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Abstract—Hardware designed for gaming computers and
platforms is achieving impressive results on different bench-
marks suggesting that the response time of the algorithms
have to be improved in order to achieve current real-time re-
quirements. Also important is to consider to maintain the high
standard of algorithms results. Pathfinding is an important and
computationally complex feature of Non-Player Characters in
several video game genres and is still being solved with well-
known A* and Dijkstral algorithms or variations. The problem
is that both techniques depend on specific design choices as
using a graph as a map for Dijkstra or static environments
for the classic A*. Due to good results achieved using theses
classical solutions researchers are inclined to include these
algorithms in their proposed variations even when a dynamic
environment is considered. As a solution this work presents a
viral infection genetic algorithm for pathfinding that is able
to provide new paths for dynamic changes in the environment
and also considering the final amount of the NPC life. Results
showed that the proposed algorithm is able to work in real-time
obtaining acceptable paths as results.

Keywords-pathfinding; genetic algorithm; viral infection;
NPC; games; artificial intelligence;

I. INTRODUCTION

The beginning of video-games can be pointed as the
appearance of Tennis for Two in 1958 [24]. Since the
evolution of this area resulted in a huge industry, game
hardware and software designers try to improve their results
in order to meet players expectations. Among the many
factors to be optimized in the development of games it
is possible to point out graphics hardware and processing
power as key factors that are correlated in many different
ways.

Graphics cards are an important feature for any game
platform and based on their processing power the entire
platform can be classified as suitable or not for a certain
game to run on minimal requirements. Several benchmarks
are used to rank these video cards and last results of real-
work game benchmarks showed that the frame rate at 1080p
(resolution used on the benchmarks) is at 163.9 Frames per
Second (FPS)1. This rate needs a response time of less than

1gpucheck.com/gpu-benchmark-graphics-card-comparison-chart

0.006s of algorithms that are controlling everything else in
the game but the players movements.

Processing power is also being increased and the final
results showed that processor’s hardware is not a problem.
Desktops are achieving better performances with AMD and
Intel multicore processors that are up to 18 cores able to
manage 36 threads2. This evolution is also affecting mobile
processors up to 8 heterogeneous cores that are able to work
with different workloads to use power in a more intelligent
way3’4.

Graphic cards and processors seem to be able to deliver
the processing power needed by game designers. The ques-
tion now is why are games still having trouble with these
features? One part of the problem is the constant need for
more realistic graphics that results in games with millions of
polygons to be rendered in each character and, consequently,
more processing power is needed. This demand is a result of
the massive production of games in which the only appeal is
the graphics quality. As a result the other part of the problem
is that processors have to deal with a huge amount of
computer graphics routines and the game control algorithms
which overloads the processor.

One of the main problems in game control are the
Artificial Intelligence (AI) algorithms that controls Non-
Player Characters (NPCs). These algorithms are designed
in many different ways to solve several problems. One of
the most famous games that has an AI control for NPCs
was Pac-Man [16], that used a State-Machine (SM) with
three states: chasing, scattering and frightened. Until mid-
1990’s, all NPCs were sophisticated Pac-Man ghosts since
there was a SM that controlled their behaviour and became
considerably predictable after some time [16]. After the
concepts of Sense Simulation, decision trees, goal oriented
action planning and other techniques were designed, they
led to better NPCs. AI control algorithms have to deal with
a common problem for different types of games that is the

2https://www.pcmag.com/roundup/366303/the-best-cpus
3shorturl.at/moZ05
4https://www.apple.com/iphone-xs/a12-bionic/
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pathfinding [16]. Some NPCs have to move around the world
(using predefined actions or random walks) and doing it
using fixed routines is easy and useless. More complex NPCs
will have to go from one point of the map to another and
calculate a suitable route according to the level of the game.
Fig. 1 shows that pathfinding is an important step between
any decision making regarding movement and the movement
itself.

Figure 1. AI model proposed in [16] where pathfinding is between decision
making and movement of characters.

Considering the described scenario, this work proposes a
viral infection genetic algorithm for NPC pathfinding. The
idea is to provide a solution for the problem in dynamic
environments without the dependency of map representation
or an heuristic function, problems that are a part of the
most used techniques (Dijkstra and A*) and their proposed
variations. This work does not compare its results with
Dijkstra and A*, but proposes a solution for its problems.
Proposed solution achieved the best solution in acceptable
execution time suggesting that it is a good solution for the
problem.

