
A Formal Method to Generate Games with Multi-level and Multi-user using
Hierarchical Coloured Petri Nets

Vanessa Viana S. Carvalho
Universidade Federal do Ceará (UFC)

Prof. Msc. Carlos Hairon R. Gonçalves
Instituto Federal do Ceará (IFCE)

Joel Cruz Soares
Universidade Federal do Ceará (UFC)

Felipe Mota Barreto
Universidade Federal do Ceará (UFC)

Prof. Dr. José Marques Soares
Universidade Federal do Ceará (UFC)

Prof. Dr. Giovanni C. Barroso
Universidade Federal do Ceará (UFC)

Abstract

This paper presents a formal method to the generation of multi-
level and multi-user games. Our approach models a multi-user
game containing multiple navigation environments (multi-level) us-
ing Hierarchical Coloured Petri Nets, in which are specified all of
the rules, properties and structures. The created model can be for-
mally analysed allowing us to detect deadlocks or dead transitions
(invalid paths) and others design problems. The formal analysis
can be made using the CPN Tools. It is presented a tool, called
CPN Games, and a new game in order to validate our method. This
tool allows the user to create, fast and dynamically, simple concep-
tion games only using Hierarchical Coloured Petri Nets. Moreover,
this tool is able to interpret and execute Hierarchical Coloured Petri
Nets made in CPN Tools.

Keywords: Hierarchical Coloured Petri Nets, Games, CPN Tools

Author’s Contact:

vanessaviana@great.ufc.br
hairon@ifce.edu.br
joelcruz007@gmail.com
felipemota0301@gmail.com
marques@ufc.br
gcb@fisica.ufc.br

1 Introduction

The difficulties inherent in the design of electronic games are the
same that have been discussed in the context of software engineer-
ing since the early 1970s. Some of the problems found in the devel-
opment of this particular type of software are discussed in [Petrillo
et al. 2009].

According to [Blow 2004], programmers do not develop games as
they used to do in the 90’s because the process of a game devel-
opment was funny and turned into a complex and difficult thing to
implement (he shows an example of the increasing number of cod-
ing components). [Hamann 2003] says that the reason for that is
because people tend to accumulate a lot of work to do in the dead-
line of the project (which he calls Crunch Time), and he also claims
this is not a particularity of game projects.

Another related problem is the rapid obsolescence due to high re-
cycling of the vanguard technologies. The lack of skilled labor
for new technologies and their instability increase the challenges
[Petrillo et al. 2009]. It concludes that many of the problems found
could be minimized if the designers choose to use specialized tools
for creating games.

Moreover, despite the large variety existing, the productivity tools
to games do not include everything that a game designer needs
[Blow 2004]. In general, they are slow to compile, debug and test,
making many game elements have to be designed and built from
scratch. So, it is understood that the development of tools that sup-
port the development of games is open to new investigations and
propositions.

As a contribution to this area, in this paper is presented a tool that
enables the construction of simple conception games using mod-
els in Hierarchical Coloured Petri Nets. It is provided to the de-

signer an environment in which is possible to create new multi-
level and multi-user games by modelling. The file coding a model
of Coloured Petri Net (CPN) is processed, and then is generated an
instance of a game, without any coding after the model creation.
The locations, paths and rules are established for the game derived
from the CPN, which is modelled using CPN Tools1. The XML
code from a CPN, that is made by CPN Tools, is interpreted by
a Java application that builds the game graphical interface to the
user. The user interaction with the graphical interface is obtained
following the rules established during the modelling using the CPN
formalisms. Besides the possibility of formal representation of the
dynamic and static aspects of a game, the CPN allows the veri-
fication and validation of the designed model, using the analysis
simulation tools available on CPN Tools.

This paper is organized as follows: in Section 2, it is discussed the
use of Petri Nets in the game development and its correlated works.
In Section 3, it is exposed the rules to the game modelling in our
context. In Section 4, it is presented the simulation and analysis
by a CPN model. In Section 5, it is described an example of a
game modelled using the developed tool and how the created model
turned into the game. Finally, in Section 6 is presented the final
considerations.

2 Using Petri Nets to Support the Devlop-
ment of Electronic Games

The Petri Nets (PN) is a mathematical tool to model systems that
have a graphic representation which consists of arcs and nodes [Mu-
rata 1989]. Logical and conceptual errors can be detected using
formal analysis of the structural and behavioural properties, even
in the early steps of the PN modelling. A PN is an abstraction
of an original system and can be formally simulated and analysed,
allowing the validations and verification of the structural and be-
havioural aspects of the net before the implementation of the real
solution [Marranghello 2005].

