
Organic Tile Textures using Fragment Shaders

Luís Gustavo R. Moreira* Wallace S. Lages‡

Universidade Federal de Minas Gerais, School of Fine Arts, Brazil

Figure 1: Example on how the code handles variation and parent-child relationship.
From left to right: no variation; parent variation; parent and child variation.

Abstract

Tile textures are present in any modern 3D game. The
basic concept is that of an image repeating itself in a
seamless loop. However, the same pattern repeated
over and over can look artificial, so variation on the
texture is frequently needed. Variations are usually
created by overlapping or alternating individual
textures, a solution which is strongly limited by the
number of textures and memory available. This paper
describes a process for generating organic tiles using a
small number of textures to generate infinite variations.
With a custom fragment shader and a template created
by the user, multiple textures can be combined and
randomized in each tile. The result is a tile texture in
which every cell is unique, without the need to design
create each one individually.

Keywords: procedural texture, tile texture, fragment
shader.

Authors’ contact:
*luisgustavorm23@gmail.com
‡wlages@ufmg.br

1. Introduction

Texturing is a cheap way of generating detail in 3D
models without the need to increase the underlying
geometry. Big surfaces and screen areas need larger
textures, so storage on the GPU starts to be an issue on
high quality games.

A simple solution is to use a smaller texture
repeated along the surface. However this often gives
rise to repetitive patterns that distract the player from
the game experience. Other techniques can be used to
reduce memory footprint and at the same time add
variation to the texture. Procedural texture generation
[Perlin 1985; Lefebvre 2003] and synthesis from
smaller samples [Efros 2001; Lefebvre 2006;
Ashikhmin 2001] have been proposed as a solution to
this problem.

This paper introduces a method that combines traits

from procedural generation [LAGAE 2010] and texture
synthesis [ASHIKHMIN 2001] to create tile textures
with artist-controlled variation. The 3D artist needs
only to design a template for one tile. This template
will then be used as a model for each tile in the
textured mesh but adding a pre-defined variation each
time it is repeated. In a brick texture, for example, the
artist first design a base brick, divide it into separated
elements and give each one parameters that will guide
the variation (position, scale, rotation, opacity, parent-
child relationships). Then, the fragment shader will
read those values, along with the textures that form the
base brick, organizing each element into the final
output. An example of the variation result can be seen
on Figure 2. A simple program was developed to
design the texture and output a GLSL fragment shader
that is specific to the generated texture. This removes
the need for parameter inheritance on the shader (with
the exception of textures and UV coordinates).

Figure 2: Left: brick texture without variation, Right: brick
texture using variation, using the custom shader.

2. Related Work

Much work has been done in the past years to enhance
texture mapping. Procedural generation solve the
problem of texture variation and memory but are
generally limited to a few types of natural textures,
such as wood and marble [Perlin 1985]. Texture
synthesis techniques can generate large textures
without patterns by sampling smaller textures.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 1013

However, the use of complex algorithms make most of
them too heavy for realtime rendering. Intermediary
solutions try to pre-compute part of the problem to
increase efficiency and keep texture variation.

Regarding variations on tile texture, Wei [2004]
describes a method which uses alternative tile
variations packed together in a single texture.
Compatible tiles are then chosen at random using a
fragment shader to create organic variation. This
method focuses on reducing the memory passed to the
GPU, using a small texture to generate a virtually
infinite image. The visual output has the same image
quality as the base texture but with more variation,
thus, more organic.

Ashikhmin [2001] describes the synthesis of
natural textures using sample images and user
interaction to create a new and bigger texture. In many
ways the newly generated texture is better than a tiled
smaller texture. It is organic, does not show
recognizable patterns and has a reliable user control.
However, the final result is a flattened image. Since it
is not designed to be tile texture, it would consume a
large amount of memory on the GPU if used on a big
structure.

[Risser et al. 2010] presents an interesting proposal.
The idea is to use sample images to create hybrids with
variations, taking coordinates from the samples,
mixing and correcting them. The result is an image that
is a blend of the original samples, but with enough
variation to avoid the recognition of patterns. This
hybridization process can be used to create various
similar textures from a few samples. But just as other
methods [ASHIKHMIN 2001; KWATRA 2005;
LASRALM 2012] this synthesis is not able to be
precessed in real time.

