
A Hybrid Rendering Engine Prototype for Generating Real-Time
Dynamic Shadows in Computer Games

Daniel V. Macedo Maria Andréia F. Rodrigues

Universidade de Fortaleza(UNIFOR)

Programa de Pós-Graduação em Informática Aplicada (PPGIA)

Av. Washington Soares 1321, J(30)

60811-905 Fortaleza-CE Brasil

Abstract

Shadows are an extremely important part of accurate

3D rendering and key components of visual realism in

computer games. In this work, we present a rendering

engine prototype we have developed for 3D digital

games, with a hybrid algorithm for the generation of

dynamic shadows in real-time. We have implemented

three solutions and in all of them, we generate an

image that represents the shadows of the scene. Several

tests were conducted and show that the ray tracing

algorithms are quite competitive in complex scenes

starting at 1M polygons, although they still depend on

the image resolution, since the higher it is, the more

rays will be generated towards the scene.

Keywords: rendering engines, games, ray tracing,

dynamic shadows, real-time

Authors’ contact:
{danielvalentemacedo,andreia.formico}gmail.com

1. Introduction

Rendering engines are responsible for generating

realistic scenes in digital games [Gregory 2009]. They

correspond to one of the most important and complex

components of a game engine. Every realistic 3D scene

contains a robust description of the geometry,

viewpoint, texture, lighting and shading of its objects.

The data describing the scene are sent to a rendering

program, which processes and displays them as an

image. Thus, rendering engines are responsible for

several key tasks of the graphics pipeline and they are

developed with the aid of interface libraries to graphics

hardware, such as OpenGL [OpenGL 2014] and

DirectX [DirectX 2014].

 Rendering engine's excellence in robustness and

performance can be determined by analyzing its ability

to render 3D scenes containing photorealistic effects,

as well as the processing time taken for completion of

this task. Recently, several optimized solutions have

been proposed in an attempt to minimize the

processing time and labor expended in this process, as

well as to generate realistic 3D scenes at interactive

rates, around 30 FPS [Eberly 2000; Ericson 2005].

 A step before generating the output (an image) in

the 3D rendering pipeline is the rasterization or scan

conversion. Through mathematical calculations, the

vertices are mapped to pixels [Williams 1978],

generating an image that represents the synthetic scene.

However, this is a complex task, since the synthesized

3D model itself does not exactly match a scene with

physical characteristics of the real world. In general,

the rasterization process is done a million times and

currently runs on the hardware level, almost entirely. It

also takes into account ordering of objects and

converting coordinates from object to camera space.

 On the other hand, a powerful method for rendering

3D graphics with very complex light interactions is ray

tracing. The algorithms used in a ray tracer simulate

the reverse path of the light in the scene. In the real

world, rays are emitted by a light source, spreading

through all the objects in the scene. When they collide

with any of these objects, rays undergo refraction or

reflection, depending on the material composing their

surfaces. Some of these rays reach the viewer's eye and

generate the image being viewed. The simulation of

this whole process is still a very complex task, since

the light source in the real world generates a large

number of rays, which makes the process extremely

expensive and, most often, unfeasible to be performed.

In particular, visual effects such as shadows are

extremely important to be modeled in digital games,

both for the player (helping to identify the distances

between objects), and for the proper rendering of the

scene, making it much more realistic. Some existing

rendering engines available in the current game

engines, such as Unreal Engine [Unreal Engine 2014],

Unity [Unity 2014] and Cry Engine [Cry Engine 2014],

include this shadow feature (both static and dynamic).

2. Related Work

Several important visual effects, such as shadows, are

quite important in generating realistic 3D scenes.

Unlike other visual effects, shadows are not rendered

objects. Instead, they are areas of the screen that are

darker than others because they receive less light

during illumination calculations. Thus, the hard part of

adding shadows to a rendering engine is finding those

areas in real time [Mcguire 2004]. There are many

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 938

algorithms to create shadows, for example, shadow

volume and mapping [Kolivand and Sunar 2012].

Many of them still remain the main shadow algorithms

to date [Heidmann 1991]. One of the first algorithms

was the shadow volumes [Franklin 1997], which was

implemented lately in graphics cards [Heidmann

1991]. It creates sharp, per-pixel accurate shadows

from point, spot, and directional lights [Mcguire 2004].

Unlike the shadow volume, which is an object

space algorithm, the algorithms for shadow maps [Woo

et al. 1990; Hasenfratz 2003] are fast and image based.