In section II the theory about A* and Dijkstra algorithms
are presented in order to allow a better understanding of the
problem together with the correct analysis of this work’s
results. Section III presents the related works and their con-
tribution to this paper. Section IV presents the algorithm and
the scenarios used for performance evaluation. The results
of the proposed work are shown in Section V. Conclusion
is presented in section VI followed by the bibliographic
references.

II. BACKGROUND THEORY

This section will present an extensive analysis of different
solutions for pathfinding problems with focus on game
design. However, some initial background is needed for
correct understanding the problem and the analysis of related
works. A simple superficial search about pathfinding can

show that the most used algorithms to solve this problem
are A* and Dijkstra, with custom variations. These two
algorithms have their limitations and their variations are
intended to solve the problems but the main problem is
not completely solved due to the fact that motion planning
problems are NP-Complete [31].

Pathfinding problem can be defined as follows: consid-
ering an initial configuration of rectangular objects in a
rectangular two-dimensional box the problem is to determine
whether there is a continuous coordinated motion between
the initial and final configurations without interceptions [18].

This problem is proved by Hopcroft et al. [18] to be NP-
Hard by reductions: to a formal string manipulation problem
that represents the objects movements by changing positions
of letters in a string (a combinatorial problem), then to a
motion problem of irregular body shapes and finally to a
simpler rectangular motion problem. The idea of the first
reduction is explored by Reif [19].

As a NP-Hard problem, the use of heuristics to solve it
is indicated, but also search algorithms are an interesting
choice. One of the largely used search algorithm to solve
the pathfinding problem is Dijkstra with time complexity
of O(|V 2|) in worst-case scenario [33], where V is the
number of vertices in the graph that represents the map. A*
algorithm time complexity depends directly on the heuristic
function and in the worst-case scenario the complexity of the
algorithm is O(|bd|), where d is the depth of the solution
tree and b is the branching factor (that is the average
number of successors per state) [32]. Most used algorithms
time complexity suggests that they should be modified or
replaced by more efficient solutions, but to understand these
algorithms, an analysis of their behaviour and complexity is
required.

Dijkstra is an algorithm that searches for the shortest
path between nodes in a graph. In its classical definition
it considers only an initial and a final node but in the
most known form of the algorithm, it starts at a source
node and builds the shortest-path tree to all other nodes
in the graph [33]. Basically the algorithm uses a greedy
strategy of choosing the shortest path to each other non-
visited achievable node. Nodes are visited for this procedure
only once. The problem is that for each new visited node
all costs of the possible paths are recalculated and the result
changes if there is a path that is shorter than the previously
chosen one.

This algorithm have a high execution time for relatively
small graph sizes for games (with more than 10.000 nodes
in a top processor it became seriously critical) and another
serious problem is that the environment have to be static. A
simple change on the distance values during the algorithm
execution is enough to invalidate the entire shortest-path tree
and the algorithm has to be executed again from scratch.
Another problem in Dijkstra’s algorithm is that edges cannot
have negative costs.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 550



Dijkstra’s time complexity of O(|V 2|) is the result of
visiting all unvisited nodes from a source node in the worst-
case scenario, even if there is no need to calculate all short
paths between every node. This unwanted cost is called the
fill of the algorithm. A solution for this high-fill problem is
the A* algorithm that can be considered a low-fill version
of Dijkstra [16].

A* algorithm is the most popular choice for pathfinding
because of its flexibility. The success of the algorithm is
the intelligent combination of information about favoring
vertices that are close to the starting point (same as Dijkstra)
and favoring vertices that are close to the goal (same as
greedy best-first-search)5. A* algorithm uses a function to
calculate the next move (1) where g(n) represents the exact
cost from the source to node n and h(n) is the heuristic
estimated cost from node n to the target node [27].

f(n) = g(n) + h(n) (1)

It’s really important to choose a good heuristic because it
should estimate correctly the cost to the goal node and can
be used to control A* algorithm’s behaviour. The relation
between the heuristic function and A* algorithm results can
be summarized as follows5:
• if h(n) is 0 then A* is turned into Dijkstra’s algorithm.
• if h(n) is always lower or equal to the cost of moving

from n to the goal, then A* is guaranteed to find
a shortest path. This is usually a result of a large
expansion causing A* to be slower.