Allegorithmic, with its Substance Designer
software, proposes a new mix between procedural
generation and standard texture mapping. The artist
starts working with basic code generated structures,
and then applies various transformations onto them.
The transformations add up on each other and an
intuitive interface enables the user to control the
process to get the desired output [Kerr Pellacini 2010].
In the final step the result is baked into a texture, so all
the control the artist had while designing the texture is
lost at that point. The method proposed by this paper is
able to keep a level of control over the texture even
after the artist is done, and the shader itself is able to
interfere into the texture.

3. Texture Synthesis from Model

Our method is another take on the concept of tile
texture generation. Instead of just mapping a pre-
computed set of tiles or trying to synthesize a bigger
texture from one flat sample image, we propose that
the texture be generated in realtime from a model that

describes its structure and the base textures used by the
artist.

The idea is based on the fact that most game
textures are created by artists methodically
compositing several layers by hand in an editing
software. When the artist is satisfied, these layers are
flattened and exported to the game engine. Before
export, however, these files contain information about
the structure of the image that can be used to create a
model suitable for procedural generation. Based on
this model parameters, a fragment shader can generate
infinite tiles variation.

3.1 Fragment Shader Generation

The fragment shader itself is texture-specific. The
number of base textures and each of their parameters
are not passed as varying, or fragment shader input, but
are written into the code itself. For this purpose, a
simple program was developed to generate the code for
the fragment shader. This program enables the user to
organize the base textures in layers, define the base
values for each parameter as well as parent-child
relationships. The program output is a text file with the
code for the shader, written in GLSL, ready to be used
by the Graphic Hardware with support for OpenGL 4.0
or greater. The code can then be edited by simple text
editing programs, if needed.

3.2 Fragment Shader Description

Once generated, the fragment shader follows a simple
pipeline, processing parent-child relationship, defining
offsets, scaling factors and other parameters.
The pipeline is defined by:

 Input textures definition,
 Global variables declaration, such as number

of rows and columns,
 Global variables definition,
 Fragment color definition for each input

texture, using the parameters given by the
user while generating the code,

 Alpha color mask (if needed),
 Texture's fragment color blending,
 Fragment color output.

The definition of the input textures is a simple
inheritance of the texture data into sampler2D variables
and UV data into vec2 variables. The code use UV
textures as a guide for position values, so they do not
work as they normally would.

Some global variables are declared to control the
code. As mentioned before, the number of rows and
columns are global variables, as well as a copy of the
UV textures, parent and child indexes and some

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 1014

functions for pseudo-random number generation. The
seed used for this random number generation is related
to the specific row and column of each tile, so each
fragment keeps the same variation value while in the
same row-column combination. Those variables are
defined at the start of the main function and can be
edited at any time, even though the generation program
will not change these variables. For example: for a
brick shader, the second row of bricks has an offset on
coordinate X. This offset has to be changed manually
in the fragment color definition stage of the pipeline.

Figure 3: How the shader selects the color for its output

As illustrated on Figure 3, to define the color to be
used for each texture, the shader uses a custom
function that takes the parameters for each texture as
arguments, then applies the transformations, returning
a vec4 color. The default transformations are position,
scaling and rotation, and are randomized following the
user-defined minimum and maximum values. More
transformations can be added to the function by
manual scripting. The function uses the black color
(0,0,0,1) as a transparency mask. This color can be
changed or removed simply by editing the code. The
blending of each texture is defined by the user at the
generation of the code, and can be customized beyond
the program presets (mix, add, subtract and multiply).
At this stage any texture can be applied as a mask,
allowing further shader customization. After that, the
shader will output a single vec4 color, to be displayed
on screen.

3.3 Performance

Performance can be an issue if too many textures are
used and the texture has too many pixels on screen,
since all the code runs on the fragment shader. The
shader is most useful when applied to an extensive
mesh that will not be on the screen entirely, such as
walls, floors, and big objects. It can be used in small
objects that have small number of pixels on screen, but
this would devalue the variation of the tiles.

A program was developed to test the shader in a
simple mesh that is always entirely on screen.

Performance was measured by the medium stable FPS
obtained. The results are shown in Figure 4. No manual
code optimization were made during the test.

Figure 4: Performance comparison. The gray columns
corresponds to standard shaders and the blue ones to the
custom shader from this paper. From left to right: (a) one
256x256 texture; (b) one 512x512 texture; (c) one
1024x1024 texture; (d) one 2048x2048 texture; (e) four
256x256 textures; (f) one 256x256, two 128x128 and one
64x64 textures.

4. Usage Scenarios

As stated above, the shader has some clear uses. Some
example scenarios that could use this shader are:

 A long hallway in an old building, with cracks
and holes randomly positioned into the wall.
Not-functional doors and windows can be
randomized, if needed.

