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Abstract 
 
Shadows are an extremely important part of accurate 

3D rendering and key components of visual realism in 

computer games. In this work, we present a rendering 

engine prototype we have developed for 3D digital 

games, with a hybrid algorithm for the generation of 

dynamic shadows in real-time. We have implemented 

three solutions and in all of them, we generate an 

image that represents the shadows of the scene. Several 

tests were conducted and show that the ray tracing 

algorithms are quite competitive in complex scenes 

starting at 1M polygons, although they still depend on 

the image resolution, since the higher it is, the more 

rays will be generated towards the scene. 
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1. Introduction 
 

Rendering engines are responsible for generating 

realistic scenes in digital games [Gregory 2009]. They 

correspond to one of the most important and complex 

components of a game engine. Every realistic 3D scene 

contains a robust description of the geometry, 

viewpoint, texture, lighting and shading of its objects. 

The data describing the scene are sent to a rendering 

program, which processes and displays them as an 

image. Thus, rendering engines are responsible for 

several key tasks of the graphics pipeline and they are 

developed with the aid of interface libraries to graphics 

hardware, such as OpenGL [OpenGL 2014] and 

DirectX [DirectX 2014]. 

 

 Rendering engine's excellence in robustness and 

performance can be determined by analyzing its ability 

to render 3D scenes containing photorealistic effects, 

as well as the processing time taken for completion of 

this task. Recently, several optimized solutions have 

been proposed in an attempt to minimize the 

processing time and labor expended in this process, as 

well as to generate realistic 3D scenes at interactive 

rates, around 30 FPS [Eberly 2000; Ericson 2005]. 

 

 A step before generating the output (an image) in 

the 3D rendering pipeline is the rasterization or scan 

conversion. Through mathematical calculations, the 

vertices are mapped to pixels [Williams 1978], 

generating an image that represents the synthetic scene. 

However, this is a complex task, since the synthesized 

3D model itself does not exactly match a scene with 

physical characteristics of the real world. In general, 

the rasterization process is done a million times and 

currently runs on the hardware level, almost entirely. It 

also takes into account ordering of objects and 

converting coordinates from object to camera space.  

 

 On the other hand, a powerful method for rendering 

3D graphics with very complex light interactions is ray 

tracing. The algorithms used in a ray tracer simulate 

the reverse path of the light in the scene. In the real 

world, rays are emitted by a light source, spreading 

through all the objects in the scene. When they collide 

with any of these objects, rays undergo refraction or 

reflection, depending on the material composing their 

surfaces. Some of these rays reach the viewer's eye and 

generate the image being viewed. The simulation of 

this whole process is still a very complex task, since 

the light source in the real world generates a large 

number of rays, which makes the process extremely 

expensive and, most often, unfeasible to be performed. 

  

In particular, visual effects such as shadows are 

extremely important to be modeled in digital games, 

both for the player (helping to identify the distances 

between objects), and for the proper rendering of the 

scene, making it much more realistic. Some existing 

rendering engines available in the current game 

engines, such as Unreal Engine [Unreal Engine 2014], 

Unity [Unity 2014] and Cry Engine [Cry Engine 2014], 

include this shadow feature (both static and dynamic). 

 
2. Related Work 
 
Several important visual effects, such as shadows, are 

quite important in generating realistic 3D scenes. 

Unlike other visual effects, shadows are not rendered 

objects. Instead, they are areas of the screen that are 

darker than others because they receive less light 

during illumination calculations. Thus, the hard part of 

adding shadows to a rendering engine is finding those 

areas in real time [Mcguire 2004]. There are many 
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algorithms to create shadows, for example, shadow 

volume and mapping [Kolivand and Sunar 2012]. 

Many of them still remain the main shadow algorithms 

to date [Heidmann 1991]. One of the first algorithms 

was the shadow volumes [Franklin 1997], which was 

implemented lately in graphics cards [Heidmann 

1991]. It creates sharp, per-pixel accurate shadows 

from point, spot, and directional lights [Mcguire 2004].  
  