• if h(n) is exactly equal to the cost of moving from n
to the goal, then A* will be trapped in the best path
without expanding anything else. This can be a problem
in some situations.

• if h(n) is a little higher than the cost of moving from
n to the goal, then the A* is not guaranteed to find the
shortest path but can run faster.

• if h(n) is higher than the cost of moving from n to the
goal, then A* is turned into a Greedy Best-First-Search.

This analysis of A* behaviour shows how the algorithm’s
result depends on a good heuristic. It is a serious problem
because it is not easy to find a good function for every situa-
tion. Also A* is not able to deal with dynamic environments
considering the iterative nature of the algorithm.

III. RELATED WORKS

Pathfinding algorithms in games have to deal with dy-
namic environments and achieve execution time require-
ments and this has been possible with the use of modified
versions of the presented algorithms. Some of these versions
are presented and discussed next.

This state-of-the-art review will cover three different
groups of research works. First the most used variations

5shorturl.at/cxDQY

of A* algorithm are presented and discussed, after that,
pathfinding related recent works are analyzed followed by
works on pathfinding presented in previous SBGames edi-
tions.

A* variations are suitable for different kinds of problems.
One simple variation is based on beam search [32] that limits
the size of the structure that stores nodes that may need
to be searched to find a path. This algorithm is indicated
when memory is a critical requirement and the results can
be significantly affected.

Iterative Deepening is another A* variation that proposes
a cut-off for nodes whose values of the function f are higher
than a threshold [29]. This variation is not used as much in
games because the value of the cost function for the nodes
is relatively stable. Other alternative is to apply weights for
the exact cost and for the heuristic cost, this will result in a
faster search method that also affects the results [32].

A bandwidth heuristic is proposed by [22], where the
search is a modification on the h(n) part of (1) that is turned
into h′(n) according to (2) where e is an error and d is an
estimator.

h(n)− d < h′(n) < h(n) + e (2)

In practice there is now an upper bound and a lower
bound for the heuristic function that can be guided to the
result faster but more carefully than previously presented
variations. Another possibility is the algorithm proposed in
[23] called bidirectional search. The idea is simple, two
searches are started at the same time, one from the start
to finish and another from the finish to the start. When the
two searches meet it indicates that a good path was probably
found. Good results of this algorithm are presented by Chen
et al. [17].

None of presented A* modifications are able to deal
with dynamic environments. As pathfinding problem is
also addressed in robotics, a solution for path planning in
dynamic environments was proposed. D* algorithm [5] is
a modification of A* algorithm that is able to redefine the
path if an obstacle gets in the way of the planned path. If
the value for the heuristic changes for a group of nodes
these nodes are reinserted on RAISE and LOWER list to be
reevaluated. The memory consumption of the algorithm to
store all processed nodes is very high and its not indicated to
NPC’s control. Presented variations are used and modified
in different situations for programming AI in games.

Fanton’s work [2] presents a family for dynamic pathfind-
ing with focus on quick generation of individual paths. The
idea is to find midpoints that can reduce the final path
cost and allow fast recalculation. Results presented in [2]
showed that the proposed approach is very specific and
fail to achieve the goal as a general purpose pathfinding
algorithm.
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Different game scenarios were compared to evaluate pre-
vious modifications of A* algorithm by Krishnaswamy [21]
and the result showed that D* is more indicated to games
with high number of obstacles (static or dynamic) but A* is
faster. Games were also used to compare hierarchical ver-
sions of A* algorithm [20]. Hierarchy in pathfinding context
is the idea of divide-and-conquer applied to a long path,
considering as a single problem each sub-path contained in
the original path. Algorithms are presented and compared
by Vermette [20] but not analyzed. Problems were found in
each presented algorithm and no solution has been provided.

Despite all efforts to modify A* and present a viable
solution for real games, the pathfinding problem is still a
challenge. Cui and Shi [35] presented a version of A* that
considers exploring a NavMesh network that is better for the
algorithms results since the paths are already predetermined
but was not able to improve the results in real game scenarios
due to the restrictions of A* algorithm and the heuristic
function problem.