These algorithms are simple to be implemented,

applicable to any kind of geometric primitive, easy to

be optimized at the hardware level, and efficient

enough to be used in complex scenes, essentially

because they work in screen space. However, they

have two main drawbacks: they generate aliased

shadows and require the use of a bias to compensate

the precision loss during the conversion of values

between the z-buffers, preventing the generation of

undesirable artifacts in the final shadow.

Currently, the emergence of GPUs has strongly

motivated researches to explore new ideas to

implement ray tracing in the context of digital games

[Bikker 2007; Pohl 2014b]. However, the major

challenge is still to perform the entire processing with

dynamic scenes in real time. Despite all these

technology advancements in graphics cards, the

development of algorithms that guarantee interactive

frame rates per second in games with more realistic

visual effects, is still a complex and challenging task.

Carr et al. proposed the first ray tracing algorithm

on GPU, but it runs only on GPU the calculation of

intersection between rays and triangles [Carr et al.

2002]. Subsequently, Hanrahan et al. presented a

solution for the generation of rays, traversal,

intersection between rays and triangles, shading and

creation of secondary rays, all running on separate

GPU kernels [Hanrahan et al. 2002]. Some techniques

also uses cache data between frames, as shown in [Ruff

et al. 2013]. However, most of the techniques proposed

so far do not focus effectively in dynamic scenes.

Additionally, there are already some engines, for

example, Arauna [Bikker 2007] and Brigade [Brigade

2014], capable of generating images of dynamic

scenes, at interactive rates (around 30 FPS). OpenRL

[OpenRL 2014] and OptiX [OptiX 2014] libraries have

emerged to assist programmers in developing more

visually realistic graphical applications with ray tracing

in real-time. Some hybrid solutions have also been

presented by combining rasterization techniques and

ray tracing to create a scene [Andrade et al. 2014].

In this work, we focus on the implementation of a

more modular and hybrid rendering engine prototype,

in which practically every effect works independently.

Moreover, these effects can be implemented with more

than one algorithm, either with a rasterization

technique or ray tracing algorithm, and combined

together at the end of the rendering process through the

deferred shading pipeline. This approach can also be

useful in performing comparative tests between

existing modules, in a more standardized and

independent way. To analyze the performance of our

implementation, we have conducted several testes to

compare three different solutions.

3. Rendering Pipelines

Rendering pipeline complexity has increased

significantly since the advent of programmable

shaders. Three-dimensional geometric shapes are

composed of a set of vertices that form triangles.

Mathematical calculations are performed to map these

vertices to pixels [Akenine-Möller et al. 2008]. Two

popular rendering pipelines that most engines use for

scene rasterization in the area of games are forward

rendering [Engel 2013] and deferred shading

[Akenine-Möller et al. 2008]. In the former, the

algorithm chooses an object from the scene to be

rendered and calculates the surface shading, as well as

all the lights that are influencing the rendering of each

point displayed, in accordance with the material set to

the objects. In the latter, the rendering is deferred until

all geometries have passed down the pipeline [Deering

1988]. That is, the scene is first rendered into discrete

buffers without any information about lighting or

shadows. It splits the shader task into smaller sub-tasks

that are written into an intermediate buffer (g-buffer), a

series of textures/buffers that contain, per pixel, all the

screen space information needed to compute the final

color of each pixel to form the final image.

4. Rendering Engine with Dynamic
Shadows in Real-time

While the current version of this work is in prototype

status and not yet feature complete (other also realistic

effects are planned to be incorporated soon into it as

engine modules), it provides evidence to validate its

feasibility and compare the performance differences

between the three different solutions we have

implemented for real-time shadows in dynamic scenes.

The rendering engine we have designed and

implemented uses a deferred rendering pipeline,

making possible to develop different algorithms to

calculate the dynamic shadows in real-time, making

easier the integration of them into the engine.