Unlike the shadow volume, which is an object 

space algorithm, the algorithms for shadow maps [Woo 

et al. 1990; Hasenfratz 2003] are fast and image based. 

These algorithms are simple to be implemented, 

applicable to any kind of geometric primitive, easy to 

be optimized at the hardware level, and efficient 

enough to be used in complex scenes, essentially 

because they work in screen space. However, they 

have two main drawbacks: they generate aliased 

shadows and require the use of a bias to compensate 

the precision loss during the conversion of values 

between the z-buffers, preventing the generation of 

undesirable artifacts in the final shadow.  

 

Currently, the emergence of GPUs has strongly 

motivated researches to explore new ideas to 

implement ray tracing in the context of digital games 

[Bikker 2007; Pohl 2014b]. However, the major 

challenge is still to perform the entire processing with 

dynamic scenes in real time. Despite all these 

technology advancements in graphics cards, the 

development of algorithms that guarantee interactive 

frame rates per second in games with more realistic 

visual effects, is still a complex and challenging task. 

 

Carr et al. proposed the first ray tracing algorithm 

on GPU, but it runs only on GPU the calculation of 

intersection between rays and triangles [Carr et al. 

2002]. Subsequently, Hanrahan et al. presented a 

solution for the generation of rays, traversal, 

intersection between rays and triangles, shading and 

creation of secondary rays, all running on separate 

GPU kernels [Hanrahan et al. 2002]. Some techniques 

also uses cache data between frames, as shown in [Ruff 

et al. 2013]. However, most of the techniques proposed 

so far do not focus effectively in dynamic scenes. 

 

Additionally, there are already some engines, for 

example, Arauna [Bikker 2007] and Brigade [Brigade 

2014], capable of generating images of dynamic 

scenes, at interactive rates (around 30 FPS). OpenRL 

[OpenRL 2014] and OptiX [OptiX 2014] libraries have 

emerged to assist programmers in developing more 

visually realistic graphical applications with ray tracing 

in real-time. Some hybrid solutions have also been 

presented by combining rasterization techniques and 

ray tracing to create a scene [Andrade et al. 2014]. 

 

In this work, we focus on the implementation of a 

more modular and hybrid rendering engine prototype, 

in which practically every effect works independently. 

Moreover, these effects can be implemented with more 

than one algorithm, either with a rasterization 

technique or ray tracing algorithm, and combined 

together at the end of the rendering process through the 

deferred shading pipeline. This approach can also be 

useful in performing comparative tests between 

existing modules, in a more standardized and 

independent way. To analyze the performance of our 

implementation, we have conducted several testes to 

compare three different solutions. 

 
3. Rendering Pipelines 
 
Rendering pipeline complexity has increased 

significantly since the advent of programmable 

shaders. Three-dimensional geometric shapes are 

composed of a set of vertices that form triangles. 

Mathematical calculations are performed to map these 

vertices to pixels [Akenine-Möller et al. 2008]. Two 

popular rendering pipelines that most engines use for 

scene rasterization in the area of games are forward 

rendering [Engel 2013] and deferred shading 

[Akenine-Möller et al. 2008]. In the former, the 

algorithm chooses an object from the scene to be 

rendered and calculates the surface shading, as well as 

all the lights that are influencing the rendering of each 

point displayed, in accordance with the material set to 

the objects. In the latter, the rendering is deferred until 

all geometries have passed down the pipeline [Deering 

1988]. That is, the scene is first rendered into discrete 

buffers without any information about lighting or 

shadows. It splits the shader task into smaller sub-tasks 

that are written into an intermediate buffer (g-buffer), a 

series of textures/buffers that contain, per pixel, all the 

screen space information needed to compute the final 

color of each pixel to form the final image. 
 
