
Procedural Editing of Virtual Terrains
Using 3D Bézier Curves

Bruno Torres do Nascimento, Cesar Tadeu Pozzer, Flavio Paulus Franzin
Universidade Federal de Santa Maria

Programa de Pós-graduação em Ciência da Computação
Santa Maria, Brazil

{brunotn, pozzer, ffranzin}@inf.ufsm.br

Abstract—The process of manually shaping and adding fea-
tures to virtual terrains is a time-consuming task prevalent
during the development process of many applications, such as
games and virtual simulators. We present a technique to shape
virtual terrains by creating excavations and embankments to
flatten and smooth the terrain along paths defined by composite
cubic 3D Bézier curves. The curves are procedurally generated
based on an input set of vertices. Our approach is capable of
carving smooth paths on terrains for placement or rendering
of roads, railways, rivers, or any other feature that follows a
path. We employ spatial hashing and data structures to optimize
execution on the GPU.

Keywords—Bézier curves; procedural; carving; virtual ter-
rains, spatial hashing;

I. INTRODUCTION

The creation of realistic and visually pleasing virtual terrains
involves the addition of several types of features, which
increase the overall complexity of the task. Roads, railways,
and rivers are usual features that demand significant manual
work to be integrated into the terrain believably, and small
inconsistencies — such as an uneven road or a river that
goes uphill — can be very noticeable and spoil the overall
realism. These types of features also have the characteristic of
following a well-defined path that can be used to fit the nearby
area of the terrain to the constraints specific to that feature.

Several types of applications (e.g., games and virtual simu-
lators) employ procedurally generated terrains created from
raster elevation data (heightmaps) and vector data (points,
lines, and polygons representing rivers, roads, and lakes) [1].
Procedural methods are well suited for generating large scale
terrains that can be very detailed, based on the amount of input
information available. One key challenge is to correctly and
seamlessly integrate the terrain features — created from the
vector data — into the surface of the terrain.

Heightmaps are a standard technique used to model virtual
terrains [2] [3], where a scalar field of height values — usually
encoded in a texture — is used to displace the vertices of
a regular grid mesh, thus shaping the surface of the terrain.
Heightmaps have the advantage to be easily editable, allowing
the addition of local changes and offering fine control over the
topography of the terrain.

As the size of the terrain and quantity of features increases,
the amount of time necessary to manually edit and fit all
the features can quickly become impractical, thus requiring
a procedural approach. The main challenge of procedural

methods is to present consistent results when faced with
unforeseen scenarios.

We propose a procedural approach for integrating features
into a terrain, by editing the heightmap along composite cubic
3D Bézier curves, which define the paths followed by the
features, creating excavations and embankments that smoothly
blend into the terrain. In order to allow making alterations in
real-time with reduced overhead, our approach is designed to
take advantage of the GPU for parallel processing, through the
use of compute shaders. The sole purpose of our approach is
to adjust the topography of the terrain to fit the features, not
to handle the rendering or generation and placement of 3D
models, such as roads or train tracks.

Our approach calculates, in real-time, the displacement
necessary to fit the terrain, and stores the displacement values
in a separated texture, thus maintaining the original heightmap
values unchanged during editing. That has the advantage of
allowing changes to be undone by the user so that the editing
process can be more dynamic. Once the editing is finished, the
user can choose to bake the displacement into the heightmap.

The main contributions of our work are:
• a technique for procedural editing heightmaps along paths

defined by composite cubic 3D Bézier curves;
• an efficient method for storing and evaluating Bézier

curves on the GPU;
• a straightforward algorithm to generate composite cubic

3D Bézier curves from vector data.
This paper is structured as follows: Section II explores

related works. In Section III we present an overview of our
approach, which is discussed more in depth in Sections IV
through VII. Finally, in Sections VIII and IX, we present and
discuss the results achieved.

II. RELATED WORK

Several solutions tackle, from different perspectives, prob-
lems related to the procedural placement of paths on virtual
terrains. Surveys on procedural creation of virtual worlds,
presented by Smelik et al. [2], and Freiknecht and Effelsberg
[3], record several works that address problems related to
road generation. Smelik et al. [2] note that procedural road
generation has primarily been addressed in the context of
procedural cities, so the generation of interstate and country
roads still requires further attention.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 486



Input Data

Execu�on Flow

Vector Data

Heightmap

Displacement Map

Load
Data

Send
Data
to the
GPU

Dispatch
Compute
Shader

Generate
Displacement
Map

Create
LUT and Hash

Convert to
Bézier Paths

1
0

7
6
5
4
3
2

Figure 1. Overview of the execution steps. The colored arrows represent the flow of each type of data. Heightmap is red; vector data is blue; LUT and hash
are green; and displacement values are yellow.

