Section 4, we present the lessons
learned and final results. In Section 5, threats to validity are
discussed. Finally, in Section 6 we present the concluding
remarks and directions for future work.

II. RELATED WORK

Researchers have investigated games, their peculiarities,
and ways of applying the consolidated software engineering
practices used in traditional development to game develop-
ment. They also researched about how to facilitate learning
and how to apply software engineering practices through
games development.

A. Game development versus Traditional projects

In order to analyze the difference between traditional
software development and games, Murphy-Hill et al. [7]
conducted an empirical study at industry comparing these
domains. They interviewed software engineers working in
game development from different companies and next sur-
veyed Microsoft developers. Through this process, they
identified the multidisciplinary nature of the development
process, such as the need for sound, arts, artificial intelli-
gence (AI) and many different characteristics. In order to
get those connected, an interdisciplinary team is required,
which also means that developers must communicate with
non-engineers more than non-game developers do. Lastly,
the innovative aspects, the need for quick responses and
inflexible deadlines of games require a fast and flexible
development approach. Thus, Agile methods are the main
approach adopted.

In 2018, Pascarella et al. [8] conducted an exploratory
investigation aimed at reproducing the findings of Murphy-
Hill et al. [7] on game development by shifting their focus
to free and libre open source software (FLOSS). They mined
the repositories of 30 FLOSS games and 30 traditional
FLOSS systems. They analyzed how developers committed
versioned resources and the diversity in malfunctions. Then,
they validated their findings through a survey involving
81 respondents among the most productive developers of
the chosen projects. They identified that developing games
involves activities on more diverse areas than developing
non-game systems. Only in games they identified the pres-
ence of more diversified specialists confirming the previous
findings that consider the development of games different
from traditional software development.

B. Learning game development

Using game development as a learning tool provides stu-
dents with more opportunities to learn software engineering
techniques and practices in a more engaging and fun way

[4], [9], [5]. It has several benefits such as increased learning
effectiveness, motivation and interest. It also reduces training
time, allowing students to try and see the consequences in
practice by learning from their own mistakes and successes
[10], [11].

Garris et al. [10] presented an analysis of the benefits
of digital and non-digital games used in SE education.
The study identified positive results regarding satisfaction
and confidence in the use of games for teaching, and also
showed its contribution as a way to increase motivation from
students.

Yampolasky and Scacchi [9] conducted a qualitative anal-
ysis of a case study using game play testing as a starting
point for learning mainstream issues and challenges found
in modern software engineering projects and practices. Their
study analyzed students with no experience in software
development creating a game from scratch. They discussed
issues in requirements, design, prototyping, testing and user
experience assessment. After the experiment, the students
described their learning experiences as both fun and con-
structive, as well as transformative for some of them. This
work can be seen as the closest one to our investigation.

In our work, the students did not develop a game from
scratch. Instead, we chose to reimplement two distinct
games, Pong and Super Mario Bros., because we would like
to identify if there are some difference in developing two
games with distinct complexities.

III. THE EXPERIENCE REPORT

Experience reports offer the opportunity to share a hands-
on experience. In this section, we describe the execution
of the experiment with the purpose of sharing and consoli-
dating the knowledge about game development acquired by
novices, while identifying difficulties and good practices that
support the development. We gather the data through obser-
vation and non-structured interviews with the developers.

A. First steps

A team of developers was made by choosing students
who were interested in studying software engineering in
games. They were exposed to game development with a
practical approach on RiSE Labs, a group researching reuse
in Software Engineering. Two classic games, Pong and Super
Mario Bros., were selected to be implemented from scratch.

Pong is a game where you play a match of paddle tennis
against the computer or another person. Each paddle is
usually represented by a rectangle. The original version of
Pong does not feature realistic graphics, mainly due to the
time it was released. Pong has relatively few features and
does not deal with complex logic or animations.

Super Mario Bros. is a platform game originally released
for the NES. Platform games are games where the player
makes progress by jumping platforms and walking forward.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Education Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 937

This game, in comparison to Pong, includes multiple char-
acters and scenarios. It is considerably more complex, fea-
turing multiple courses, animations and platforming physics,
highlighting the 13 years age difference with Pong.

