
A Feature-Based Approach to Build Quiz Games in a Multiplayer Multiplatform
Perspective

Victor Travassos Sarinho
Universidade Estadual de Feira de Santana (UEFS)

Laboratório de Entretenimento Digital Aplicado (LEnDA)
Feira de Santana, Bahia, Brazil

vsarinho@uefs.br

Resumo—This paper presents the Assessment of Knownledge
Multiplayer Multiplatform Environment (AsKMME), a feature-
based approach to develop multiplayer multiplatform quiz
games. It provides a domain game architecture, based on
identified features of the quiz game dimension, that follows
a Model-View-Controller strategy implemented by feature
artifacts adapted to be executed in distinct software platforms.
As a result, a reusable approach to develop multiplayer
multiplatform quiz games was provided, together with the
development of a quiz game for validation purpose.

Keywords-software product lines; features; multiplayer; mul-
tiplatform; quiz game;

I. INTRODUCTION

Digital games represent a great domain for conducting
research related to Computer Science and Software Engi-
neering (SE) [1]. However, it is important to emphasize
that developing digital games is not the same as developing
software systems [2], which causes some specific problems
during their production.

In fact, understanding gaming engine architecture, as well
as its programming quirks, is generally not a simple or intui-
tive task for its developers [2]. Game designers are also often
directed at using either an SDK or a development framework
to carry out their game designs as soon as possible [1],
limiting as a result the creativity during production as well
as possible resources able to be made available by them.
Another major problem is due to the types of requirements
applied (ex.: “the game should be fun to play”), which are
difficult to fulfill as software engineering tasks [1].

Among the possible solutions, there is a focus on the deve-
lopment and incremental launching of minimal sets of game
features capable of adaptively growing to meet the non-
functional informal requirements (NFRs) raised for them [1].
Another important solution consists in separating the G-fator
from the implementation game itself, in order to support
game portability in distinct game development environments
[3]. Finally, the production of simple and powerful tools
capable of providing abstractions for digital game domains,
coupled with the flexibility of gaming engines and other

features reusable according to the projected game variants
[2], is also something important to be applied in this context.

This paper presents the Assessment of Knownledge
Multiplayer Multiplataform Environment (AsKMME), a
building environment of multiplayer multiplatform quiz [4]
games based on features. It is a tool that provides domain
abstractions based on the identification of features aimed
at quiz games, capable of providing the adaptive evolution
and rapid production of multiplayer quizzes, as well as the
representation and execution of the G-factor in multiple
software platforms, such as web, console, instant messaging,
among others.

II. DOMAIN ANALYSIS

The AsKMME project aims to manage the variability
of multiplayer quiz games. To this end, different features
capable of representing families of quiz games, previously
modeled on the AsKME project [5], were reused and com-
plemented in the configuration of multiplayer quiz. These
are organized features to: identify the proposed game (Id and
Locale); represent initial menu data (Initial Menu) used in
user interaction (Start Menu, Highscore Menu, About Menu,
etc.); and set gameplay options according to the desired
game settings (Gameplay Menu, Game Flow, Game Score,
Player Help, Prizes, Questions and Multiplayer) (Figure 1).

Figura 1. Partial illustration of the AsKMME feature model.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Short Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 567



Focusing on the feature Multiplayer (Figure 2), it indicates
the possible multiplayer game styles that can be applied in
an available game mode. Depending on the game mode,
this may be single player, multiplayer or both, according to
the configuration applied to the feature Multiplayer and the
boolean value applied to the Is Single Player feature. Game
Styles describes the possible multiplayer approaches to the
configured game mode, indicating: minimum and maximum
number of players in a match; possible turn styles (turn-
based, round-based and real-time); wait time for the player
to lose the turn; and total time of the multiplayer match.
Features Messages and Performed By Event follow the same
logic defined in the Game Flow feature, however, with the
ability to send messages to other players and with access to
current game session information.

Figura 2. Multiplayer subfeatures of the AsKMME model.

III. DOMAIN IMPLEMENTATION

For AsKMME games, the Feature-Oriented Software
Development (FOSD) strategy was applied as a way of
implementing the analysis domain. It is a paradigm for
building, customizing, and synthesizing large-scale software
systems in terms of features [6] that has been prominent in
the context of building SPLs [7].

In this sense, following the described FOSD strategy,
a Domain Specific Language (DSL) was defined via
JavaScript Object Notation (JSON) for AsKMME featu-
res, together with a multiplayer multiplatform game loop
proposal able to execute such specifications successfully.

