
Sensor Data Fusion for full Arm Tracking using Myo Armband and Leap
Motion

Eider C. P. Silva Esteban W. G. Clua

UFF, IC/Medialab, Brazil

Anselmo A. Montenegro

Abstract

The Myo Armband (Myo) is a sensor which can be attached to the
forearm, and allows to send to devices equipped with Bluetooth
muscular patterns of arm movements triggered by some gestures
made by the hand. Also, it produces rotation data based on a gy-
roscope, accelerometer and magnetometer embedded on it. The
Leap Motion (LM) is a sensor-based cameras and infrared lights
which allows accurately to track the hands motion, including fin-
gers. Therefore, this work describes the use of sensor data fusion
techniques to combine the data from both sensors in order to create
a 3D virtual simulation in real-time of an arm motion, including the
forearm, hand and fingers. The purpose of this combination is also
improve the performance, aiming to overcome the main sensors’
limitations when they are used individually, as occurs with Myo,
which is limited to produce only forearm motion data and the LM,
which has a limited field of view and range tracking. The experi-
ment results shows that the studied algorithm is able to combines
the data from both sensors achieving a considerable gain in the pre-
cision and tracking of the arm.

Keywords: Sensor Data Fusion, Arm Tracking, Myo Armband,
Leap Motion.

Author’s Contact:

{eidercarlos,esteban,anselmo}@ic.uff.br

1 Introduction

Research involving the arm motion tracking from human body
limbs have become important in recent years. The search for im-
provements of this kind of tracking techniques in real-time have
been increasingly intensified, mainly due to their applications in
several areas, including medical, biomedical, human-computer in-
terfaces, virtual reality, robotics, and others. This kind of research
also boosted the search for the improvement of techniques based
on sensors, which using the data as input to some algorithms based
on probabilistic methods, can estimate in real-time the human body
limbs position and/or orientation [Khaleghi et al. 2013].

In addition to prediction models, other research widely used in
this context is the data fusion from different kinds of sensors (mul-
tisensor). It aims to improve the accuracy, detection, authenticity,
reliability and range. As the main algorithms for sensor data fusion,
can be highlighted the Kalman Filter [Zhu and Zhou 2004; Ligo-
rio and Sabatini 2013], Particle Filter [Tao and Hu 2008], Iterative
Closest Point (ICP) [Knoop et al. 2006], Bayesian filter [Fox et al.
2003] and Sequential Monte Carlo [Moeslund and Granum 2003].
Hence, experiments performed in our work are based on Kalman
Filter, which is described in more detail in section 4.

One of the motivations for this research’s development is its
use in various areas of application and the search for improvements
due to several challenging problems found in promoting the data
fusion using different sensors. In [Khaleghi et al. 2013] are de-
scribed about some challenges which can arise when is decided to
implement data fusion from multiple sensors, as follows:

• Data imperfection: data collected by sensors is always af-
fected by some level of inaccuracies as well as uncertainty in
the measurements;

• Outliers and spurious data: uncertainties in sensors can
arise from the ambiguities and inconsistencies present in the

environment where data is being collected by the sensor;

• Conflicting data: fusion of some kinds of data can be prob-
lematic, especially when the fusion system is based on evi-
dential data. To avoid producing counter-intuitive results, the
fusion data algorithms must treat conflicting data with special
care;

• Data modality: different data obtained from measurement
of a phenomenon such auditory, visual, and tactile must be
handled by a data fusion system;

• Data alignment/registration: sometimes different sensor
data must be transformed into a common frame before a fu-
sion occurs. This alignment problem produces a calibration
error. For this reason, data registration is very important to
the successful deployment of the fusion systems;

• Data association: the data association problem may come
in the measurement-to-track and track-to-track association
forms. The first one refers to the problem of identifying
from wich target each measurement is originated. The second
deals with distinguishing and combinings tracks, estimating
the state of the same real-world target.

• Operational timing: a well designed data fusion system, spe-
cially when is implemented for real-time applications, should
deal with timing variations in data. For example, in distributed
fusion settings, different parts of the data may traverse differ-
ent routes before reaching the fusion center, which may cause
out-of-sequence arrival of data.