Those games were chosen due to their historical relevance
to video games and relative easiness of implementation for
beginners when using modern game development tools. In
this article, the terms ”made from scratch” or ”implemented
from scratch” are referring to source code. Graphics, audio
effects, songs and any other assets were either obtained
from the Internet, or taken directly from the original games.
This will be described with more details on following
sections. Reimplementing games allows students to focus
only on the programming and Software Engineering aspects
of game development, since all assets (such as sound effects,
songs and graphics) have already been made. Moreover, a
methodology, a schedule and a set of tools were defined for
each project.

B. The team

The development team was composed by 2 undergraduate
students and one master’s student. One of the undergraduates
had previous experience working with GameMaker: Studio
as a hobby, and the other one created Minecraft mods when
he was a teenager. The master’s student previously worked
at multiple software development companies, but she did not
have any previous experience with game development.

Thus, the group had different levels of experience with
game development, with no one having ever worked with
the game industry.

C. Project planning

At the beginning of each project, the students defined a
schedule with all the tasks and how long they would take to
be done. Every week, the team had meetings to discuss the
progress and decide which tasks they would work on for the
next week.

Features were prioritized based on how much value they
would bring to their version of each game. The students also
considered whether having a feature or not would impact the
quality of the software or improve their learning experiences.
Based on that, features like the multiplayer mode of Super
Mario Bros. were ruled out due to not being relevant neither
as a gameplay mechanic or as a development challenge.
However, having multiple enemies was deemed useful both
for maintaining the integrity of the game design and for
encouraging code reuse between each enemy.

Since the games already existed, the team decided that
a Game Design Document would be redundant. All design
questions could be answered in a timely manner by playing
the originals. These games already being available made it
easy for the students to investigate mechanics (for example,
observing how fast an enemy moves).

D. Tools

Game development can be done through game engines.
They are software development environments that imple-
ment common functionality that most games use (graphic
rendering, audio playback, input handling, and others) and
provide an API for programmers. They often include their
own purpose-built IDE (like Unity, Game Maker: Studio and
Construct 2).

Unity is a popular game engine among both professional
and amateur developers [12]. It is widely used in industry,
has very extensive documentation and the basic version can
be used at no cost. For these reasons, it was decided to use
Unity for the projects.

Unity facilitates, for example, the usage of animations,
physics, input and sound effects. Unity’s Animation State
Machines provide a graphical way to make patterns for
animations and actions that a character may have. Unity
encourages software reuse through prefabs. Prefabs are in-
game objects composed of many engine components, such
as code and graphics. Using them allows elements such as
enemies or blocks to be seamless reused through the game,
saving development time. Prefabs can be placed freely in
different Unity Scenes. Unity’s Scenes are virtual rooms
where the developers place elements that they want to appear
on that part of the game. For example, in a platform game,
they may make a scene for each course, and another one for
a menu.

As the development team performed tasks concurrently, a
version control system was a mandatory tool. Git was chosen
due to its popularity, free availability and support to parallel
development among project members. The students used Git
through the GitHub service1.

E. Reimplementation approach

The first project was a reimplementation of Pong using
Unity. Pong is one of the first video games ever made,
originally released in 1972. It features 2 paddles and a ball
moving around the screen, meaning to simulate a match of
ping-pong. Pong can be seen as kind of a ”Hello World”
for game development. [13]

The key factors to choose Pong as the first project were
its simplicity, ease of finding freely available assets and
availability of tutorials about how to implement this specific
game.

The second project was a reimplementation of Super
Mario Bros., the classic platform game for the Nintendo
Entertainment System, released on 1983. We chose this
game due to its greater complexity when compared to Pong,
featuring multiple enemies, levels, sounds and basic physics.
It was extremely successful when it launched and got re-
released for multiple consoles. The students version was

1https://github.com/GamesRiSEUFBA

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Education Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 938

directly inspired by the 1993 version released for the Super
NES.