4. Rendering Engine with Dynamic 
Shadows in Real-time  
 
While the current version of this work is in prototype 

status and not yet feature complete (other also realistic 

effects are planned to be incorporated soon into it as 

engine modules), it provides evidence to validate its 

feasibility and compare the performance differences 

between the three different solutions we have 

implemented for real-time shadows in dynamic scenes. 

The rendering engine we have designed and 

implemented uses a deferred rendering pipeline, 

making possible to develop different algorithms to 

calculate the dynamic shadows in real-time, making 

easier the integration of them into the engine.  

 

 Initially, we load an obj file with the 3D scene 

information to be rendered. After loading this data, the 

next step of the rendering engine is to generate the 

contents of the g-buffer (diffuse color, worldspace, 

normal and z-buffer), i.e., maps containing geometric 

information of the scene in screen coordinates. Then, 

once the g-buffer is ready, the next step is to create 

another map that represents the pixels located in 

shadow areas of the scene. Additionally, for the 

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 939



generation of these maps, we have implemented three 

different solutions. The first solution uses a cubemap 

of shadow maps to represent point light's shadows. In 

the second and third solutions the same algorithm is 

used, however, together with two different ray tracing 

libraries (OpenRL and OptiX, respectively) for 

generating the map containing the shadow pixels. In 

particular, on these both algorithm implementations we 

provide the g-buffer from the deferred shading 

pipeline, lighting information and the vertices of 

polygons to perform only the calculation of secondary 

rays (data on the primary ones are already available in 

the g-buffer). In all three solutions, we generate an 

image that represents shadow areas of the scene 

(middle right of Figure 1). This image is sent to the 

deferred shading pipeline, it is shaded, and the 

resulting image is then multiplied by the shadow image 

to generate the final scene. During the ray tracer 

initialization we pass these information: 3D scene 

geometry, lights and g-buffer. Then, the ray tracer 

extracts each pixel position from the g-buffer and fires 

a ray from each position to the light. If there is a 

collision of this ray with any object located between 

this position and the light, the ray tracing algorithm 

returns '0' for this pixel in the image, otherwise '1'. In 

the end, an image equivalent to that of Figure 1 

(bottom right) is generated, however, using a ray 

tracing algorithm. After generating the shadow image, 

the rendering engine applies the light calculation for 

each pixel and multiplies the result by the shadow 

image to generate the final result. The execution flow 

diagram of the rendering engine is detailed in Figure 1.  

 

5. Tests and Performance Results  
 
Performance testings were conducted using the same 

3D scene (bottom right of Figure 1), but with different 

settings. In each test we used 3 different mesh versions 

of the Happy Buddha (the first and the second meshes 

with 50k and 250k polygons, respectively, and the 

third one, a 1087k polygon model), in a 3D living 

room. Each of the scenes were rendered at 3 different 

resolutions: 480p, 720p and 1080p. Each test was 

repeated 3 times and the average frame rates (measured 

in FPS) were calculated and used to plot the results 

graphically. The goals of our tests were two-fold: to 

verify the general rendering engine performance and to 

evaluate its feasibility; and (2) to compare the behavior 

of the 3 different solutions (using shadow maps, 

OpenRL and OptiX) we have implemented. All tests 

were executed on an Intel Core i7-4770 Haswell Quad-

Core 3.4GHz machine with 16GB RAM 1600MHz and 

NVidia GeForce GTX 780 Ti 3GB GDDR5 384-bit 

graphics card.  

 

 The results in Figures 2(a), 2(b) and 3(a) show that 

the ray tracing algorithms are quite competitive in 

complex scenes starting at 1M polygons, although they 

still depend on the image resolution, since the higher it 

is, the more rays will be generated towards the scene. It 

is interesting to note that the performance of the 

shadow maps algorithm (Figure 2(a)) depends strongly 

on the number of rendered polygons, influencing the 

FPS drops in the scene with 1087k. On the other hand, 

as the number of rendered polygons increases, both ray 

tracing algorithms (Figures 2(b) and 3(a)) do not 

degrade very much their performances. However, their 

performance decays with increased image resolution, 

since more rays in the scene need to be generated.  In 

Figure 3(b) one can observe that the OptiX ray tracing 

algorithm outperforms the shadow maps in the scene 

with 1087k, showing that it can become competitive in 

scenes with a massive number of polygons. 