 Initially, we load an obj file with the 3D scene

information to be rendered. After loading this data, the

next step of the rendering engine is to generate the

contents of the g-buffer (diffuse color, worldspace,

normal and z-buffer), i.e., maps containing geometric

information of the scene in screen coordinates. Then,

once the g-buffer is ready, the next step is to create

another map that represents the pixels located in

shadow areas of the scene. Additionally, for the

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 939

generation of these maps, we have implemented three

different solutions. The first solution uses a cubemap

of shadow maps to represent point light's shadows. In

the second and third solutions the same algorithm is

used, however, together with two different ray tracing

libraries (OpenRL and OptiX, respectively) for

generating the map containing the shadow pixels. In

particular, on these both algorithm implementations we

provide the g-buffer from the deferred shading

pipeline, lighting information and the vertices of

polygons to perform only the calculation of secondary

rays (data on the primary ones are already available in

the g-buffer). In all three solutions, we generate an

image that represents shadow areas of the scene

(middle right of Figure 1). This image is sent to the

deferred shading pipeline, it is shaded, and the

resulting image is then multiplied by the shadow image

to generate the final scene. During the ray tracer

initialization we pass these information: 3D scene

geometry, lights and g-buffer. Then, the ray tracer

extracts each pixel position from the g-buffer and fires

a ray from each position to the light. If there is a

collision of this ray with any object located between

this position and the light, the ray tracing algorithm

returns '0' for this pixel in the image, otherwise '1'. In

the end, an image equivalent to that of Figure 1

(bottom right) is generated, however, using a ray

tracing algorithm. After generating the shadow image,

the rendering engine applies the light calculation for

each pixel and multiplies the result by the shadow

image to generate the final result. The execution flow

diagram of the rendering engine is detailed in Figure 1.

5. Tests and Performance Results

Performance testings were conducted using the same

3D scene (bottom right of Figure 1), but with different

settings. In each test we used 3 different mesh versions

of the Happy Buddha (the first and the second meshes

with 50k and 250k polygons, respectively, and the

third one, a 1087k polygon model), in a 3D living

room. Each of the scenes were rendered at 3 different

resolutions: 480p, 720p and 1080p. Each test was

repeated 3 times and the average frame rates (measured

in FPS) were calculated and used to plot the results

graphically. The goals of our tests were two-fold: to

verify the general rendering engine performance and to

evaluate its feasibility; and (2) to compare the behavior

of the 3 different solutions (using shadow maps,

OpenRL and OptiX) we have implemented. All tests

were executed on an Intel Core i7-4770 Haswell Quad-

Core 3.4GHz machine with 16GB RAM 1600MHz and

NVidia GeForce GTX 780 Ti 3GB GDDR5 384-bit

graphics card.

 The results in Figures 2(a), 2(b) and 3(a) show that

the ray tracing algorithms are quite competitive in

complex scenes starting at 1M polygons, although they

still depend on the image resolution, since the higher it

is, the more rays will be generated towards the scene. It

is interesting to note that the performance of the

shadow maps algorithm (Figure 2(a)) depends strongly

on the number of rendered polygons, influencing the

FPS drops in the scene with 1087k. On the other hand,

as the number of rendered polygons increases, both ray

tracing algorithms (Figures 2(b) and 3(a)) do not

degrade very much their performances. However, their

performance decays with increased image resolution,

since more rays in the scene need to be generated. In

Figure 3(b) one can observe that the OptiX ray tracing

algorithm outperforms the shadow maps in the scene

with 1087k, showing that it can become competitive in

scenes with a massive number of polygons.

Figure 1: Execution flow diagram of the rendering engine.

Figure 2: In (a) and (b), the FPS results using shadow maps

and OpenRL, respectively

 As in most any performance discussion,

there are also some tradeoffs that are worth being

discussed. Other scalability tests were conducted with

the same 3D scene with 2M, 3M and 4M polygons (the

graphical results are not shown in this work). In our

tests we used the Lbvh builder (Table 1), which has a

faster creation time and occupies less computer

memory than the MedianBvh, Bvh and Sbvh builders,

but it makes the traverser a little slower. In addition,

during the tests with a 2M polygon model, only the

Lbvh builder was able to process the scene, the other

builders had memory overflow (even before processing

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 940

the scene). Recently, as shown in Table 1, NVIDIA

OptiX released the Trbvh builder, which can generate

an excellent data structure quickly, however, it uses

about 3 times the size of the final Bvh for scratch space

and only the commercial version is said not having

memory constraints, making really difficult for the

authors, under the commercial condition, to conduct

additional tests using the Trbvh builder.

Table 1: OpenRL vs OptiX.

 OpenRL OptiX
Types of

shaders

3 8

Hardware

dependency

It also supports the

execution of

programs on CPU

It runs only on NVidia graphics

cards

Platforms Windows Windows, Mac and Linux

Syntax Very similar to

OpenGL

Own syntax

Builders 1 (unknown) 6 (Sbvh, Bvh, MedianBvh, Lbvh,

Trbvh and TriangleKdTree)

Traverses 1 (unkown) 3 (Bvh, BvhCompact and KdTree)

Figure 3: In (a) and (b), the FPS results using OptiX and a

performance comparison of algorithms at 720p, respectively.