On both projects, our team decided to customize the folder
structure. In the documentation, Unity encourages its users
to put all assets inside the ”Assets” folder. Our development
team chose to organize the project files by making different
folders such as Scenes, Sprites, Scripts, Animations and
Prefabs. This practice facilitated code reuse in the project.

F. Reimplementing Pong
Initially, each student was given the task of making a

reimplementation of Pong by themselves using Unity. The
goal was to get everyone more familiarized with Unity
before working in a larger project as a team. They could
freely choose assets or tutorials to follow, and even add
different features if they wanted to. After three weeks, each
student had developed a Pong game with similar behavior
and features.

Four weeks later, they started a collaborative project to
reimplement the game as a team. This time, they started
by making a list of features to be included. Besides playing
against the computer or another player, it was decided that it
would have an option to customize the in-game appearance
of the paddles. It would also have a simple menu where the
player could choose what game mode he would play. They
could also go to the customization screen from there. Figure
1 shows the menu screen.

Figure 1. Pong Reimplementation Menu

The students kept progressing in their reimplementation,
with a new build being tested and discussed every week until
the final release, one month later.

1) What went right: The students learned more about how
to work as a team. Most of their early efforts went towards
learning how to use Git together with Unity. They also had
to learn how to deal with version conflicts and avoid them
when different people work on the same file.

They found that using the agile method Scrum [14] and
meeting weekly to review the most recent build of the project
allowed them to quickly grasp what could be improved and
accordingly make changes to the game.

The software created collaboratively was technically su-
perior to their individual works. This can be seen as a direct
result of both their previous experience, and also due to
direct collaboration and discussion between team members.

2) What went wrong: Unity uses hundreds of non-source
code files that are very hard to read or edit outside the
IDE. This made it considerably difficult to see what certain
commits were doing. A modification to those non-code
files (for example, moving one the paddles slightly to one
direction inside Unity’s IDE) would be extremely hard to
visualize by just looking at the commit. This made it even
more important to describe what exactly each commit was.

Editing the same scene usually led to version conflicts.
It was concluded that it would be easier and more efficient
to develop collaboratively if everyone worked on different
Scenes. This is not very feasible with Pong, as it has very
few Scenes overall (compared, for example, with a game
that has multiple ones).

G. Reimplementing Mario

Following the first project, we had the students working
on a trimmed-down reimplementation of Super Mario Bros.
. They were given the task of recreating the game’s ”first
world”. In this context, a ”world” is a group of four courses,
with the last one always being inside a castle with a ”boss”
(a stronger enemy which the player needs to defeat to keep
progressing). The original Super Mario Bros. had 8 worlds.
The courses should be made so players that played the
original game could recognize them. Figure 2 shows Mario
in the beginning of the last course.

Figure 2. Super Mario Bros. Reimplementation

Each undergraduate student became responsible to work
on 2 courses. The game would also feature a title screen
and a game over screen, and all students worked on them
interchangeably. Due to time constraints, the work was
limited to only three courses. For comparison, the original
game had 32 courses. This would not affect the learning
process, as most of those other courses shared elements with
the ones they worked and, from a software developer point of
view, were very similar to the first courses. That would mean

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Education Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 939

less time writing software and more time pasting elements
using Unity’s scene editor.

The students started with gathering graphic and audio
assets from the Internet. Those can be found on dedicated
websites2. We believe that this use is considered fair use,
as this project was purely academic, with no commercial
interest.

One of the first mechanics that was implemented was
Mario’s basic movements. That means allowing the player
to control Mario and make him walk, run and jump. When
manually testing the game, the development team learned
that certain mechanics could look correct, but not feel like
the original game. For example, Mario’s maximum jump
height was inconsistent with the original Super Mario Bros..
For the average player, this could go unnoticed, but it
became evident when comparing both versions side-by-side.
They had to tweak values like speed, friction and gravity to
make the gameplay closer to the original.

Each week, they would discuss which features would be
implemented next. Those tasks were distributed between
members and had the next meeting as the deadline. If the
students did not finish a task in time, they could either spend
one more week working on it, or they could make it a multi-
person effort.