Regarding the multiplayer multiplatform game loop, a
JavaScript state machine has been implemented (Figure 3). It
is capable of interpreting the provided JSON configurations,
according to the player inputs and game logic outputs,
providing:

• the initialization of the game (start-multiplayer-game
state) with the execution of the startGameStatus game
routine;

• the verification that the player is active in the game and
if it is your turn to play (verify-multiplayer-status and
get-turn-player states);

• the player turn waiting to play when the game is turn-
based (wait-player-turn state);

• the rendering of messages to be sent, as well as
the execution of the updateGameStatus game routine
until there is a message content available (render-
multiplayer-gameplay state);

• checking and waiting for the end of the round when
the chosen game is based on rounds (verify-round-turn
and wait-round-turn states);

• the execution of the updateGameStatus game routine
with the end-of-game checking (update-multiplayer-
gameplay state);

• closing the match by confirming the current “dead”
player status, which is then forwarded to a state to wait
for the end-of-game of the other players in the current
session (wait-game-end state); and

• the finalization of the game with the display of the
final results of the players and the routing to the initial
menu of the game (end-multiplayer-gameplay and goto-
initial-menu states).

Figura 3. State machine details for multiplayer games.

Regarding to the management of the game sessions, it
is necessary to carry out a temporal control of the ses-
sions status for opening and closing purposes, as well as
monitoring the current status of their respective players, to
prevent the game from being caught due to the absence of

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Short Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 568



plays by the players. In this sense, whenever a new game
session is opened, a session status check routine is activated
(refreshGameSessionStatus), which is responsible to:

• open the session and wake the players if the maximum
number of players has been reached, or if at least the
minimum number of players has been reached after the
end of the session opening wait time;

• terminate the attempt to open the session and wake up
the waiting players if the session opening wait time has
been exceeded and the minimum number of players has
not been reached;

• close the game and wake up the waiting players if
the time limit for the duration of the match has been
reached;

• close the game and wake up the waiting players if all
players have died in the game;

• put in standby players who lost the turn in a round;
• pass the turn to the next player still alive when the turn

player loses the turn;
• wake up the live players after the end of a round;
• wake up the next live player after a player has made

the move in turn; and
• delete session data after 3 seconds of session closure.

IV. REQUIREMENTS ANALYSIS AND PRODUCT
CONFIGURATION

To demonstrate the requirements analysis and configura-
tion of a product based on provided AsKMME domain arti-
facts, a cross-platform version of the BodyZap game [8] was
chosen to be produced. It is a single player multiplatform
quiz game, previously produced on the platforms IMgine
[9] and AsKME [5], which presents questions related to the
digestive and respiratory systems studied in the teaching of
human physiology.

To perform the requirements analysis and product con-
figuration of the BodyZap multiplayer version, the single
player configurations previously developed in features of the
AsKME [5] platform were reused, adding the multiplayer
features settings to each previously implemented game
mode. Thus, for Play by Time mode, the following features
were added: gameStyles settings for matches in real-time;
multiplayer messages for new prize (newPrizeMessage),
prize loss (lostPrizeMessage) and win (winnerEndMessage)
events; and performedByEvent code putting all players to
status “dead” after a player wins (Figure 4). For the Play
by Quantity game mode, the following features were ad-
ded: gameStyles configurations for round-based matches;
multiplayer messages for new prize (newPrizeMessage),
prize loss (lostPrizeMessage), win (winnerEndMessage and
defeat (loserEndMessage) events; and performedByEvent
code putting all players to status “dead” after a player
wins. Finally, for Best of 5 mode, the following features
were added: gameStyles settings for turn-based matches;
multiplayer messages for issue error (errorMessage) and

Figura 4. Multiplayer JSON configuration of the Play by Time game mode.

Figura 5. Multiplayer JSON configuration of the Bether in 5 game mode.

defeat (loserEndMessage) events; and performedByEvent
code indicating the next player of the turn (turnClient)
after getting a correct or wrong answer from the current
player, and putting the current player to status “dead” after
completing all 5 proposed questions (Figure 5).

Multiplayer messages are intended to warn other session
players about events that occur with the current player. In
this way, for each configured BodyZap game mode, each
opponent player of the session will be warned about cor-
rect/wrong answers, received/lost prizes, and victory/defeat
of the current player in a match. As a result, each player
known the opponents status in the context of the match,
thus contributing to the engagement and immersion of the
same in the configured game.

V. RESULTS AND DISCUSSIONS

The AsKMME project follows the AsKME line of work,
but with a simplification in the multiplatform client archi-
tecture and the centralization of the game loop on a single
multiplayer server. The idea is that each AsKMME client
must be concerned only with sending/receiving messages,
which are worked by the multiplayer server that processes
and contextualizes the status of each connected player based
on them. As a result, the perform method of the multiplayer
multiplatform game loop in the server centralizes client event
processing, sending messages (the sendUserInput event)
as responses from message requests (the newMsg event)

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Short Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 569



Tabela I
BODYZAP REUSE METRICS OBTAINED IN THE IMgine, AsKME AND

AsKMME ARTIFACTS.