 

 
Figure 1: Execution flow diagram of the rendering engine. 

 

 

 
Figure 2: In (a) and (b), the FPS results using shadow maps 

and OpenRL, respectively 

 

 As in most any  performance  discussion, 

there are also some tradeoffs that are worth being 

discussed. Other scalability tests were conducted with 

the same 3D scene with 2M, 3M and 4M polygons (the 

graphical results are not shown in this work). In our 

tests we used the Lbvh builder (Table 1), which has a 

faster creation time and occupies less computer 

memory than the MedianBvh, Bvh and Sbvh builders, 

but it makes the traverser a little slower. In addition, 

during the tests with a 2M polygon model, only the 

Lbvh builder was able to process the scene, the other 

builders had memory overflow (even before processing 
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the scene). Recently, as shown in Table 1, NVIDIA 

OptiX released the Trbvh builder, which can generate 

an excellent data structure quickly, however, it uses 

about 3 times the size of the final Bvh for scratch space 

and only the commercial version is said not having 

memory constraints, making really difficult for the 

authors, under the commercial condition, to conduct 

additional tests using the Trbvh builder. 

 
Table 1: OpenRL vs OptiX. 

 OpenRL OptiX 
Types of 

shaders 

3 8 

Hardware 

dependency 

It also supports the 

execution of 

programs on CPU 

It runs only on NVidia graphics 

cards 

Platforms Windows Windows, Mac and Linux 

Syntax Very similar to 

OpenGL 

Own syntax 

Builders  1 (unknown) 6 (Sbvh, Bvh, MedianBvh, Lbvh, 

Trbvh and TriangleKdTree) 

Traverses 1 (unkown) 3 (Bvh, BvhCompact and KdTree) 

 

 
Figure 3: In (a) and (b), the FPS results using OptiX and a 

performance comparison of algorithms at 720p, respectively.  
 

 For the scenes composed of 3M and 4M polygons, 

the OptiX had memory overflow for all the available 

builders tested. However, the implementations with 

shadow maps and OpenRL managed to run up to 4M 

polygons, without manifesting any computer memory 

problems. Comparing the performance results of the 

scene containing 1M polygons with the one with 4M 

polygons, the shadow maps implementation had an 

FPS decrease of approximately 90%, whereas the 

OpenRL library had a decrease of only 60%. 

 

6. Conclusion and Future Work 
 

This work has demonstrated that ray tracing algorithms 

can become quite competitive in complex 3D scenes 

starting at 1M polygons. As the number of polygon 

increases, the curve representing the FPS variation of 

the shadow maps algorithm has a faster and more 

pronounced decay than those of the ray tracing 

algorithms (OpenRL and OptiX). However, in scenes 

containing more than 2M polygons, memory overflow 

occurred with the OptiX ray tracing algorithm. 

However, in scenes with up to 4M polygons was 

possible to observe the same previously reported 

behavior of decay between the shadow maps and the 

OpenRL algorithm, up to the point where the curve of 

the shadow maps underperforms the OpenRL one. It is 

noteworthy that using ray tracing algorithms, it 

becomes possible to represent various visual effects 

with physically correct models. However, for making 

the scene realistic it is also necessary to increase the 

number of samples (rays) per pixel (in this work, we 

used one ray per pixel), unfortunately, greatly 

increasing the processing time of the algorithms. As 

future work, we plan to extend the current rendering 

engine by optimizing its algorithms. This includes the 

implementation of new techniques for smoothing the 

shadow maps and also adding support for soft-

shadows, reflections, and indirect illumination using 

ray tracing on the GPU. 
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