Most courses were not fully implemented until the last
weeks. This is due to the way the students planned to
implement them: each course was essentially composed of
common game elements (like blocks or enemies) plus the
graphics that appeared on it. As such, they preferred to build
the courses later on, when most or all of those elements were
in a working state.

To test if a new feature was implemented correctly, they
would play the original game and compare it to their own
version. This was done to make the gameplay as close as
the original as possible. Testing was done manually as they
looked for bugs or elements that did not match their original
behavior. If the bug was considered not trivial, an issue
would be made in GitHub describing how to reproduce it.

1) What went right: One of the biggest motivations
for this project was to get the students more experienced
with Unity, and learn how to develop games with more
complexity (physics, multiple courses, sound effects, Unity’s
state machines, etc.). We believe this objective was achieved
with success.

Sometimes, they would implement a functionality and
later find out that it was not working correctly, despite
everything being right in theory. This happened with Mario’s
movement physics. The initial implementation worked, but
after just a bit of testing, it was clear that the player
movement felt heavy and too different from the original
game. It was found that just having a requirement being
implemented and passing its tests does not guarantee it is

2https://www.spriters-resource.com/, https://www.mfgg.net/

working as intended in video games, and human testing is
vital to keep the game look and feel as planned.

Using Agile method Scrum and giving partial deliveries
were both very important to the group. It helped them
keep focused and better visualize important milestones, such
as having sound effects added. This showed that having
constant deliveries help visualizing progress in game devel-
opment.

They managed to save time by reusing code for nearly
all enemies that appear in the game. The first enemy to be
implemented was the Goomba, shown in Figure 3. Goomba
is an enemy that behaves without much intelligence, walking
from one side to another, damaging Mario if it touches him
from the sides, and getting killed if Mario jumps on top of
him. Due to its simple behavior, they chose it as a basis to
get all other enemies working. This was possible due to the
behavior being relatively similar for the Koopa Troopa and
Bowser, two enemies that share similar movement pattern
(but with more states). Bowser also had a jump mechanic
(it would jump from time to time in order to make it more
difficult for the player to walk around him) that shared most
of its code with Mario’s jump.

Figure 3. Enemy Goomba

2) What went wrong: Initially, the students settled to
release four playable levels within 4 months of development.
They underestimated the schedule and the time they would
need to spend learning Unity features. Although they had not
seen anything that could not eventually be figured out, the
time spent looking for guides, reading Unity documentation
or searching questions in forums could be better used
implementing features and fixing bugs. In the end, they
realized that they would not be able to recreate all four
courses before the deadline.

Just like Pong, Unity generated a large number of tempo-
rary files when someone was working with it. When pushing
to the project repository, the developers had to be extra
careful to not push any of the generated temp files.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Education Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 940

IV. DISCUSSION

The students developed functional reimplementations of
two classical games with different degrees of complexity.
They went from no experience at all with Unity to be able
to develop relatively complex games over the period of 5
months. They did so with industry standard tools that are
used for professional game development.

A. Results

From this experience, we provide the following findings:
1) Reimplementing games (rather than implementing

them from scratch) to teach Software Engineering is
a useful process and produces good results;

2) For games, manual testing provides results that au-
tomatic tests may fail to catch due to its subjective
nature;

3) Just like with traditional software projects, constant
deliveries help the team visualize their progress over
time;

4) It is viable and easy to teach code reuse in game
development due to how common it is in games. Game
engines may further encourage reuse in later projects
built using the same engine; and

5) Game development tools used in industry may be used
in educational environments with success.

B. Quick feedback and quality control

The students used the Agile method Scrum to reimple-
ment both Pong and Super Mario Bros. Tests were done
before partial deliveries to guarantee their quality. If a task
was not completed as planned within a sprint, they managed
to do it in the next one.

Testing was extremely important to plan new tasks and
also to keep both games similar to the original ones.