Project Reused SLOC/ Total of
SLOC

Reused Cyclomatic
Complexity / Total
Cyclomatic Complexity

IMgine 1513 / (889+1513) = 62,98% 284 / (19+284) = 93,73%
AsKME 1343 / (203+1343) = 86,87% 342 / (6+342) = 98,28%
AsKMME 3098 / (393+3098) = 88,75% 540 / (15 + 540) = 97,30%

according to the logic defined for each configured game.
Finally, considering the level of reuse achieved with Body-

Zap in the AsKMME project, Table I presents some metrics
[10] obtained for complexity and reused code amount in
produced versions for the BodyZap game. The Total SLOC
metrics and Total Complexity metrics are calculated by sum-
ming the metrics of the developed games with the metrics
of the supporting feature artifacts developed in each project
(IMgine, AsKME and AsKMME). As a result, 88.75%
SLOC reuse and 97.3% complexity reuse were obtained
in the AsKMME project, surpassing the SLOC reuse data
obtained in the previously developed IMgine and AsKME
projects.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented the AsKMME platform, a feature ba-
sed approach for the construction of digital multiplayer mul-
tiplatform quiz games. For this, some SPL production steps
(Domain Analysis, Domain Implementation, Requirement
Analysis and Product Configuration) were performed based
on the FOSD approach, resulting in feature models and
artifacts capable of being configured in desired quiz games.
Finally, some practical results obtained with the BodyZap
game configuration were also presented, along with collected
reuse metrics that are able to be compared with previous
implementation approaches made for the chosen game.

AsKMME follows a modeling and implementation stra-
tegy applied in the AsKME platform, which ensures the
production of static and dynamic quiz games, following
predefined features that increase the abstract representation
of desired quiz games, in conjunction with configured scripts
that allow a level of flexibility similar to game engine arti-
facts. However, this flexibility generates a “learning curve”
problem, especially with the development of competing mul-
tiplayer games, or in games that follow a different approach
to the traditional quiz game loop (Blackjack and TicTacToe
games developed in the AsKME platform, for example).

Regarding the level of obtained reuse, AsKMME presen-
ted excellent results in comparison to the previous work
of IMgine and AsKME. However, it is still necessary to
implement more AsKMME games derived from the AsKME
platform, in order to: improve the comparison of metrics,
complement the validation process, and confirm the possi-
bilities of reuse and extension capacity.

As future work, it is intended to develop other multi-
platform clients already obtained in previous IMgine and
AsKME projects, as well as to start the implementation
of a client with voice interpretation and associated natural
language processing. Multiplayer versions of the single
player games already developed in the IMgine and AsKME
projects will also be delivered in the near future. The
usability evaluation with AsKMME clients that will be
developed, a comparison with other approaches of develop
quiz games, and the application of unit and acceptance tests
in developed feature artifacts will also be made as soon as
possible. Finally, the production of dedicated feature-based
approaches to other digital game domains, such as board ga-
mes (BoardMME), textual adventures (AdverMME), mini-
puzzles (PuzzleMME) and Role-Playing Games (RPGMME)
will also be developed in the near future.

REFERÊNCIAS

[1] W. Scacchi and K. M. Cooper, “Research challenges at the
intersection of computer games and software engineering,” in
Proc. 2015 Conf. Foundations of Digital Games, 2015.

[2] A. W. Furtado, A. L. Santos, G. L. Ramalho, and E. S. de Al-
meida, “Improving digital game development with software
product lines,” IEEE software, vol. 28, no. 5, pp. 30–37, 2011.

[3] A. BinSubaih and S. Maddock, “Game portability using a
service-oriented approach,” International Journal of Compu-
ter Games Technology, vol. 2008, p. 3, 2008.

[4] M. J. Wolf, The medium of the video game. University of
Texas Press, 2001.

[5] V. T. Sarinho, G. S. de Azevedo, F. M. Boaventura, and
F. de Santana, “Askme: A feature-based approach to develop
multiplatform quiz games,” in XVII Brazilian Symposium
on Computer Games and Digital Entertainment (SBGames),
2018.

[6] S. Apel and C. Kästner, “An overview of feature-oriented
software development.” Journal of Object Technology, vol. 8,
no. 5, pp. 49–84, 2009.

[7] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-
oriented software product lines. Springer, 2016.

[8] V. T. Sarinho, E. M. Granjeiro, and C. O. Cerqueira, “Body-
zap: Um jogo de im para o ensino de fisiologia humana,” in
II Workshop de Jogos e Saude, XVI Brazilian Symposium on
Games and Digital Entertainment (SBGAMES). SBC, 2017.

[9] V. T. Sarinho, G. S. de Azevedo, F. M. Boaventura, and
F. de Santana, “Providing an im cross-platform game engine
for text-messaging games,” in XVII Brazilian Symposium
on Computer Games and Digital Entertainment (SBGames),
2018.

[10] W. Frakes and C. Terry, “Software reuse: metrics and models,”
ACM Computing Surveys (CSUR), vol. 28, no. 2, pp. 415–435,
1996.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Short Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 570