McCrae and Singh [4] present a sketch-based system for
the conceptual layout of 3D path networks, where a 3D curve
is created from a 2D sketch done by the user, employing a
clothoid fitting approach. Although they mention the system
alters the terrain to integrate the paths, no solution is presented
in their paper.

Bruneton and Neyret [1] present a method to render and
populate very large terrains with features. To represent road
and river paths, they use 2D Bézier curves. Their approach
relies on getting the curves from the input vector data and,
therefore, does not provide a method for creating the curves.
Furthermore, their approach relies on generating a mesh for
every curve, which is used to flatten the terrain along the paths.
Since the 2D curves do not encode height, they are constrained
to the height of the terrain, contrary to our approach.

Works presented by Galin et al. propose methods for
procedural generation of roads [5], and the generation of
road networks [6]. In [5], Galin et al. focus on creating
paths using a weighted pathfinding algorithm and generating
procedural road models. The terrain displacement is briefly
described as being performed by modifying the mesh of the
terrain near the trajectory of the path, although no results
illustrating the time costs of that process are provided. In
[6], the approach presented by Galin et al. employs geometric
graph generation combined with a path merging algorithm to
create road networks between different types of roads. Terrain
excavation is mentioned but not covered in that paper.

Works presented by Kelly and McCabe [7], and Parish and
Müller [8] focus on procedural city modeling and road layouts;
however, they do not address the terrain fitting problem. Ap-
plegate, Laycock, and Day [9] present a sketch-based system
for highway design aimed at creating traffic simulations. In
their approach, the terrain is displaced by constraining the
height of its vertices using the road mesh.

Thöny, Billeter, and Pajarola [10] present a work focused on
rendering vector features, where they employ a deferred line
rendering method associated with a spatial hashing technique
to improve performance when working with very large data
sets. Similarly, Frasson, Engel, and Pozzer [11] present a
screen-space approach for rendering vector features on virtual

terrains. Their work employs an efficient data structure used
to access the vector data on the GPU. Although both works
achieve good rendering results, their approaches do not alter
the topography of the terrain to fit the features, nor they
employ Bézier curves since they are designed to work with
polygons and polylines.

III. OVERVIEW

This section briefly describes all the steps our technique
follows to perform the editing of the terrain heightmap (Fig. 1).

Firstly, the raster data (heightmap) and vector data (features)
are loaded. The vector data consist of lists of 3D points —
which we will call vertices — that describe the paths followed
by the features. Optionally, the user could manually input
the vertices.

The second step is to convert the lists of vertices to
composite cubic 3D Bézier curves. Each pair of vertices that
compose a line segment will generate a curve with four control
points. The two extreme control points are the original vertices,
and the other two intermediary control points will be derived
based on the relative direction between adjacent line segments
and their lengths. Section IV covers this process in detail.

The third step is to sample the Bézier curves in small
intervals to create a look-up table (LUT) that will be used to
speed up queries on the GPU. To further optimize the queries,
a spatial hash is created and filled with the LUT samples. This
process is explained in detail in Section V.

In the fourth step, all the processed data is sent to the
GPU, and a compute shader is dispatched to process the entire
heightmap in parallel. Every heightmap position is sampled
and subtracted from the height of the Bézier curve that passes
on it — or within range. The difference values are saved
in a Displacement Map and can be summed to the original
heightmap values in order to get the final terrain height at each
position. See Sections VI and VII for a detailed explanation.

IV. BÉZIER CURVE GENERATION

As mentioned previously, the input vector data are lists of
3D vertices that represent the line segments in a path. This type
of data representation usually requires a very high resolution
— with more vertices, and smaller line segments — to be

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 487



able to describe smoother paths (Fig. 2). Therefore, in order to
allow for easier parameterizing and editing in real-time, and to
make the paths smoother, our approach is to employ composite
cubic 3D Bézier curves (i.e., Bézier splines) generated from
the input vector data.

(a) Low Resolution (b) High Resolution

Figure 2. Comparison between resolutions of an input path.