For Pong, a test session consisted of playing one to three
matches against another player or against the computer.
Then, the students would observe the behavior of all game
elements (paddles, ball and score) and see if they matched
the expected results. One problem that got noticed by manual
testing was that the ball, when colliding with a paddle, would
not change its vertical direction.

Super Mario Bros. proved to be more difficult to test.
There were many more elements and their behavior was
comparatively more complex than anything in Pong. A
testing session was done by having the students making a
full play through of the newest build. Then, they would take
notes of any bugs they found, or any unexpected behavior
(for example, if Mario’s movement felt too different from the
original Super Mario Bros.). In addition to weekly meetings,
the students tested their changes by playing the particular
level they were working on. On the very early stages, before
they had any courses done, Mario’s movement was tested in
a development scene that was scrapped from the project later
on.

Figure 4. Pong’s customization menu

C. Starting with Pong: the right choice?

In retrospect, starting with Pong was definitely an good
choice to start learning a game engine. It is simple enough
that a developer can get it done in a short amount of time. A
developer just has to work with the very basic elements that
Unity provides to build all components of a Pong game: the
2 paddles, a ball and the score points. That makes it a good
first step in learning Unity, and perhaps any game engine.

The students managed to finish the project ahead of the
schedule. So they used the remaining free time to add a
feature that allows the player to further customize certain
elements of the game, such as paddles and the ball color.
Figure 4 shows the Pong customization menu.

D. Super Mario Bros. as the second project

Reimplementing Super Mario Bros. was a very different
situation. Not only the game was much more complex as
stated before, but the students could not find as many support
(tutorials) as they did for Pong. Since most guides only
explained how to make generic platform games, the students
had to figure out on their own how to create any elements
that were exclusive to Super Mario Bros.. An Unity tool
they needed to learn was the Animation State Machine as
stated before. This one contributed to make the development
process last longer than expected.

For this project, the number of graphic and audio assets
was considerably larger. The students decided to reuse them
from the Super NES version of Super Mario Bros..

They underestimated how much time was needed to de-
velop this project. This was mainly due to one of the students
having previous experience developing platform games using
other game engines, and they believed this experience would
be useful. This ended up not being the case, as Unity’s
workflow was proven to be way too different.

E. From Pong to Super Mario Bros.

As stated previously, Pong is a much simpler game
than Super Mario Bros.. It had very few components to
implement, and the development was generally quicker and

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Education Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 941

easier. All difficulties were related to learning basic Unity
features and C#, the scripting language that Unity uses.

On the other hand, Super Mario Bros. featured physics,
multiple enemies and courses, sound effects, power ups,
and other elements that made the game considerably more
complex to implement. While it proved to be a valuable
experience for all members, perhaps a better approach would
be to introduce a third game among these two, with a middle
ground in complexity. We believe this would allow students
to have a smoother development process when dealing with
these new elements. However, this is an experience to be
tested in a future work with other participants.

V. THREATS TO VALIDITY

During the design of this study, potential threats to va-
lidity have been addressed. The first one is the number of
participants in the study. Only three students participated on
the team. However, even if this could be considered a small
quantity, the participants had a very distinct knowledge about
software development and no one had experience with the
Unity engine.

Another threat is the methodology used to develop the
projects. We can not affirm that, when remaking a game that
already exists, Scrum offers significant advantages over the
Waterfall method [14]. However, the students did perceive
using Scrum as something useful - it was possible to use
sprints in order to make constant builds and separate tasks.

Moreover, there were some difficulties to learn how to
deal with Git conflicts. Unity only launched its own ver-
sioning tool after the students had finished both projects.
On the other side, when they learned to commit only useful
files and ignore the non-source ones, this process became
easy for them. This could be seen as a validity threat, since
other students following this process are unlikely to face the
same issues with version control.

Finally, two students had previous experience with game
development, but as said before, they did not have any
experience with Unity.

VI. CONCLUSION

In this paper, we presented an experience report about
educating novices developers in game development. A group
of students implemented two classic games with different
degrees of complexity in order to get familiar with Unity
and take their first steps in the field of game development.
They started having no experience at all, and ended with a
fair knowledge about the chosen game engine.