The PN structure is represented by a set of places, a set of transi-
tions, an input function and an output function. Graphically, the
basic structure of a PN are places, arcs and transitions, that are rep-
resented by ellipses, directional arcs and rectangles, respectively
(Figure 1). The dynamic of a PN is given by the firing of a transi-
tion that removes tokens of the input place and put the tokens in the
corresponding output place. The number of tokens removed or put
depends of the arc weight.

Figure 1: Basic structure of a Petri Net

The representation power of a PN is increased with the high level
programming language features, that is called High Level Petri
Nets, in which includes the Coloured Petri Nets (CPN) [Jensen and
Kristensen 2009]. The CPN allows the representation of many ab-
stractions, one of them is a entire net in a single transition, which is
called substitution transition.

Both ordinary PN and High Level PN have been used to support the
development of electronic games and their multiple features.

1Tool avaiable in http://cpntools.org/

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 1025



In [Lee and Cho 2011] is proposed a method based in PN to gener-
ate little missions or tasks plots to the main characters. The same
authors present in [Lee and Cho 2012] a tool, called PlotWizard,
that gives a support to the development of the game plot. The for-
malism based in PN supports only how the characters interact in
the game, not interfering in the graphic properties and the game
controlling. The game states mapped to PN are static and quality
restricted, which decreases the abstraction power of the PN.

In [Araújo and Roque 2009] is presented the modelling of a game
flow in PN, as an alternative more robust to UML and Flowchat
modelling. The authors use as a case study the navigation and map-
ping of the coast and sea routes. However, in this approach, there is
no generation of automatic coding and of the nets that represent it.

The work of [Santos and Roque 2010] presents an automatic im-
plementation of PN models in order to perform dynamic changes in
the game to stimulate the player. The control of each player is ac-
complished through a PN and artificial intelligence. PN is adjusted
according to the agent’s behavior in each session. For agents that
are not controlled by the player, i.e. for the Non-Player Characters
(NPCs), the system checks which of the PN arches had more token
passes. If the agent succeeds, the section arches over walkways are
kept and the other arcs are replaced by arcs chosen in some sort of
lottery or are removed. This study presents the modelling of the
behaviour of the elements of the game by RP, but does not allow
the creation or automatic generation of game structure.

Two limitations can be enumarated in the works mentioned above.
First, they do not allow representations of multi-level games
through hierarchical Petri nets. To the best of our knowledge, there
is no studies to allow the generation of games in an automated man-
ner from models designed in PN.

Among the several tools that allow modelling by Petri Nets, it has
been adopted in this work the CPN Tools. The integration of this
tool allows the modelling of the structure and behavior of the game,
it is possible to perform simulations and formal analysis of the net-
work. In the abstraction used to build games using CPN, the records
deposited in places represent the game characters and the places
represent the regions where the characters can move. Transitions
constitute the ways on which a character can move from one place
to another, provided they meet the rules of displacement specified
in the modelling. Transitions substitutions are used to represent the
level crossings. Using these rules of representation, you can use the
CPN model, encoded in XML by CPN Tools, to directly generate
the game. Therefore, it is only necessary to configure the media
that are associated with the network elements during the construc-
tion of its graphical interface. Further details of the use of Colored
Petri Nets for the automatic generation of games are described in
next Sections.

3 Rules to Game Modelling

The characters are defined by the tokens configuration of a place
and represent the sprites (characters in movement). Each token rep-
resents one sprite. The sprites are associated with a graphic rep-
resentation through the numeric identifiers set in the tokens. The
Figure 2 shows an example when two sprites are represented with
the values 1 and 2, identified with the marking 1‘1 ++ 1‘2 (which
means that there is a token with the value 1 and other with value 2).
The sprites can move through the planets (abstraction to the places
in this game) according to the rules modelled in the CPN. For ex-
ample, the CPN of the Figure 2 specifies that the sprites can move
in the paths obeying the arrows directions.

The hierarchies from a CPN are specified by substitution transi-
tions. These transitions are represented by rectangles with double
edge, as the transition t5 of the Figure 2. Substitution transitions
represents an abstraction level to a sub-net. In the Figure 2, the
transition t5 is the abstraction of the sub-net of the Figure 3.

In this paper is adopted the substitution transitions to configure mul-
tiple levels in the game. Thus, when a sprite moves to a substitution
transition, this sprite is passed to a different domain. This new do-
main has a structure which consists of new places and transitions
in which are associated distinct rules from the superior net. In the

Figure 2: Example of a Hierarchical Coloured Petri Net

Figure 3: Sub-net t5 of the transition t5 from the net of the Figure 2

graphical user interface side, when a sprite collides in a substitu-
tion transition, means that the phase of the game will change. This
change of phase automatically change the game scenario image.