We chose to employ cubic curves because they offer a good
tradeoff between control and computational cost, and, also, can
be constructed in a manner that ensures C1 continuity between
curves, without drastic changes to the shape of the path.

Each curve composing the spline is created from a line
segment. Since it is a cubic spline, each curve has four control
points, being the last one shared with the subsequent curve.
The two vertices of a line segment become the first and last
control points in the curve — henceforth called anchors —,
and the two intermediate control points — henceforth called
handles — are derived based on the direction and length of
the adjacent line segments, and a smoothness parameter Ω.
Fig. 3 illustrates — in 2D, for simplicity — the creation of a
composite cubic Bézier curve with three curves from a path
with three line segments.

Fig. 3.a shows an input path, with four vertices (A, B, C,
D) and three line segments. The line segments are treated as
vectors so that we can perform adding and scaling operations
on them. For each shared vertex (B, C), we determine the
direction (D1, D2) in which the handles will be placed, by
adding the two adjacent line segments.

The directions are then normalized (Fig. 3.b), and, for each
handle to be created, we calculate the distance from the vertex
to the handle by multiplying half the length of the line segment
by a smoothing factor Ω, with Ω ∈ [0, 1] (Fig. 3.c). Fig. 4
shows the result of different Ω values.

Then, the position of the handles (A1, A2, B1, B2, C1, and
C2 in Fig. 3.d) is determined by scaling the directions D1 and
D2 by the distances calculated in the previous step. Handles
adjacent to vertices at the ends (A1, C2) are projected on its
line segments (AB, CD).

Finally, we have a composite cubic Bézier curve that repre-
sents a path — we will call these curves simply Bézier paths
(not to be confused with the input paths, composed of line
segments). The generated Bézier path in Fig. 3.e is composed
of ten control points and three Bézier curves.

D1

D2

B

C DA

B

C DA
D1

D2

B

C DA
D1

D2

A2

A1
C2

B1

B2
C1

B

C DA

A2

A1
C2

B1

B2
C1

B

C DA

(a)

(b)

(c)

(d)

(e)

Figure 3. Generation of a composite cubic Bézier curve from three line
segments. Black dots are anchors and blue dots are handles. The red line
segments illustrate the distances at which the handles will be placed from the
anchors when Ω = 0.5.

V. DATA ACCESS AND OPTIMIZATION

One key aspect of our approach is, for every position on the
terrain, to find the closest point among all Bézier paths that
represent features to be processed. Since there is no analytical
solution for point projection on cubic Bézier curves, we
must resort to a numerical one. There are several approaches
based on numerical methods, such as Newton-Raphson and
bisection [12]–[14]. Ultimately, we chose to sacrifice precision
— although the difference is visually indistinguishable —
in order to reduce overhead by employing look-up tables
associated with spatial hashing.

A. Look-up Table

To speed up the process of finding the closest point on a
Bézier path, we sample each of its curves n times and store
the results in a LUT. Each entry in the table consists of the 3D
positions sampled and the parametric value t associated with
the sample on the curve. Fig. 5 shows five samples (A, B, C,
D, and E) obtained from a curve. Furthermore, all the curves
are sampled in order, so we can calculate to which curve any

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 488



Figure 4. The smoothing factor Ω is used to reduce sharp corners. From top
to bottom, Ω is 0.0, and 0.6.

entry belongs simply by dividing the index of the entry by
the number of samples per curve (n). Moreover, since the last
control point on a curve is shared with the next curve, we do
not sample it — unless it is the last curve in a Bézier path —
to avoid repeated entries in the LUT.

t = 0 t = 1∆t = 1/n

n = 5

A
CB

D E

Figure 5. LUT points (in green) sampled along a curve. The black points are
the anchors of the curve.

B. Spatial Hash

The LUT is very useful to find an initial approximation of
the closest point on the Bézier path, however, to check the
distance to every point in the LUT can quickly become too
expensive. To mitigate this problem, we employ a 2D spatial
hash, creating a hash table used to reduce the number of
queries to the LUT. The hash table is stored in liner memory
and employs an auxiliary pivot table. Its construction is based
on the approach proposed by Pozzer, Pahins, and Heldal [15].
Fig. 6 shows an overview of the data organization.