We find that it is valid to use reimplementation projects
as a way to introduce students to game development. These
projects can also be used in classroom to teach general con-
cepts such as version control and team collaboration. Games
also proved to be useful for teaching software reuse, but due
to their often unpredictable behavior, developing automated
tests proved to be quite challenging. Game engines made

for industry use can also fit well in university classes, and
dedicated software may not be a mandatory requirement.
As future work, we intend to test these concepts with more
students and compare their progress when developing games
other than Super Mario Bros. or Pong.

REFERENCES

[1] T. Wijmanr. (2018) Newzoos 2018 report: Insights into the
$137.9 billion global games market. [Online]. Avail-
able: https://newzoo.com/insights/articles/newzoos-2018-
report-insights-into-the-137-9-billion-global-games-market/

[2] S. Aleem, L. F. Capretz, and F. Ahmed, “Game development
software engineering process life cycle: a systematic review,”
Journal of Software Engineering Research and Development,
vol. 4, no. 1, p. 6, 2016.

[3] W. Scacchi, “Practices and technologies in computer game
software engineering,” IEEE Software, vol. 34, no. 1, pp. 110–
116, 2017.

[4] J. Pieper, “Learning software engineering processes through
playing games: suggestions for next generation of simulations
and digital learning games,” in Proceedings of the Second
International Workshop on Games and Software Engineering:
Realizing User Engagement with Game Engineering Tech-
niques. IEEE Press, 2012, pp. 1–4.

[5] M. R. Souza, L. Veado, R. T. Moreira, E. Figueiredo, and
H. Costa, “Games for learning: bridging game-related edu-
cation methods to software enginering knowledge areas,” in
Proceedings of the 39th International Conference on Software
Engineering: Software Engineering and Education Track.
IEEE Press, 2017, pp. 170–179.

[6] I. Steinmacher, I. Wiese, T. U. Conte, and M. A. Gerosa,
“Increasing the self-efficacy of newcomers to open source
software projects,” in Software Engineering (SBES), 2015
29th Brazilian Symposium on. IEEE, 2015, pp. 160–169.

[7] E. Murphy-Hill, T. Zimmermann, and N. Nagappan, “Cow-
boys, ankle sprains, and keepers of quality: How is video
game development different from software development?” in
Proceedings of the 36th International Conference on Software
Engineering. ACM, 2014, pp. 1–11.

[8] L. Pascarella, F. Palomba, M. Di Penta, and A. Bacchelli,
“How is video game development different from software
development in open source?” in 2018 IEEE/ACM 15th
International Conference on Mining Software Repositories
(MSR). IEEE, 2018, pp. 392–402.

[9] M. Yampolsky and W. Scacchi, “Learning game design and
software engineering through a game prototyping experience:
a case study,” in Proceedings of the 5th International Work-
shop on Games and Software Engineering. ACM, 2016, pp.
15–21.

[10] R. Garris, R. Ahlers, and J. E. Driskell, “Games, motivation,
and learning: A research and practice model,” Simulation &
gaming, vol. 33, no. 4, pp. 441–467, 2002.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Education Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 942

[11] G. Petri, C. G. von Wangenheim, and A. F. Borgatto, “Quality
of games for teaching software engineering: an analysis of
empirical evidences of digital and non-digital games,” in
Proceedings of the 39th International Conference on Software
Engineering: Software Engineering and Education Track.
IEEE Press, 2017, pp. 150–159.

[12] P. E. Dickson, J. E. Block, G. N. Echevarria, and K. C.
Keenan, “An experience-based comparison of unity and un-
real for a stand-alone 3d game development course,” in
Proceedings of the 2017 ACM Conference on Innovation and
Technology in Computer Science Education. ACM, 2017,
pp. 70–75.

[13] H. Lowood, “Videogames in computer space: The complex
history of pong,” IEEE Annals of the History of Computing,
vol. 31, no. 3, 2009.

[14] R. Pressman and B. Maxim, Engenharia de Software-8a

Edição. McGraw Hill Brasil, 2016.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Education Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 943