There are other challenges in implementing this kind of system,
and still there is no algorithm able to overcome all these challenges
at once. The works in literature are focusing on solving just some of
them. Thus, the work described in this paper seeks mainly to solve
the problems of "Outliers and spurious data" and "Data Associa-
tion", since the combination of Myo and LM generate ambiguous
data and is necessary to deal with different data with different coor-
dinate systems.

In the next section is described the related work that gives the
theoretical basis for the development of this research.

2 Related Work

The research about the tracking of human body limbs are somewhat
related to computer vision, robotics and smart systems. In addition
to these areas, the work described in this paper is associated with
graphic computing, because the data processed by the algorithm is
a rotation in quaternion and we intend to use a 3D avatar model for
Unity3D in order to show in a graphic way the results of the data
fusion processing.

The work written in [Penelle and Debeir 2014], which is the
most similar existing in the literature compared to our research,
implements the sensor data fusion for hand tracking using Kinect
(the first version for windows) and LM. In this work, the fusion of
sensors is applied to an existing augmented reality system, aiming
the treatment of phantom limb pain (PLP) in upper limb amputees.
With Kinect, is acquired 3D images from the patient in real-time.
These images undergo a post-processing to apply a mirror effect
along the body surface, being shown in 3D and giving the illusion
that it has two arms. The patient uses the virtually reconstructed
arm to perform certain tasks involving interactions with virtual ob-
jects. As the returned coordinates are expressed by the two sen-
sors at two different reference frames, was developed a calibration
method based on Corresponding Registration Set Point algorithm

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Full Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 186



(CPSR) which calculates the rigid transformation required to align
the two reference frames. Thus, recording the position and orienta-
tion of the LM in the frame of reference of the Kinect, the system
becomes able to detect accurately the interactions of the hand and
fingers, working even when the hand is not visible to the sensor,
improving the user experience.

In [Penelle and Debeir 2014], is shown satisfactory results from
tracking the hand and fingers motions, considering that both sen-
sors use cameras and high precision infrared sensors. However,
the tracking field of view from both sensors is limited, because the
Kinect have just 43° in vertical position by 57° in horizontal, whilst
the LM can track an area of 150°, but with an effective range of 25
to 600 mm (millimeters) above the device. However, due this limi-
tations, the user interaction environment is limited. Then, the sensor
combination get increased considerably the scope and the tracking
area. What differentiates in our work, is the equipped Bluetooth
technology in Myo, allowing to continue sending data in an effec-
tive distance of 15 meters [Mark 2015], and even when it loses the
hands and fingers detection, it will continue capturing the forearm
movements.

There are several other works using the sensor data fusion sys-
tem for tracking and estimation of human body limbs position. The
research developed in [Tao and Hu 2008] consists in a system which
implements the combination of inertial and visual sensors in a prob-
abilistic manner to capture the motions from an arm in 3D. For this,
is used the Particle Filter (PF) algorithm, also known as Sequen-
tial Monte Carlo method (SMC). Other works, such as those de-
scribed in [Moeslund and Granum 2003; Zhu and Zhou 2004; Yun
and Bachmann 2006; Knoop et al. 2006; Pons-Moll et al. 2010]
are using similar systems. In [Moeslund and Granum 2003] is used
SMC methods for estimating the position of a human arm as well.
Meanwhile, in [Zhu and Zhou 2004; Yun and Bachmann 2006;
Knoop et al. 2006; Pons-Moll et al. 2010] also are used data fu-
sion algorithms and different types of sensors for track and predict
the positions from the whole human body. The biggest difference
which can be highlighted between them is that in [Zhu and Zhou
2004; Yun and Bachmann 2006] is used Kalman Filter to process
the data provided by the sensors which usually are accelerometers,
magnetometers and inertials.