Before we can construct the hash, first, we need to create
and populate the LUT, as explained in the previous subsection.
Then, we iterate through every point (P ) in the LUT (Fig.
6.d) and, based on its (X,Z) coordinates — in this paper,
we assume that the Y coordinate represents the height of the
position (i.e., the Y-axis points up) —, we determine on which
hash cell (Fig. 6.a) the point lies. Every entry in the pivots table
(Fig. 6.b) represents one hash cell and stores how many LUT
points (Fig. 6.a, in green) lie on the cell area (i.e., its usage
(U )), and the starting index (I) in the hash table (Fig. 6.c).

To avoid points being incorrectly ignored when querying
for distance, we employ an extra radius to determine to which

hash cell they belong. Fig. 6.a shows an example of the extra
radius (red circles) being utilized. Points D and F are closer
to the cell boundary, and their radii overlap the neighboring
cells; therefore, they are recorded as belonging to both cells.
Point C, however, it is not close enough to hash cell 1, so it
is recorded as belonging only to hash cell 0.

Hash Dimensions = 2n = 2

Hash Cells

(a) (b) (c) (d)

0 1

2 3

A
B

C

D

E
F

G

Pivots
Cell

0
1
2
3

U, I
4, 0
0, #
3, 4 
2, 7

Hash Table
0
1
2
3
4
5
6
7
8

0
1
2
3
3
4
5
5
6

LUT

0
1
2
3
4
5
6

A
B
C
D
E
F
G

0/2
1/2
0/2
1/2
0/2
1/2
2/2

P t

P1

P2

P3

Figure 6. Data structures used to speed up queries. Hash with dimensions 2,
having 2 × 2 = 4 hash cells. The blue points (P1 to P3) are examples of
queried positions.

VI. PATH QUERIES

To determine the displacement value for every position on
the terrain, we need to know the point on a Bézier path that
is closest to that position. We accomplish that in two stages.
First, using the data structures described in previous Section,
we find an approximation of the closest point on a curve.
Second, we refine the result by approximating part of the curve
using line segments.

A. Closest Point Approximation

When querying the closest point to a given position P ,
we begin by using its (X,Z) coordinates to get the hash
cell where it lies. Then, we calculate the 2D distance (d) —
ignoring the heights — from P to each LUT point in that
hash cell to find which is the closest. In Fig. 6.a, for example,
querying the position P3 yields the LUT points F and G, and,
upon calculating the distances, we find the point F as being
the closest. However, querying any position in the hash cell 1
(e.g., P1, P2) would yield no results; therefore, we can assume
that any Bézier path is too far from hash cell 1 to have any
influence over it. With a LUT point in hand, we proceed to
the refinement phase.

B. Closest Point Refinement

After finding the closest LUT point, we refine the result by
iterating R times over the Bézier curve in a given interval of t.
Fig. 7 illustrates the refinement process. The interval [ta, tb]
is determined by calculating and applying an offset µ to the
value t associated with the LUT point. The value of µ is half
the size of the ∆t interval between LUT samples (Fig. 5) (i.e.,
µ = 0.5/n). Consequently, ta = t − µ, and tb = t + µ. It is
relevant to note that if ta < 0, or tb > 1, then the interval
spans over two adjacent curves — which happens when the
closest LUT point is also an anchor (e.g., points A, C, E, and
G, in Fig. 6.a).

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 489



The next step is to sample R + 1 points (k1 to k5, in Fig.
7.b) in the interval [ta, tb]. Then, the problem of finding the
closest point to the queried position P becomes a trivial matter
of calculating the orthogonal projection — in 2D, ignoring the
heights — of P on each line segment kiki+1 and choosing the
closest as the result P ∗.

R = 4

μ μn = 2

P

B
A C

ta
t tb

(a)

(b)

P*
k1 k2

k3
k4 k5

P
ta

tb

Figure 7. The two stages of querying a position P . In (a), we find the closest
LUT point B and then refine the search, in (b), to get the result P ∗.

VII. DISPLACEMENT MAP GENERATION

The primary purpose of the Bézier curves is to precisely
describe what the terrain height should be along their path
(Fig. 8). So, at every position along the path, we calculate
the difference between the heightmap value (i.e., the height of
the terrain) and the Y coordinate of the Bézier path (i.e., the
height of the curve), and store the result in a Displacement
Map. Then, when rendering the terrain, we add the heightmap
and displacement values to get the final height of the terrain.

Figure 8. Terrain with no displacement (top) and full displacement (bottom)
along a path.