Multi-agent (MA) based solutions are also explored as
presented by Sigurdson et al. [11] but this approach adds
multi-agent control and coordination problem to pathfinding
and solutions have to deal with both. A modular solution is
proposed in [11] and the results are promising compared to
other MA-based algorithms but still not solving the problem.

Adversarial environments are the most challenging prob-
lem in pathfinding because the solution should also consider
a way to keep the unit far from enemies along the path.
This problem was named SANE (SAfe Navigation in adver-
sarial Environments) by Keidar [26] and different solutions
were proposed improving state-of-the-art results without
completely solving the problem due to specific features
of each solution making them very specific. Good results
were obtained by Amador and Gomes [14] using regions
of positive and negative influence during path calculation.
This technique showed to be promising but the problem is
how to find or to consider influence regions in every game
scenarios. Some regions will have to be created or defined
depending on the situation and it is another problem to this
solution.

A small number of research works presented on previous
editions of SBGames addressed the pathfinding subject.
2007 edition had three works with titles related to pathfind-
ing problem but the proceedings were not available for
download. A modified A* [4] presented an algorithm de-
signed for CUDA architecture to be executed in a GPU, but
the problem is that proposed modifications were designed
because of hardware limitations or features, and results
showed that GPU is able to deal with a high number of
NPCs without achieving the reference speedup.

A pathfinding solution, presented by Machado et al. [3]
uses a simpler version of A* algorithm that calls a genetic
algorithm to find a way out of an obstacle performing a
local search. The main question is that the algorithm is called

RTP-GA (Real-Time Pathfinding Genetic Algorithm) and the
only analyzed result was the ability of finding the exit of a
maze without even considering the execution time. Also this
simpler A* algorithm is not presented or analyzed and its an
important feature of the proposed method. Results presented
in [3] cannot be completely analyzed or even reproduced
without this information.

The genetic algorithm proposed by Santos et al. [34] is
based on patterns to improve pathfinding of a regular Best-
First-Search algorithm. This concept is based on building
blocks [10] that are the result of the search for patterns.
Results showed a significant reduction on search effort for
maps that have patterns. Mixed maps or maps without
patterns showed that the algorithm proposed in [34] is
indicated only for pattern-oriented maps.

A comparative analysis of pathfinding algorithms for mo-
bile games was presented by Silva [28]. Results showed that
A* algorithm outperforms the other algorithms in average
execution time besides always finding the shortest path. Au-
thors should also consider to compare A* variations because
the algorithm is hardly used in its original form in games.
The last pathfinding-related work presented in SBgames was
the FPGA-based co-processor, by Nery [6]. Results of the
co-processor suggests that a hardware implementation can
be an interesting choice for execution time problems. The
only problem is that in [6] authors focused on Xilinx High-
Level Synthesis tool results, and this tool only works for
Xilinx FPGAs, so proposed hardware structure as a result
is useless if this hardware need to be implemented using an
Intel FPGA.

Analyzed research works suggest that pathfinding problem
is far from being completely solved. An extensive com-
parison of techniques [9] showed that better solutions are
D*-Lite and Theta* for dynamic environments and A* for
static environments (rarely found in games). New heuristics
with better results and execution time are most welcome for
AI game design, justifying this work’s goal. Next section
presents the proposed viral infection genetic algorithm for
pathfinding.

IV. VIRAL INFECTION GA FOR PATHFINDING

This work proposes a Viral infection genetic algorithm
with dynamic infectability for pathfinding. Algorithms pre-
sented in previous sections have problems that a Genetic Al-
gorithm (GA) can work around. Instead of implementing the
regular GA, authors decided to take advantage from building
blocks [10] since pathfinding is a NP-Hard problem [18]. An
unusual implementation of modified GA was used in this
work. The standard GA is not able to take advantage from
building blocks [8] because the individual (chromosome)
is considered as a set of unrelated genes. One possibility
of considering building blocks to achieve better results is
the viral infection procedure. The idea is to implement a
function that creates a virus (a building block) that will be
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Figure 2. Layouts: the left layout is a base layout with no enemies, the center layout have a small number of enemies (represented by red circles) and the
right layout used for a complex number of enemies experiment. These layouts were chosen considering an increasing complexity way in order to evaluate
the algorithms in different situations.

propagated to the population individuals based on biological
viruses behaviour.