In [Knoop et al. 2006] is used the Iterative Closest Point (ICP)
algorithm. This algorithm aims to combine two linked sets of points
(which are on different coordinate systems) in order to compute the
translation and rotation to transform the first in the second coordi-
nate system. Therefore, to track the human body, the first set of
points corresponds to the points provided by the sensors, and the
second corresponds to the points that are on the surface of a rigid
body, which in this work is a 3D model of the human body simulat-
ing the outcome of the data processed. In a similar way, was made
in the work described by this paper.

[Pons-Moll et al. 2010] wrote a very interesting work and
slightly different from the others. Therefore, the authors implement
their own data fusion system and applies the combination of videos
which contains orientation data with inertial sensors extended to
improve and stabilize the motion tracking of the human body. The
main contributions of this work is the mitigation of the ambiguity
problem acquired by the inertial sensors and the improvement of
the application performance alleviating the problem of getting in-
correct positions extracted from videos.

Another interesting and different work is described by [Caputo
et al. 2012]. This paper presents a recognition system of arm and
hand gestures using the Kinect sensor (version 1 for Xbox 360) and
high-definition 3D cameras. The reason to implement this combi-
nation is that using just one Kinect sensor is difficult to recognize
hand gestures at a distance greater than 1 meter, because the resolu-
tion and image quality are very low. For this purpose, an additional
sensor is required. Thus, is also used a web-cam in HD able to rec-
ognize gestures at a greater distance. As the two sensor’s field of
view is similar, they capture equivalents images. Then, the Kinect
is responsible for retrieving the position and distance of the hand
from the images processed, which is used for the gestures recogni-
tion. So, it is important to note that the sensor data fusion system is
made by the own author.

3 Leap Motion and Myo Armband

The Leap Motion (https://www.leapmotion.com/), is a
small device, with 8 cm, which can be connected to a computer via
USB. It contains two infrared cameras (each with a capacity of 1.3
million pixels) and three built-in infrared LED emitters, being able
to capture and track the movements of the 10 fingers and two hands
at a rate of 200 to 300 frames per second and generate a display
pattern and interaction of 3D data from the captured information.
The device’s software parse and process the objects in its field of
view with a range of 25 to 600 mm above the device with a cover
area of 150°. Browsing a web site, manipulating a map with zoom
in and zoom out, draw with high precision and handle 3D complex
data views, is between the many possible tasks that can be executed
using LM [Portal 2015].

Among the limitations of using the LM, we can highlight the
sensor tracking field of view, which have a short range and does
not allow the user make movements demanding a large space. The
lighting also affect the device’s performance, i.e. high lighting en-
vironments causes noise in the motion tracking.

According to [Potter et al. 2013], another limitation occurs
when the user’s palm is in a perpendicular position to the device’s
surface. This causes the sensor be unable to detect the hand. How-
ever, despite the disadvantages mentioned here, it was explored the
maximum device’s capacity to conduct this research, and what its
API can offer.

The Myo (https://www.thalmic.com/myo/), is a elec-
tromyographic (EMG) device like a bracelet, which should be po-
sitioned below the user’s elbow. According to [Cheney and Ancona
2014; Nymoen et al. 2015], it uses 8 EMG sensors to detect the
electric potential produced by the skeletal muscles of a forearm.
Therefore, based on its sensors, it is able to determine which mus-
cles are active and this information is used to link the activation
patterns of the muscles with the gestures made by the user - which
are more easily triggered by certain gestures made by the hand. In
total, there are 5 different predefined gestures, and moreover, it is
equipped with a 3D gyroscope sensor, a 3D accelerometer and a
magnetometer. So, it becomes possible the combination of the pre-
determined gestures with the properties of three sensors to create a
variety of gestures controls.

One of the great advantages of using Myo is the data com-
munication via Bluetooth in its version 4.0, allowing any device
equipped with this technology, in addition to digital games, smart-
phone apps, drones, and others be controlled. Also we highlight the
immersion it provides allowing to be set in the user’s arm, making
true the concept of ubiquitous computing. In this context, we see as
a limitation, the fact that sensors cannot identify the hand and fin-
gers motions. However, it justifies the need for the implementation
of the sensor fusion with LM in our work.