4 Simulation and Analysis by the CPN
model

The formal analysis of a CPN model allows the validation through
the structural and behavioural properties. The analysis realized with
the CPN Tools can be made by validation (i.e. interactive simula-
tion), by verification (i.e. state space analysis), and by performance
analysis (i.e. monitors simulation) [van der Aalst and Stahl 2011].
Furthermore, the analysis report generated by CPN Tools allows the
verification of the standard properties of a PN. These report prop-
erties can describe if the net is bounded, if the net has any dead
marks (deadlock), if all the transitions are enabled from any mark
(liveness, deadlock free), if all marking is reachable from any other
marking (home-marking), and if from any marking is possible to
return to the home marking (reversible net).

The CPN Tools generates an analysis report, in which is possible to
identify some important properties of the game. For example, it is
possible to check the existence of deadlock in a game plot. Using
the example of the Figure 2, if the transition t1 is removed, the
elements that arrive in the place planet1 will not come back again,
which means a deadlock (Figure 4).

Figure 4: Petri Net from the Figure 2, without the transition t1

As the other properties, the deadlock can be viewed by simulation
and can be verified by state space analysis of the CPN using the
analysis report generated in the CPN Tools. For the example in
the Figure 4, the CPN Tools generates an analysis report that is
partially shown in the Figure 5. The generated report considers
the initial mark established in the model represented in the Figure 2
(1‘2 ++ 1‘1 in the place planet4). In this example, the report shows
a deadlock in the marking ”27” (1‘2 ++ 1‘1 in the place planet1 in
the Figure 4). It means that, if the sprites (1‘2 ++ 1‘1) reach the
place planet1, they could never reach other places again.

The Figure 6 shows a state space generated by CPN Tools from the
net of the Figure 4. In this state space is possible to identify the
deadlock state which is highlighted with blue color.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 1026



Figure 5: Part of the report generated by CPN Tools

Figure 6: State Space graph generated by CPN Tools from the net
of the Figure 4

5 Multi-level and Multi-user Game Project

The possibility to use hierarchical CPN can help the designer with
more options to build the game model. The hierarchy can be mod-
elled so that can represent many phases or even a passage to a ful-
filment of an extra task.

The Figure 7 shows an interface of the game generated from the
CPN of the Figure 2. The model defines the game structure and
rules to the sprite movements through the planets. For the examples
of the Figure 7, Figure 9, Figure 13 and the Figure 11, it has been
used used the images from the free repository OpenGameArt2.

Figure 7: Generated game from the net of the Figure 2

The sub-nets are represented in a superior level of a net by substitu-
tion transitions. The sprites can move through the multiple levels of
the game using these transitions. In the game example of the Fig-
ure 7, these transitions are represented by a black hole image. The
game unfolds while the sprites move through the places of the net
by the user interaction with the graphical interface. Furthermore,
when a sprite collides with a substitution transition, this sprite mi-
grates to a different game level, then it is displayed the correspond-
ing layout to that level. Rules can be established by modelling, so
only the sprites that had achieved certain properties could change
the level.

The Figure 9 presents a CPN Games vision of two players in the
same machine and in different levels of the game. On the left side,

2Images obtained at http://opengameart.org/

there is a sprite that just came through the black hole of the Figure 7
to the following level, that is structured according to the model pre-
sented in the net t5 of the Figure 3. On the right side, there is a
sprite that went through the black hole of the t5 net and arrived on
the t9 net, whose model is represented on the Figure 8.

Figure 8: Sub-net t9 of the transition t9 from the net of the Figure 3

Figure 9: Sprites in two different levels of a game, based on the
sub-nets from the Figure 3 and Figure 4

5.1 Changing of the Rules and Structure of the
Game by Changing the Model

The model whose the rules and structures were defined can be
changed only using CPN Tools. The new model can be loaded and
interpreted by CPN Games. To illustrate this procedure, when the
place planet3 is removed from the net of the Figure 2, it is obtained
the net of the Figure 10.

Figure 10: Net from the Figure 2 without the place planet3.

Then, the modified model is loaded in the CPN Games tool and
the image that represents the planet3 will not be shown anymore,
as seen in the Figure 11. This procedure can be made without any
code programming.

After realize the modelling or change any existing model, it must
re-execute all the analysis and simulation procedures using the CPN
Tools in order to validate the new model.

5.2 CPN XML Parsing

The CPN interpretation is realized by a model created in the CPN
Tools. The generated file by this tool has the extension .cpn, coded
following the XML syntactic rules. This file can be analysed by any
syntactic analyser (parser) developed to this language.

The fundamental structures are represented by the elements (tags)
place, trans and arc in the generated code of the CPN Tools. In the
CPN Games, these structures are implemented in the classes Place,
Transition and Arc, respectively. So, in the analysis process, all
the instances of these elements are created and the properties are
initiated according to the attributes extracted from the model.