There is an issue on how viruses theory and evolutionary
theory should work together in computing. The work of
Kubota et al. [25] is one of the first works to present the
concept, proposing a virus-evolutionary genetic algorithm
(VEGA). This approach is composed of a virus population
and a host population, which coexists in time. In a specific
generation the virus population and the host population
propagate between each other. Regarding to all time, each
population inherits genetic information from ancestors to
offspring.

Other way to implement this behaviour is proposed by
Franco [12]. The idea is to create a virus with an infectability
rate. This rate should be controlled by the algorithm in order
to propagate viruses that are generating better individuals
and kill viruses that are generating bad individuals.

The use of genetic algorithms with virus-evolution has
been seen in many different works to solve different prob-
lems, including the Traveling Salesman Problem (TSP) [1],
logistics distribution [13], dynamic route planning for car
navigation [15], classifier for pedestrian detection [7], and
many others. Using this approach of pathfinding problem in
games is the focus of this work.

The study uses three fixed layouts to test the proposed
solution for the intelligent pathfinding problem in order
to comparatively test the algorithm. For each layout four
different versions were executed: the basic genetic algo-
rithm, the basic genetic algorithm with a custom muta-
tion, the basic genetic algorithm with the viral infection
procedure, and, finally, the basic genetic algorithm with
viral infection and custom mutation. For each of these
four version, four empirically-based rate combinations were
used: 60% crossover and 5% mutation, 60% crossover and
15% mutation, 80% crossover and 5% mutation and 80%
crossover and 15% mutation.

Proposed layouts (Fig. 2) used in tests try to simulate
situations where a non-player character (agent) needs to
reach a destination passing through a possible dangerous
environment. A layout is composed by waypoints that should
be reached by a NPC in order to cross the entire scenario.
The first layout is a clean scenario, without enemies. The
objective is to start in the red square and reach the yellow
square (for future comparison of values, in the simulations

used the distance from start to end is exactly 29.41). A sec-
ond scenario analyzed have an average number of enemies.
This layout will make the agent try to avoid the red circles
(which decrease the agents life). The last layout is used
trying to simulate many enemies in the same environment.
In this case the agent needs to try the best route and it is
desired that the time to calculate the path is low enough that
the player does not visualize a hiccup in the game (normally
around 1-2 seconds).

A. Genetic Algorithm

A basic genetic algorithm was implemented using the idea
presented by Goldberg [10]. Chromosomes were codified
using integer numbers and the number of genes is equal
to the number of waypoints lines. This work’s layouts
(Fig. 2) had 8 waypoints lines so the chromosome had
8 genes whose values represented which waypoint of the
line would be considered for the path. An example of a
random chromosome and the path it would generate in a
game (considering the waypoints positions) is shown in Fig.
3. A population of 8 individuals was used and initialized
randomly, respecting the number of waypoints in each gene’s
line.

Figure 3. A random path and it’s representation in this work’s algorithm.

Fitness function designed for this problem is based on
the fact that the better individual is able to cross the entire
scenario in the shortest path losing the least possible amount
of life. So the problem is not only considering to find the
shortest path but also a path that is safer. A fitness function
proposed for this problem is presented in (3).

fi =
li∑n

j=0 di,j
(3)
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Fitness function fi is composed by li, the numerical value
for individual’s i life, divided by a sum of di,j that represents
the entire path divided in distances from each waypoint j
to the immediate next for i individual calculated from start
point until it reaches the finish point.

In basic genetic algorithm the population is sorted from
the best fitness to the worst. Individual’s selection to
crossover considers all the population in pairs of consecutive
individuals (first with second, third with fourth and so
on). These two procedures together generates the elitism
implemented in the base GA algorithm since high fitness
individuals will never be mixed with the worst fitness
individuals. For each generation, the worst fit individual
is also replaced by the most fit individual ever found.
Initial test executions used to set the algorithm showed
that despite of decreasing genetic variability this procedure
achieved better results. Other choice based on the results of
initial tests execution is the choice for one point crossover.
Other crossover methods changed the parents path abruptly
resulting in lower fitness individuals.

A version of multi-point mutation was implemented where
according to mutation rate the algorithm changes a gene
value to a new random value among all the valid possibil-
ities. It is possible to notice that a priori information was
added in the base GA implementation by limiting each gene
modification considering only valid intervals.