4 Sensor Data Fusion: Kalman Filter

[Boström et al. 2007] describe on the definition of data fusion based
on different research sources. In this work, the author proposes that
information fusion is "the study of efficient methods for automat-
ically or semi-automatically transform information from different
sources and different points in time in a representation that provides
effective support for human or automated decision-making".

The sensor data fusion is a powerful research area in robotics
and intelligent systems. It has been extremely important for the
development of autonomous vehicles. Also, it has been used in
several other areas, and as shown in the related work section of this
paper, is a multidisciplinary research area.

Described in the paper written in [Kalman 1960], the Kalman
Filter is the most popular estimate algorithm. In a technical form,
as outlined by [Ribeiro 2004], is a linear, discrete time, finite di-
mensional time-varying system that evaluates the state estimate
that minimizes the mean-square error. The Kalman Filter employs
the use of mathematical models to dealing with real-time measure-
ments. It is a recursive algorithm and works by making a prediction
of the future, getting a measurement from the present state, and

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Full Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 187



after making a comparison between the prediction and the mea-
surement, and adjusting its next estimate based on this resulting
moderated value. Its prediction of the future depends on the state
of the present (that can be position, velocity, acceleration, etc) as
well as the information about any controllable parts trying to affect
the current state situation.

The Kalman Filter algorithm can be represented by a math for-
mula divided into two steps (Prediction and Update) and each step
is composed by some equations that will be explained in more detail
as following. In the first step, the estimation of the previous itera-
tion state is used to obtain a prediction of the current state. This
prediction is also known as an "a priori" estimate because it does
not include any information obtained from the current state obser-
vations. In the update step, the "a priori" prediction is combined
with the current observation to enhance the state estimate. It is im-
portant remember that this algorithm in most cases is used to com-
pute more than just one value, as example, this work is dealing with
Quaternions which is composed by X , Y , Z and W values. Is very
common to find in literature works about sensor data fusion and/or
prediction dealing with 3D space, speed, acceleration among oth-
ers measurements. For this reason, keep in mind that when dealing
with above one value, the variables shown in the equations below
are represented in the form of matrices, and then the calculations
mainly involve matrix operations like multiplication, addition and
subtraction. Sometimes is need the use of transpose (T) and the
inverse (-1) of a matrix.

The prediction step is composed by two equations (1, 2) as
shown below.

x¯ = F x + Bu (1)

P¯ = F P F T + Q (2)

As shown in Equation 1, the variable (x¯) is the current state
estimation and stores the values we want to get from the measure-
ments. Note that the superscript (¯) is used to determine that the
value is a prediction not an estimate. The variable F is the state
transition matrix. Multiplying the state value (x) with this matrix
is obtained the state of the prediction for the next iteration of the
algorithm. This calcule is responsible for applying time conditions
to the state value obtained from each algorithm iteration, i.e., the
time interval spent to run each iteration. Then, the algorithm is able
to predict future values. Bu is respectively the input control ma-
trix that apply the vector control inputs (u) parameters in the state
vector (x). However, this variables (Bu) are not being used in this
work because there is no control values emitted by the sensors, just
the orientation values related to the forearm.

The Equation 2 is responsible to determine the prediction co-
variance that infers the error quantity (noise). Hence, P¯ is the es-
timate of the average error value for each variable defined in the
state matrix. In Q, is defined the covariance matrix of the noise
processes. In this work, that matrix is defined manually and is re-
sponsible for telling the algorithm the amount of errors that can be
produced by the sensors. It is important note that for the first time
executing the algorithm, all the values in the current state variable
(x) are defined as zero, and then, the results of (x¯) will have dif-
ferent values than expected. Moreover, the value obtained in (P¯)
is based just in static values. However, during the algorithm execu-
tion, this values are graduallly adjusted.

Next is shown the equations which composes the update step.

y = z − Hx¯ (3)

S = HP ¯HT + R (4)

K = P ¯HTS-1 (5)

x = x¯ + Ky (6)

P = (I − KH)P ¯ (7)

The Equation 3 compares the data collected by the sensors with
the prediction made in the previous step. This way, the values stored
in the matrix z are exactly the measured data collected by the sen-
sors. Hx¯, known as the measurement function, is responsible to
put the values from x¯in the measurement space, i.e. in a unity and
base equivalent to the measurements made by the sensors. This cal-
culation is made to compare the observed value with the expected
value, the result is then assigned to the y matrix, called in some
works in the literature as measurement residual.