Alternatively, the height of the curve could be baked directly
into the heightmap, without the need for the Displacement
Map. We understood that it is better to maintain the original
heightmap unchanged, to allow for editing the paths in real-
time. However, depending on the purpose, either approach
could be employed.

In order to create the Displacement Map, the first step is
to send all the relevant data — control points, LUT, pivot

and hash tables, the number of samples per curve n and
refinement steps R, and lateral smoothing parameters (w, λ;
see Subsection VII-A) — to the GPU. Next, we dispatch
a compute shader to process every heightmap position (i.e.,
texel) in parallel and save the result in the Displacement Map.

A. Lateral Smoothing

When we carve a path on the terrain, we have to consider
the width w of the path. Furthermore, to create excavations and
embankments, it is important to apply a smoothing distance
λ to avoid sharp transitions and slopes too steep (Fig. 9).
Fig. 10.a illustrates how w and λ define the area of influence
of a path.

w = 0
λ = 10

w = 6
λ = 10

w = 6
λ = 30

w = 20
λ = 5

Figure 9. Excavations and embankments created with different values for w
and λ.

B. Displacement Strength

To modulate the strength Θ of the displacement imprinted
on the terrain by a path, first, we need to get the 2D distance
d to the path — as explained in Section VI. Next, using Eq.
(1), we compute the linear parameter Ψ that produces the
interpolant value d, with d ∈ [w/2, (w/2 + λ)] (i.e., inverse
linear interpolation). Fig. 10.a shows how Ψ (green line)
changes across the area of influence of the path.

Ψ =
d− (w/2− λ)

−λ (1)

To calculate Θ, we employ the 5th-order smoothstep func-
tion (Eq. (2)) proposed by Perlin [16], which has zero first
and second-order derivatives at x = 0 and x = 1. This helps
the displacement to blend smoothly into the terrain. Fig. 10.b
shows that Θ is maximum across w and gradually decreases
along λ.

Θ = 6Ψ5 − 15Ψ4 + 10Ψ3 (2)

C. Displacement Calculation

The displacement calculations are executed on the GPU,
in parallel, by dispatching a compute shader that runs one
thread per heightmap texel. Each thread, first, converts the
texel position to a world position and uses that to query
the closest point P ∗ on a Bézier path. Next, P ∗ is used
to calculate Θ, and the terrain height is sampled from the
heightmap and subtracted from P ∗ height to produce a raw
displacement value ∆h. Finally, ∆h is multiplied by Θ,
resulting in the final displacement value, which is then stored
in the Displacement Map.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 490



Terrain Height

Displaced Height

Path

w

Ψ

λλ(a)

1

0

Displaced Areas B

A

Θ
1

0

(b)

(c)

Figure 10. Cross-section of the terrain showing the lateral influence of a path,
defined by the width w and the smoothing distance λ. The red dotted line in
(a) represents terrain height after displacement. In (b), A and B are the areas
that will be carved and filled, respectively. In (c), we can observe the shape
of the terrain after the displacement.

VIII. RESULTS

All the experiments and measurements were performed on
an Intel Core i7-4790 3.5 GHz processor, with 24 GB of DDR3
RAM and a NVIDIA GeForce GTX 1070 graphics card, with
8 GB DDR5 VRAM.

A. Visual Analysis

To evaluate the visual aspects of our approach, we imple-
mented a virtual terrain renderer that employs a vertex shader
to displace a regular grid mesh using an input heightmap,
which is generated using Perlin Noise [17]. In Fig. 11, we
can observe a Displacement Map created from a Bézier path
and used to carve the terrain. In that example, both maps have
a resolution of 512x512. In this paper, all tests were performed
using heightmaps and Displacement Maps that share the same
resolution, although, this is not a requirement.

Using a Displacement Map with a lower resolution can
cause artifacts unless the application of the maps is restricted
to a part of the heightmap with the same dimensions. That
can be useful in a situation where only a portion of the terrain
needs to be displaced.

Fig. 12 shows a river path created using different values for
Ω. Lower values can be used when it is necessary to maintain a

higher fidelity to the original shape of the input path. However,
we can observe that even a maximum value (bottom image)
does not drastically alters the path.

The footprint of the path is parameterized and can be
modified to create different effects. Fig. 9 illustrates how w
and λ are used to change the profile of a path and more easily
blend it in the terrain. Furthermore, we can observe, in Fig. 13,
that our approach correctly displaces the terrain along the path,
smoothly blending the changes to the surroundings.