The last definition regarding base GA is how each gen-
eration of the algorithm works. Since each chromosome
represents a possible path, the fitness of an individual is
calculated by a simulation of an agent following this path
through the proposed layout. As the agent reaches the finish
waypoint the results of the final life status are obtained and
the fitness can be calculated. Initially a 3D world (Fig. 4)
was designed in order to allow the analysis of the results,
but even using a high-end hardware simulations were taking
a prohibitive time to be executed. The solution for this
problem was to design a simulation 2D environment that
generated the layout images used in this and next sections.

Figure 4. 3D scenario designed for test and analysis.

Considering all tested versions, other two procedures
were chosen for the final version of the algorithm and are
presented next.

B. Custom Mutation
One of the best procedures design in this works was the

Custom Mutation (CM). Usual mutation works by changing
a specific waypoint index to a new random waypoint in the
group. But the normal way may produce new results that
will greatly increase the total path distance, as a random
new waypoint may be on the other side of the scenario.

Figure 5. Custom mutation and regular mutation compared.

Custom mutation approach also mutates the current way-
point, but only to the immediate neighbor, up or down.
This way, the new individual wont be too discrepant of
the previous, which may lead to a faster converge speed.
An example can be found in the Fig.5. The blue dotted
lines correspond to the normal mutation, which can lead
to any other waypoints. The custom mutation, represented
by the orange dotted lines, can only lead to the immediate
neighbors of the current solution.

C. Virus Infection
The virus infection approach used in this work is based

on the idea that a virus enters an organism if the organism
is weak or the virus is strong. This is simulated by the virus
having a dynamic infection rate. This rate considers if the
virus provided a better fit result than the normal individuals
and, if so, its rate is increased proportionally.

Figure 6. Example of a viral infection.

Also the block that will be changed by the virus is chosen
randomly, which means that the same virus can produce
different results from the same individual. Lastly, for each
individual that had its fitness increased by the virus will
contribute to increase the infectability rate, otherwise it will
decrease. Infectability rate starts at 30% and is increased or
decreased in 5%. If the infectability reaches zero the virus
is destroyed and a new one is generated.

In this work the virus size is 20% of the chromosome and
the virus information is randomly generated. An individual
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that has contracted the virus will have its path information
replaced by the virus information on the position that the
virus attacked. This procedure is exemplified in Fig. 6.

Figure 7. Diagram of the experiments.

D. Dynamic Environments

In this work’s scenarios the dynamism is represented by
a new enemy (or enemies) added near a certain waypoint.
When this situation happens there is an specific approach by
the algorithm to deal with it. An external event is generated
by the new enemy and is handled in the next generation
first step. The algorithm in the beginning of the generation
changes the chromosome gene that represents the closest
waypoint to the enemy. The value of the gene is randomized,
that means, a new value is generated randomly for this
gene in order to allow the algorithm to explore the search
space again. This procedure allows the algorithm not to be
trapped in a previously evolved individual chromosome that
is probably turned into a local minimum in the best case.
This approach is used to reduce convergence time to find
the new best path, since the same genetic algorithm started
from scratch could also find this new path, but will probably
take more time due to the fact that this work’s algorithm
variability is mainly based on mutation that usually have a
low rate.

Considering the situation presented in Fig. 5 an enemy
could be inserted next to line 2. Since individual’s chromo-
some is represented by {2, 1, 3, 3, 1, 2, 0} according to
the green line, the algorithm would mutate the second gene
of all individuals (which, in this case, is equal to the first
number 1) allowing the algorithm to explore the new search
space.

The complete flowchart of the implemented algorithm can
be seen in the Fig. 7. The algorithm was implemented on
Unity 2019.1.3f1 using C# language and executed using an
Alienware M15R2 (2015) with MS Windows 10.

V. RESULTS

This section shows all the results from the configurations
described in previous section. For each combination the
algorithm is executed 20 times. Extracted information is
the best fit, convergence generation number and the time
elapsed to converge. Converged generation is obtained from
a variable that saves the generation number in which the best
fitness was achieved. From these 20 executions it is shown
the mean value with its standard deviation. According to
[30] this number of experiments is enough for statistically
relevant results.

Results are presented side-by-side in Fig. 8. The first row
presents each scenario used for the executions, the second
row presents the best fitness, the third row presents the
number of the generation which the best fitness were found
and the fourth row presents the execution time needed to
find the best fitness.