Following the algorithm execution, in the Equation 4, the vari-
able R is the measurement noise, and P ¯ is the uncertainty covari-
ance matrix from the prediction step. The linear equation HP ¯HT

is taking the covariance P ¯and putting it in the measurement (H)
space like the way is made in Equation 3 (Hx¯). Then, once in mea-
surement space, the measurement noise (R) can be added to this
equation.

In the Equation 5 (K = P¯HTS-1). The matrix inverse (S-1) is a
linear algebra’s way of computing 1/S. So, this equation can be
read as the following in Equation 8.

K = P HT

S
->K = uncertaintyP rediction

uncertaintyMeasurement
× HT (8)

According the above equation (8), K is the Kalman gain - the
computing of a ratio based on how much we trust the prediction ver-
sus the measurement. For example, if the measurements are confi-
dent and the predictions are unconfident, the results of K will favor
the measurement, and vice versa.

The computation described in Equation 6 just multiplies the
measurement residual (y) by the Kalman gain and adds it to the
state variable, that is, the computation of the new estimate.

Finally, the Equation 7 is described. I is an identity matrix, and
is the way 1 is represented in multiple dimensions. H , as we have
described in others equations above, is the constant measurement
function. Then, K is the ratio of how much prediction versus the
measurement is used. So, if K is larger, the result of I − KH is
small, and P will be smaller than it was in the previous iteration.
On the contrary, P will be larger. So, the size of uncertainty is
adjusted by some factor of the Kalman gain (K).

In summary, the Equation 1 is responsible for the outcome of
the current state prediction. Equation 2 is responsible for deter-
mine the prediction covariance which infers the number of errors
(noise). While in the update phase, the equation 3 compares the
data collected by the sensors with the prediction made previously.
In equation 4 it is made a comparison from the margin of error to
the amount of expected errors. Then, the equation 5 updates the
value provided according with the error value, given in equation 4,
which is not only the prediction, but an amount equals the last sen-
sor measuring. Thus, the status is updated in equation 6, and the 7
gives a new estimation error to be used in the next algorithm itera-
tion. As can be noticed, these equations are executed in sequence
and recursively.

5 Experiments

The experiments was conducted using the Unity3D engine for game
development in the version 5.0, which is a very well known engine,
and one of the most widely used in development of digital games.
Also was used C# language for implementing the data fusion algo-
rithm.

It was used in the experiments a 3D model consisting of
an avatar produced by Ivan Bindoff available for download in
Unity3D Assets Store page at (https://www.assetstore.

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Full Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 188



unity3d.com/en/) (just search for "Avatar Hand Controller for
Leap Motion"). It can be accessed also by the model the pub-
lisher’s site (http://www.ivansapps.com/wordpress/
?p=110).

The 3D model have all the human skeleton articulations. The
arm and forearm are endowed of 3DoF (three degree of freedom)
composed by pitch, yaw and roll rotations. Moreover, the hands are
able to do all the possible hands motions. Hence, this model allows
receive the data transmitted by the sensors and simulate the human
movements. The complete body model is used because it promote
more immersion and it is intended to use in future works. However,
for the experiments made in this work are just being used the right
arm, including the forearm, hand and fingers.

During the tests execution, the way which the LM device con-
figuration was used, is different than the conventional - on a plane
surface. As shown in Figure 1 below, it was used in a head-mounted
way, to easily allows the sensor data fusion and a "first person" in-
teraction, mainly because we intend in future to apply it in a virtual
reality application, viewing the results with the Oculus Rift.

Figure 1: Myo Armband and Leap Motion integration settings for
data fusion.