Our approach can effectively be used to level the terrain
along a path, allowing for rendering roads directly on the
terrain, or placing 3D models, such as a railway, or water
mesh, as exemplified in Fig. 14. See the attached video1 for
more results.

B. Performance

We executed several measurements in order to evaluate the
performance of our approach regarding the time to generate the
Displacement Map. Every measurement used the same input
vector data (Fig. 15). Also, the terrain size (in world space)
was 2048 × 2048, and the extra radius (see Subsection V-B)
was 30.

To better identify the contribution of each parameter used
in the generation process, we conducted the measurements by
varying each value individually. Fig. 16 presents the results,
grouped by parameter. All maps are square, so a resolution of
1024 means 1024× 1024 = 1,048,576 texels (i.e., positions).

As expected, analyzing the results in Fig. 16, we verify that
the heightmap resolution carries the most significant weight,
since it directly determines the number of positions processed.
Furthermore, we observe that the number of samples per
curve also profoundly affects the generation times. That was
worsened by the fact that the hash was not used, meaning all
LUT points were accessed for every position processed.

To assess the performance gain caused by employing the
spatial hash, we executed measurements using different hash
dimensions. The hash is bidimensional, so a hash dimension
value of 4 means 4 × 4 = 16 hash cells. Fig. 17 shows the
results obtained, demonstrating the positive impact of the hash,
which made the Displacement Map generation 8 to 63 times
faster, in that scenario.

IX. CONCLUSION AND FUTURE WORK

We have presented a technique able to procedurally carve
3D paths on virtual terrains, reducing the need for manual
work editing heightmaps. Also, our approach is capable of
creating composite cubic 3D Bézier curves from an input set
of vertices, with smoothness parameterization. The footprint of
the paths is parameterized and properly blends into the terrain.
The data structures and spatial hashing presented proved to
successfully reduce the overhead associated with path queries
performed on the GPU. Also, our approach for approximating
and evaluating Bézier curves on the GPU produced high-grade

1https://youtu.be/p NPN3WVPjk

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 491



(a) (c)(b) (d)

Figure 11. Example of an input heightmap (a), a Displacement Map (b), and a terrain rendered without (c) and with (d) the Displacement Map. In (b),
positive and negative displacements (i.e., embankments and excavations) are represented by the lighter and darker values, respectively.

Figure 12. Comparison between different smoothing factors Ω used for a
river path. From top to bottom, Ω is 0.0, 0.3, and 1.0.

visual results, with seemingly no precision issues. Further-
more, the results presented indicate that the Displacement Map
generation is compatible with real-time execution.

Currently, our approach does not handle correctly crossing
or overlapping paths. However, if the paths intersect (i.e.,
have the same height at the crossing points), that problem
is reduced. Another drawback is that, if the terrain is very

Figure 13. In the top, the original terrain and the input vector data vertices
(red dots). In the middle, the Bézier path created and carved on the terrain.
The bottom image shows part of the carved path in detail.

large and the paths cover only a small portion of it, most of
the Displacement Map will remain unused, causing a waste
of memory. That problem can be mitigated by employing
a Displacement Map atlas, where each page of the atlas is
associated with only a small portion of the terrain. Moreover,
the paths are carved using a constant footprint across its

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 492



Figure 14. Roads (top), railway (middle), and river (bottom) paths carved on
a terrain.

Figure 15. Bézier path (in red) used for all the measurements. The curve was
created from an input vector data set containing 100 vertices.

extension, which could be improved by associating different
values of w and λ to each control point.

Beyond that, we intend to associate a normal vector to
the control points, so we can manipulate the inclination of
the path, allowing for more realistic roads. Furthermore, it
would be interesting to add support to process polygon vector
data, so we could use that to carve lakes and large rivers,
as well as level urban areas, among other types of features.
Moreover, further optimization can be achieved by processing
small sections of a path at a time, favoring real-time editing.

Analysis of Displacement Map Genera�on Times Using Different Parameters

Baseline values: Heightmap Resolu�on: 512 Samples Per Curve (n): 2 Refinement Steps (R): 2

0.794
3.03

12.168

48.846

512 1024 2048 4096

Heightmap Resolu�on

0.794
2.988

12.02

47.818

2 8 32 128

Samples Per Curve (n)

0.794 0.904
1.428

3.414

2 8 32 128

Refinement Steps (R)

Figure 16. All times are in milliseconds. Each chart presents the results of
a group of measurements performed by changing only one parameter. The
remaining parameters maintain the baseline values. No hash was employed
in these tests.