To identify a sub-net and set different sub-levels of the game, it is
necessary identify the occurrences of the substitution transitions.
This is possible when the element <trans> has a <subst> child.
Besides, an attribute subpage from the element <subst> has the
sub-net identifier that substitutes the transition.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 1027



Figure 11: CPN Games of the resulting net of the Figure 10.

In the CPN Games, the Reader class is responsible to the syntactic
analysis of the XML code and to the instantiation of all the elements
that composes the modelled net to the game.

5.3 Graphical representation of the elements of a
CPN model

Besides the building of the model with CPN Tools, in order that a
game can be effectively executed by CPN Games, it is necessary
associate each visible element to a file that contains the representa-
tive image. A configuration file with the same name of the file that
contains the CPN code must be created with the extension .prop-
erties (see Figure 12). In this file there must have the relative path
of all the images used in the game. It can have also the relative
paths of the sounds that will be activated in each fired transition
and the representation images of the substitution transitions. After
the configuration of the .properties file, the game can be loaded and
initiated.

Figure 12: A file example that defines the graphic and sound prop-
erties of the game

5.4 User Interface

To the desktop environment, it was implemented an interface that
contains all the necessary elements to the graphical representation
of the game and the sprites movements by user interaction.

Besides the desktop implementation, it was developed an interface
to the Android platform. Some aspects about mobile platforms
must deserve some attention, for instance, the display size. In the
desktop version, the camera is fixed and the sprite moves in the
scenario that is completely rendered into the graphical interface. In
this version, only a scenario part is rendered, and the camera must
follow the sprite during its movement, as shown in Figure 13. Other
aspect that deserve some attention is that in the mobile version the
user can make moves with only one sprite.

Figure 13: Image of the game in a mobile device

It is important to mention the lack of link between the model, that
is independent of platforms, and the interface implementation, that
depends of a platform. In both cases, different models generate

different games, without any code implementation, making easier
the portability of the games in different devices.

Furthermore, the CPN Games allows the gamers play the same
game in local net. In the future, this communication can be ex-
tended to long distance networks. The distribution model used in
this tool is the Server-Client, in which a server centralizes the global
state of the game. This server can be executed in a mobile device
or in a desktop. A localization service can identify the servers in a
local network through broadcast messages.

6 Conclusion

This paper presents a method that allows the development of simple
conception games with multiple levels and multiple users only with
Coloured Petri Net modelling. The model allows the designers to
perform tests and simulations before the software implementation.
To validate this method, it was developed a tool, called CPN Games.
This tool allows the user develop simple conception games, like the
game described in this paper. The CPN Games was implemented in
two versions of graphical user interface. One is the desktop version,
where the user interaction is made by the keyboard, and the other
version is to mobile (Android), where the user interaction can be
made by touchscreen or by accelerometer. Regardless of the kind
of user interface, it is not necessary any additional code program-
ming after the building and analysis of the model. This method
allows people with little programming knowledge to develop their
own games. With the tools described in this paper, it is possible
easily develop a range of simple conception games with low cost
and high productive.

References

ARAÚJO, M., AND ROQUE, L. 2009. Modeling games with petri
nets. Breaking New Ground: Innovation in Games, Play, Prac-
tice and Theory. DIGRA2009. Londres, Royaume Uni.

BLOW, J. 2004. Game development: Harder than you think. Queue
1, 10, 28.

HAMANN, W., 2003. Goodbye postmortems, hello critical stage
analysis.

JENSEN, K., AND KRISTENSEN, L. M. 2009. Coloured Petri nets:
modelling and validation of concurrent systems. Springer.

LEE, Y.-S., AND CHO, S.-B. 2011. Context-aware petri net for dy-
namic procedural content generation in role-playing game. Com-
putational Intelligence Magazine, IEEE 6, 2, 16–25.

LEE, Y.-S., AND CHO, S.-B. 2012. Dynamic quest plot genera-
tion using petri net planning. In Proceedings of the Workshop at
SIGGRAPH Asia, ACM, 47–52.

MARRANGHELLO, N. 2005. Redes de petri: Conceitos e
aplicaçoes. São Paulo: DCCE/IBILCE/UNESP.

MURATA, T. 1989. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE 77, 4, 541–580.

PETRILLO, F., PIMENTA, M., TRINDADE, F., AND DIETRICH,
C. 2009. What went wrong? a survey of problems in game
development. Computers in Entertainment (CIE) 7, 1, 13.

SANTOS, S. D., AND ROQUE, L. G. 2010. Ensaio de reescrita de
comportamentos em videojogos com base no ajuste e computao
de modelos de petri net. IX SBGames.

VAN DER AALST, W., AND STAHL, C. 2011. Modeling Business
Processes: A Petri Net-Oriented Approach. MIT press.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 1028