As we can see in the Figure 1 above and knowing that the LM’s
field of view is limited, the application was configured to when the
arm is out, use just the Myo rotation data. Then, when the arm
is in the field of view, it is activated the Kalman Filter algorithm,
funding the X and Y rotation values from both sensors. Thereafter,
the resulting values from the fusion are applied in the forearm. The
Z value is not fused, because the Myo rotation around this axis is
not suitable, mostly due the fact that the human forearm rotation in
its own axis near the elbow is very short. However, the LM rotation
around the own forearm axis is well performed.

The Kalman Filter algorithm, was written based in the the book
[Labbe 2015]. The pseudocode is described in Code 1, as the fol-
lowing:

1

2 function init_kf(){
3 dt = 0.02;
4 X = new Matrix(8,1);
5 P = new Matrix.Identity(8);
6 Q = new Matrix.Identity(8)*(0.1);
7 F = new Matrix{
8 {1,0,0,0,dt,0,0,0},
9 {0,1,0,0,0,dt,0,0},

10 {0,0,1,0,0,0,dt,0},
11 {0,0,0,1,0,0,0,dt},
12 {0,0,0,0,1,0,0,0},
13 {0,0,0,0,0,1,0,0},
14 {0,0,0,0,0,0,1,0},

15 {0,0,0,0,0,0,0,1}
16 }
17

18 H = new Matrix{
19 {1,0,0,0,0,0,0,0},
20 {0,1,0,0,0,0,0,0},
21 {0,0,1,0,0,0,0,0},
22 {0,0,0,1,0,0,0,0},
23 {1,0,0,0,0,0,0,0},
24 {0,1,0,0,0,0,0,0},
25 {0,0,1,0,0,0,0,0},
26 {0,0,0,1,0,0,0,0}
27 }
28

29 R = new Matrix.Identity(8)*(0.3);
30 Z = new Matrix(8,1);
31 Y = new Matrix(8,1);
32 I = new Matrix.Identity(8);
33 }//Finish init_kf()
34

35 function predict(){
36 X_new = F * X;
37 P_new = (F * P * F.Transpose ()) + Q;
38 }
39

40 function update(Matrix Z){
41 Y = Z - (H * X_new);
42 S = (H * P_new * H.Transpose())+R;
43 K = P_new * H.Transpose() * S.Inverse();
44 X = X_new + (K * Y);
45 P = (I - K * H) * P_new;
46 }
47

48 function KalmanFilter(){
49 Z[1,1] = myo.transform.rotation.x;
50 Z[2,1] = myo.transform.rotation.y;
51 Z[3,1] = myo.transform.rotation.z;
52 Z[4,1] = myo.transform.rotation.w;
53 Z[5,1] = hand.GetArmRotation().x;
54 Z[6,1] = hand.GetArmRotation().y;
55 Z[7,1] = hand.GetArmRotation().z;
56 Z[8,1] = hand.GetArmRotation().w;
57

58 predict();
59 update(Z);
60

61 if(myoWorking && lmWorking) //Data Fusion
62 {
63 rightForeArm.rotation = new Quaternion(X[1,1],X[2,1],

Z[7,1],Z[8,1]);
64 }
65 else if(myoWorking)
66 {
67 rightForeArm.rotation = new Quaternion(Z[1,1],Z[2,1],

Z[3,1],Z[4,1]);
68 }
69

70 }

Code 1. Kalman Filter pseudocode.

It is important to note in Code 1 above, that the matrix dimen-
sions is generally 8x1 or 8x8. This dimension is to adjust all the
computing to the matrix that represents the state, which stores 4
quaternion (x, y, z and w) values from the Myo and the same from
the LM.

In relation to its execution, the algorithm represented by the
pseudocode in Code 1 must be initialized (calling the function
init_kf()) into a Unity3D function named by Start() or
Awake(). Then, the KalmanFilter() function is put into the
LateFixedUpdate() function. The last one, as all the initial-
ization functions in Unity, have the execution schedule following
a hierarchy. In this case, it is executed after all animations and in
a constant time interval, running at each 0.02 seconds. This value
is assigned to the dt variable in line 4. Hence, the execution in a
regular execution time interval make possible to predict the future
values. In the section 4, specifically when it is described about the
equation 1 it is explained in more details about the effects of dt.