 For the scenes composed of 3M and 4M polygons,

the OptiX had memory overflow for all the available

builders tested. However, the implementations with

shadow maps and OpenRL managed to run up to 4M

polygons, without manifesting any computer memory

problems. Comparing the performance results of the

scene containing 1M polygons with the one with 4M

polygons, the shadow maps implementation had an

FPS decrease of approximately 90%, whereas the

OpenRL library had a decrease of only 60%.

6. Conclusion and Future Work

This work has demonstrated that ray tracing algorithms

can become quite competitive in complex 3D scenes

starting at 1M polygons. As the number of polygon

increases, the curve representing the FPS variation of

the shadow maps algorithm has a faster and more

pronounced decay than those of the ray tracing

algorithms (OpenRL and OptiX). However, in scenes

containing more than 2M polygons, memory overflow

occurred with the OptiX ray tracing algorithm.

However, in scenes with up to 4M polygons was

possible to observe the same previously reported

behavior of decay between the shadow maps and the

OpenRL algorithm, up to the point where the curve of

the shadow maps underperforms the OpenRL one. It is

noteworthy that using ray tracing algorithms, it

becomes possible to represent various visual effects

with physically correct models. However, for making

the scene realistic it is also necessary to increase the

number of samples (rays) per pixel (in this work, we

used one ray per pixel), unfortunately, greatly

increasing the processing time of the algorithms. As

future work, we plan to extend the current rendering

engine by optimizing its algorithms. This includes the

implementation of new techniques for smoothing the

shadow maps and also adding support for soft-

shadows, reflections, and indirect illumination using

ray tracing on the GPU.

Acknowledgements

Daniel V. Macedo and Maria Andréia F. Rodrigues are

supported by CAPES and CNPq, under grants No.

157.257/2012-6 and 481326/2013-8, respectively, and

would like to thank for their financial support.

References

AKENINE-MÖLLER, T., HAINES, E., HOFFMAN, N., 2008. Real-

time rendering, 3rd edition, A.K. Peters Ltda.

ANDRADE, P., SABINO, T., AND CLUA, E., 2014. Towards a

heuristic based real time hybrid rendering - A strategy to
improve real time rendering quality using heuristics and
ray tracing. In Proc. of the 9th VISAPP, p. 12-21.

BIKKER, J., 2007. Real-time ray tracing through the eyes of a

game developer. In Proc. of the IEEE RT, p. 1-10.

BRIGADE, 2014. <http://icelaglace.com/projects/brigade-3-

0/>. Accessed 21/02/2014.

CARR, N.A., HALL, J.D., HART, J.C., 2002. The Ray Engine.

In Proc. of the 2002 ACM SIGGRAPH/
EUROGRAPHICS Conf. on Graph. Hardware, p. 37-46.

ENGEL, W., 2013. GPU Pro 4: Advanced Rendering

Techniques. A K Peters Book. Taylor & Francis.

FRANKLIN, C., 1977. Shadow Algorithms for Computer

Graphics, SIGGRAPH'77 Proc., vol. 11(2), p. 242-248.

GREGORY, J., 2009. Game Engine Architecture.

Massachusetts. A K Peters.

HANRAHAN, P., BUCK, I., PURCELL, T.J., MARK, W.R., 2002.

Ray tracing on programmable graphics hardware. ACM
TOG, vol 21(3), p. 703-712.

HEIDMANN, T., 1991. Real Shadows, Real-time. IRIS

Universe, vol. 18, p. 28-31.

KOLIVAND H., SUNAR, M.S., 2012. Real-time outdoor

rendering using hybrid shadow maps. IJICIC, vol.
8(10B), p. 7168-7184.

McGuire, M., 2004. GPU Gems. Chap. 9: Effective Shadow

Volume Rendering, Addison Wesley, p. 137-166.

POHL, D., 2014b. Quake 4: Ray Traced.

<http://www.q4rt.de/>. Accessed 21/02/2014.

RUFF, C.F., CLUA, E.W.G., AND FERNANDES, L.A.F., 2013.

Dynamic per Object Ray Caching Textures for Real-
Time Ray tracing. In Proc. of the 2013 XXVI
SIBGRAPI, p. 258-265.

WOO, A., POULIN, P. AND FOURNIER, A., 1990. A survey of

shadow algorithms. IEEE CGA, vol. 10(6), p. 13-32.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 941