Considering the best fitness row (second row of Fig. 8) it
is possible to see that both the first and the second scenarios
were not a challenge for designed algorithms to find the
shortest path that is the less harmful. The third scenario
that contains more enemies is the real challenge for the
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Figure 8. Execution results.
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algorithm. In this case the best algorithm was the most
complete algorithm (base GA + custom mutation + viral
infection) with crossover at 60% and mutation at 15%. Also
the versions base GA, Base GA + viral infection and base
GA + custom mutation + viral infection with crossover at
80% and mutation at 15% are statistically tied.

Third row of Fig. 8 presents the generation that each
version of the algorithm found the individual that had the
best fitness. For the first scenario the best algorithms were
the base GA + custom mutation + viral infection with
crossover at 60% and 80%, and mutation at 15% and 5%
respectively. Second scenario had the versions base GA and
base GA + custom mutation both with crossover at 80% and
mutation at 5% as the best algorithms. Base GA + custom
mutation with crossover at 80% and mutation at 5% was
the best algorithm for the third scenario followed by base
GA + viral infection with crossover at 80% and mutation at
15% and base GA + custom mutation + viral infection with
crossover at 60% and mutation at 15%.

Execution times of each execution are presented in fourth
row of Fig. 8. In the first scenario the fastest algorithm was
base GA + custom mutation + viral infection with crossover
at 80% and mutation at 5%. In the second scenario the
best algorithm was the base GA with crossover at 80%
and mutation at 5% followed closely by base GA + custom
mutation with crossover at 80% and mutation at 5%. The
most complex scenario had base GA + custom mutation
algorithm with crossover at 80% and mutation at 5% as
the fastest algorithm followed by base GA + viral infection
with crossover at 60% and mutation at 15%.

Results showed that mutation is a key feature for a
evolutionary-based solution for pathfinding using this work’s
representation and single-point crossover. Also ranking the
results considering only the number of situations that a
version is the best among other is possible to notice that the
best versions of the algorithm are the base GA + custom
mutation and base GA + custom mutation + viral infection
suggesting that only the base GA is not able to handle the
problem justifying other solutions research and design.

Considering achieved results, authors suggest that this al-
gorithm should be used complete (base GA + viral infection
+ custom mutation) with crossover rate between 70% and
80% and mutation rate between 5% and 10%. No change
on the best algorithms occurred when new enemies were
dynamically added in each of the test layouts. The time
and number of generations needed for convergence for about
200 different situations tested were lower than 150% of the
complex layout.

VI. CONCLUSION

This work proposes a viral infection genetic algorithm
with dynamic infectability to solve the problem of pathfind-
ing in a dynamic tower defense environment considering
both the size of the path and the level of life when the

agent crosses the scenario. Algorithms presented in section
II showed different solutions for the problem but none of
them solved the problem completely. Results of this work
showed that the proposed algorithm was designed to be able
to handle dynamic environments achieving this goal.

Proposed solution depends only on waypoints layers in
any representation chosen by the game designers, achieving
the requirement of not being dependent of a specific map
representation as a graph or a grid.

The best analyzed system reaches a 6ms frame time in
1080p resolution. The proposed algorithm achieved conver-
gence in 87.27ms (worst case and in a weaker system),
which means a 14-frame solution. However this work’s
algorithm allows the system to use a intermediate solution
even in the first frame, when approximately 400 generations
would have been executed. This result is expressive in
comparison to solutions presented in section II because all
of them need to run a complete execution to allow the NPC
to move through the game.

It is important to notice that other algorithms are able to
work around obstacles and our solution only moves forward.
This is not a problem in this case because enemies are
not able to block the path, but only damage the agent’s
life so it is not a deficiency for tower defense games. One
solution to this problem in other cases is to hardly penalize
the waypoints covered by a blocking obstacle directing the
solution to a valid path.

If a certain game design requires artificial intelligence to
find the best path regarding algorithm execution time and
restrictions (for example: path size and agent’s life), then
this work’s algorithm can be considered a good choice (as
any evolutionary solution the challenge is to improve/change
the base rates values proposed by the authors and, in this
work’s case, position the waypoints). If the problem is
regular pathfinding regarding execution time in dynamic
environments, then this work’s algorithm results should be
compared to stated solutions such as D*-Lite and Theta*
before its use.
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