Following to the line 48, each time the KalmanFilter()
function is executed, the rotation data is obtained from the sen-

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Full Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 189



sors (the measurements). Then, is called the predict() func-
tion, which tries to predict the current state. After that (in line 59),
the update() function is fed by the new measurements and the
current state is updated based on the prediction and the measure-
ments. With the estimate ready, it is stored in the variable X . If the
user’s forearm is being covered by the LM’s field of view, it is used
the data fused values (X) to control the forearm (line 61). On the
contrary, the data obtained from Myo takes the control (line 65).

6 Results and Discussion

In order to test the performance of the Kalman Filter algo-
rithm, it was performed a test (video available in https://
www.youtube.com/watch?v=EO4W-BJP888) with a user
performing rotations around the x-axis of the arm. During the test
execution, the rotation data from both sensors and the results from
the data fusion was transformed from quaternion to Euler angles
and saved in a text file. Then, we get some of data obtained at the
moment that was running the fusion, in order to verify the perfor-
mance of the algorithm, as shown in the chart (Figure 2) and in the
Table (1) below.

Figure 2: Performance results of the data fusion using Kalman
Filter.

Table 1: Inputs (Myo and LM measurements in Euler angles) used
to feed the Kalman Filter algorithm and the outputs (KF in Euler
angles).

Iterations Myo (E. a.) LM (E. a.) KF (E. a.)
29 347,2204 330,8667 339,0986
30 346,7629 336,674 340,902
31 347,725 343,7002 343,8728
32 348,9605 337,165 343,3954
33 349,0514 329,4626 340,9944
34 349,1506 327,3166 339,1842
35 349,5265 329,8595 338,7618
36 349,5399 335,2146 340,2407
37 349,7448 340,3015 342,5309
38 349,8634 342,5358 344,0095

The Figure 2 shows 38 iterations of the Kalman Filter execu-
tion. This iterations was saved during the tests where the user was
performing the arm rotation around the x-axis, and when the fore-
arm was being tracked by the LM, allowing the data fusion. The
Table 1 is a chart’s complement and shows in detail the saved val-
ues from the iteration 29th to 38th, where can be seen an interest-
ing algorithm’s behavior. From the 29th iteration, the LM rotation
value get increased drastically, then after the 31th iteration, it get
decreased and even with this sudden changing of values, as we can
see clearly in the chart, the filter results are trying to alleviate and
keep the average between the values emitted by both sensors.

7 Conclusions

7.1 Overview

Based on the data displayed in the chart (Figure 2), confirming the
values shown in Table 1, we can clearly see that the Kalman Filter

algorithm can establish an average of the values produced by Myo
and LM. Based on these results we have verified the Kalman Filter’s
efficiency to be used as an algorithm to sensor data fusion, and it
shows be very important to solve problems like arm tracking using
Myo Armband and Leap Motion, being efficient and smoothing the
motion when there is a noise produced by the sensors.

Even with the advantages described above, the algorithm
is still in its basic version and we must to dealing prop-
erly and dynamically with the noise. As can be seen watch-
ing the test video (https://www.youtube.com/watch?v=
EO4W-BJP888) the forearm motions have still a little salt when
the LM starts the tracking.

7.2 Future work

Face of these results, our main goal is to improve the algorithm
to deal with the noises properly and complete the full arm motion
tracking. One interesting thing to do in the next step is to use other
data fusion algorithms found in the literature, in order to compare
the efficiency of each to solving this same problem. We also want
to use this work in a virtual reality application, using Oculus Rift to
improve the immersion and the visualization.

Acknowledgments

The authors gratefully acknowledge CAPES for the financial sup-
port of this work.

References

BOSTRÖM, H., ANDLER, S. F., BROHEDE, M., JOHANSSON, R.,
KARLSSON, A., VAN LAERE, J., NIKLASSON, L., NILSSON,
M., PERSSON, A., AND ZIEMKE, T. 2007. On the definition of
information fusion as a field of research.