 Tiled floor with a specular mask as a child
texture, making some tiles reflect more light
than others, by randomizing the specular mask
opacity value. The tiles can have randomized
offsets and scaling values to add variation.

 Extensive mesh of desert floor, using sand
texture as a tile. Rock formations, solid areas,
grass and other elements are randomly placed
and scaled, without need to map the entire
mesh. The elements can use different rows
and columns values.

Figure 5: Brick texture, wood texture, and tile texture.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 1015

4. Conclusion and Future Work

This work presents a technique to create large non
periodical textures from tiles, using an artist created
template and a small set of base textures. Instead of
precomputing the tiles, the final texture is generated in
real time, opening new possibilities for texture design,
since the artist can focus in each element separately
instead of the whole tile. Tile appearance can also be
modified on the fly as a level of detail technique.

For future work, performance improvement is a
major concern. Currently, to keep a reasonable
performance one has to optimize the code manually.
Breaking the shader into two parts may be a possible
solution: one part would be processed by the GPU and
the other by the CPU. This could make algorithms such
as [Risser et al. 2010] possible to be executed by the
program in real time, adding another layer of variation
into the final output.

Vector textures [WANG 2010] are an interesting
concept to expand on, since they would not lose quality
when scaled, and could be implemented as another
type of layer. Since the algorithm would return a color
anyway, those new kinds of layers would not interfere
with the rest of the process.

A software release is intended for the shader
generator program, but it's interface needs
improvement to be more user-friendly and permit user-
code tweaks, to enhance the control the artist has over
the final product.

Finally, a game should be made using the improved
version of the shader. The game will be used as a
testing ground for the technique, helping us to detect
points for improvement.

Acknowledgements

The authors would like to thank CAPES and the
program “Jovens Talentos para a Ciência” for the
support that made this work possible.

References

ASHIKHMIN, M., 2001. Synthesizing natural textures. In
Proceedings of the 2001 symposium on Interactive 3D
graphics (I3D '01). ACM, New York, NY, USA, 217-
226.

EFROS A. A., FREEMAN W. T.: Image quilting for texture
synthesis and transfer. In Proceedings of ACM
SIGGRAPH 2001 (Aug. 2001), Computer Graphics
Proceedings, Annual Conference Series, pp. 341

KERR W. B., PELLACINI F.: Toward evaluating material
design interface paradigms for novice users.
Transactions on Graphics (2010)

KWATRA, V., ESSA, I., BOBICK, A., KWATRA, N.,
2005. Texture Optimization for Example-Based
Synthesis. Proc. ACM Transactions on Graphics,
SIGGRAPH 2005.

LAGAE A., LEFEBVRE S., COOK R., DEROSE T.,
DRETTAKISG., E BERTD., LEWIS J., PERLIN K.,
ZWICKER M.: State of the art in procedural noise
functions. In EG 2010 -State of the Art Reports (2010)

LASRAML, A., LEFEBVREL, S., DAMEZ, C., 2012. 2012.
Procedural texture preview. Comp. Graph. Forum 31,
2pt2 (May 2012), 413-420.

LEFEBVRE, S., AND NEYRET, F. 2003. Pattern based
procedural textures. Symposium on Interactive 3D
Graphics, 203-212 – 346

LEFEBVRE, S., HOPPE, H., 2006. Appearance-Space
texture synthesis. In ACM SIGGRAPH 2006 Papers
(SIGGRAPH '06). ACM, New York, NY, USA, 541-548.

PERLIN K.: An image synthesizer. In Computer Graphics
(Proceedings of ACM SIGGRAPH 85) (1985), vol. 19,
pp. 287–296

RISSER, E., HAN, C., DAHYOT, R., GRINSPUN, E., 2010.
Synthesizing Structured Image Hybrids. In ACM
SIGGRAPH 2010 papers (SIGGRAPH '10), Hugues
Hoppe (Ed.). ACM, New York, NY, USA, , Article 85 , 6
pages.

WANG, L., ZHOU, K., YU, Y., GUO, B., 2010. Vector
Solid Textures. ACM Transactions on Graphics
(SIGGRAPH 2010), 1-8

WEI, L.-Y, 2004. Tile-Based Texture Mapping on Graphics
Hardware. In ACM SIGGRAPH 2004 Sketches
(SIGGRAPH '04), Ronen Barzel (Ed.). ACM, New York,
NY, USA, 67-.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 1016