191.834

23.192
7.844 3.784 3.358 3.022

No hash 4 16 64 128 256

Hash Dimensions

Figure 17. All times are in milliseconds. The hash dimensions determine the
number of hash cells. Heightmap resolution, samples per curve, and refinement
steps were, respectively, 2048, 32, and 32.

ACKNOWLEDGMENT

We thank the Brazilian Army for the financial support
through the SIS-ASTROS project.

REFERENCES

[1] E. Bruneton and F. Neyret, “Real-time rendering and editing of vector-
based terrains,” in Computer Graphics Forum, vol. 27, no. 2. Wiley
Online Library, 2008, pp. 311–320.

[2] R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes, “A survey on
procedural modelling for virtual worlds,” in Computer Graphics Forum,
vol. 33, no. 6. Wiley Online Library, 2014, pp. 31–50.

[3] J. Freiknecht and W. Effelsberg, “A survey on the procedural generation
of virtual worlds,” Multimodal Technologies and Interaction, vol. 1,
no. 4, p. 27, 2017.

[4] J. McCrae and K. Singh, “Sketch-based path design,” in Proceedings
of Graphics Interface 2009, ser. GI 2009. Toronto, Ontario, Canada:
Canadian Human-Computer Communications Society, 2009, pp. 95–102.

[5] E. Galin, A. Peytavie, N. Maréchal, and E. Guérin, “Procedural gener-
ation of roads,” in Computer Graphics Forum, vol. 29, no. 2. Wiley
Online Library, 2010, pp. 429–438.

[6] E. Galin, A. Peytavie, E. Guérin, and B. Beneš, “Authoring hierarchical
road networks,” in Computer Graphics Forum, vol. 30, no. 7. Wiley
Online Library, 2011, pp. 2021–2030.

[7] G. Kelly and H. McCabe, “Citygen: An interactive system for procedural
city generation,” in Fifth International Conference on Game Design and
Technology, 2007, pp. 8–16.

[8] Y. I. Parish and P. Müller, “Procedural modeling of cities,” in Proceed-
ings of the 28th annual conference on Computer graphics and interactive
techniques. ACM, 2001, pp. 301–308.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 493



[9] C. S. Applegate, S. D. Laycock, and A. Day, “A sketch-based system for
highway design,” in Proceedings of the Eighth Eurographics Symposium
on Sketch-Based Interfaces and Modeling. ACM, 2011, pp. 55–62.

[10] M. Thöny, M. Billeter, and R. Pajarola, “Deferred vector map visualiza-
tion,” in SIGGRAPH ASIA 2016 Symposium on Visualization. ACM,
2016, p. 16.

[11] A. Frasson, T. A. Engel, and C. T. Pozzer, “Efficient screen-space
rendering of vector features on virtual terrains,” in Proceedings of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games.
ACM, 2018, p. 7.

[12] X.-D. Chen, Y. Zhou, Z. Shu, H. Su, and J.-C. Paul, “Improved algebraic
algorithm on point projection for bézier curves,” in Second International
Multi-Symposiums on Computer and Computational Sciences (IMSCCS
2007). IEEE, 2007, pp. 158–163.

[13] L. A. Piegl and W. Tiller, “Parametrization for surface fitting in reverse
engineering,” Computer-Aided Design, vol. 33, no. 8, pp. 593–603, 2001.

[14] W. Boehm, “Inserting new knots into b-spline curves,” Computer-Aided
Design, vol. 12, no. 4, pp. 199–201, 1980.

[15] C. T. Pozzer, C. A. de Lara Pahins, and I. Heldal, “A hash table
construction algorithm for spatial hashing based on linear memory,”
in Proceedings of the 11th Conference on Advances in Computer
Entertainment Technology. ACM, 2014, p. 35.

[16] K. Perlin, “Improving noise,” in ACM transactions on graphics (TOG),
vol. 21, no. 3. ACM, 2002, pp. 681–682.

[17] ——, “An image synthesizer,” ACM Siggraph Computer Graphics,
vol. 19, no. 3, pp. 287–296, 1985.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 494