CAPUTO, M., DENKER, K., DUMS, B., AND UMLAUF, G. 2012.
3d hand gesture recognition based on sensor fusion of commod-
ity hardware. In mensch & Computer, vol. 2012, 293–302.

CHENEY, J., AND ANCONA, D. 2014. Gesture controlled virtual
reality desktop.

FOX, D., HIGHTOWER, J., LIAO, L., SCHULZ, D., AND BOR-
RIELLO, G. 2003. Bayesian filtering for location estimation.
IEEE pervasive computing, 3, 24–33.

KALMAN, R. E. 1960. A new approach to linear filtering and
prediction problems. Journal of Fluids Engineering 82, 1, 35–
45.

KHALEGHI, B., KHAMIS, A., KARRAY, F. O., AND RAZAVI,
S. N. 2013. Multisensor data fusion: A review of the state-
of-the-art. Information Fusion 14, 1, 28–44.

KNOOP, S., VACEK, S., AND DILLMANN, R. 2006. Sensor fu-
sion for 3d human body tracking with an articulated 3d body
model. In Robotics and Automation, 2006. ICRA 2006. Proceed-
ings 2006 IEEE International Conference on, IEEE, 1686–1691.

LABBE, R. R., 2015. Kalman and bayesian fil-
ters in python. http://github.com/rlabbe/
Kalman-and-Bayesian-Filters-in-Python, July.

LIGORIO, G., AND SABATINI, A. M. 2013. Extended kalman
filter-based methods for pose estimation using visual, inertial and
magnetic sensors: Comparative analysis and performance evalu-
ation. Sensors 13, 2, 1919–1941.

MARK, 2015. What is the bluetooth range? https:
//support.getmyo.com/hc/en-us/articles/
202668603-What-is-the-Bluetooth-range-, July.

MOESLUND, T. B., AND GRANUM, E. 2003. Sequential monte
carlo tracking of body parameters in a sub-space. In Proceedings
of the IEEE International Workshop on Analysis and Modeling of
Faces and Gestures, IEEE Computer Society, Washington, DC,
USA, AMFG ’03, 84–.

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Full Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 190



NYMOEN, K., HAUGEN, M. R., AND JENSENIUS, A. R. 2015.
Mumyo–evaluating and exploring the myo armband for musical
interaction.

PENELLE, B., AND DEBEIR, O. 2014. Multi-sensor data fusion
for hand tracking using kinect and leap motion. In Proceedings
of the 2014 Virtual Reality International Conference, ACM, 22.

PONS-MOLL, G., BAAK, A., HELTEN, T., MULLER, M., SEI-
DEL, H.-P., AND ROSENHAHN, B. 2010. Multisensor-fusion
for 3d full-body human motion capture. In Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on, IEEE,
663–670.

PORTAL, L. M. D., 2015. Leap motion developer portal - api
overview. https://developer.leapmotion.com/
documentation/cpp/devguide/Leap_Overview.
html, July.

POTTER, L. E., ARAULLO, J., AND CARTER, L. 2013. The
leap motion controller: a view on sign language. In Proceed-
ings of the 25th Australian Computer-Human Interaction Con-
ference: Augmentation, Application, Innovation, Collaboration,
ACM, 175–178.

RIBEIRO, M. I. 2004. Kalman and extended kalman filters:
Concept, derivation and properties. Institute for Systems and
Robotics 43.

TAO, Y., AND HU, H. 2008. A novel sensing and data fusion
system for 3-d arm motion tracking in telerehabilitation. Instru-
mentation and Measurement, IEEE Transactions on 57, 5, 1029–
1040.

YUN, X., AND BACHMANN, E. R. 2006. Design, implementation,
and experimental results of a quaternion-based kalman filter for
human body motion tracking. Robotics, IEEE Transactions on
22, 6, 1216–1227.

ZHU, R., AND ZHOU, Z. 2004. A real-time articulated human
motion tracking using tri-axis inertial/magnetic sensors package.
Neural Systems and Rehabilitation Engineering, IEEE Transac-
tions on 12, 2, 295–302.

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Full Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 191




