
A game engine plugin for ubigames development
Luciano H. O. Santos Fabricio N. Buzeto Lucas N. Carvalho Carla D. Castanho

Department of Computer Science
University of Brası́lia

Brası́lia – Brazil

Abstract
Game engines are an integral part of game development, greatly
easing the overall effort. Even though, ubigames still lack the avail-
ability of such advanced tools as those found for other platforms
like consoles and mobile phones. In order to fill this gap, we have
developed a Unity 3D plugin for building games compatible with
the uOS ubiquitous middleware. The results of this implementation
are evidentiated through two use case games, showing its compli-
ance and stability.

Keywords: Pervasive Gaming, Ubiquitous Computing Games,
Game Engine, Unity

Author’s Contact:

lucianohenriquesantos@gmail.com
fabricio@aluno.unb.br
lucasnvcarvalho@gmail.com
carlacastanho@cic.unb.br

1 Introduction
The concept of ubiquitous computing or pervasive computing
[Weiser 1991] stimulated the emergence of several new fields of
research. The idea was to take advantage of the increasing presence
of computing capable devices in people’s lives, and create environ-
ments which employ technology to ease daily tasks in a minimally
invasive way, without requiring attention or direct interaction from
the user [Weiser and Brown 1996], the so called smart spaces.

Eletronic games, at first sight, could be viewed as incompati-
ble with these goals, since they focus on exactly the opposite idea,
i.e., they try to entertain through engagement and immersive game-
play, requiring the user’s constant and deliberate interaction. For
this reason, proposals of ubiquitous games (ubigames) tried to ap-
ply pervasive computing’s concepts and principles in new ways, by
exploring different attributes of environment and several aspects of
the player’s reality to create inovative mechanics and integrate the
real world and the game world, improving gameplay and player
imersion.

Ubigames, as ubiquitous applications themselves, brought along
all the technological challenges faced by ubiquitous computing in
general, such as heterogeneity of devices and communication inter-
faces, scalability, fault tolerance, security and privacy issues, con-
text adaptability and user interfaces [da Costa et al. 2008]. Sev-
eral models and proposed frameworks aim at creating an architec-
tural foundation to facilitate the construction of ubiquitous software
[Sousa and Garlan 2002][Modahl et al. 2004][Aitenbichler et al.
2007][Sacramento et al. 2004] or, in some cases, ubigames [Stach
2012], but they stumble uppon a variety of limitations on their de-
sign.

Among the many platforms that propose to ease this task, the
uOS middleware can be highlighted. Based on a architecture model
– DSOA [Buzeto et al. 2010] –, a communication protocol – uP
[Buzeto et al. 2011] –, and a middleware – uOS [Buzeto 2010] –, it
allows ubiquitous applications to publish and list devices, resources
and services present in the smart space and access them over a trans-
parent, platform-independent layer. The middleware also provides
means to create an hierarchy of equivalence between resources, and
ontologies, making it possible to create heuristics and choose the
best available resource for a given task in different contexts.

Even though uOS is supported by multiple platforms, and has al-
ready been used for game development [Buzeto et al. 2013], it does
not provide any range of tools focused on this specific task. Inte-
gration with a game engine, for instance, would make it much more
easier to handle common game development problems, like graphic
and physics components and user interaction. An engine largely

reduces the overral development effort, by implementing common
game logic abstractions and entity representation, like scenes, maps
and game objects [Rabin 2010].

Game engines have been used for decades now, featuring as es-
sential tools for game developers. The techniques employed by
modern engines to solve the several technical challenges faced in
game development were tested and improved over the years, creat-
ing a set of traditional architecture models to efficiently deal with
them [Rabin 2010] [Gregory 2009].

For this reason, the integration of ubiquitous computing capabil-
ities to a well established engine would greatly benefit ubigame de-
velopment and research, allowing developers to focus on mechanics
and user interaction, instead of infrastructure issues and technical
details.

This work presents a plugin for the Unity 3D1 game engine that
enables communication between games created with the engine and
uOS-based smart spaces. Unity is a well established game engine
with support for a wide range of platforms. It provides tools for
rapid creation of game scenes and game objects’ behaviour, as well
as an advanced API to handle user inputs, graphics, audio, physics
simulation and AI. The solution here presented extends the capabil-
ities of such engine in order to use the uOS middleware for com-
munication and device integration.

This paper is organized as follows. Section 2 makes a more de-
tailed description of DSOA and uOS main concepts and elements.
Section 3 describes our implementation, and the specific issues
faced for the target environment. Section 4 describes two ubiq-
uitous games we have developed to evaluate the solution. Finally,
Section 5 covers our conclusions and possible topics for future re-
search.

2 DSOA and the uOS Middleware
DSOA is an extension of SOA [Schulte and Natis 1996], and de-
scribes the smartspace as a collection of devices, i.e., elements of
the environment with computational power, such as PCs, smart-
phones and embbeded hardware. Each device has resources, which
are groups of logically related funcionalities. Usually this means
the accessible hardware components like keyboards, mice, screens,
cameras, sensors and other peripherals or embedded elements, but
may also refer to more abstract concepts, such as device user infor-
mation or data storage. Each resources is accessed as a group of
services. A service is the actual implementation of a functionality,
and provides a known public interface. For example, a smartphone
may have a camera resource with a “take picture” service, receiving
no parameters and returning the bytes representing an image.

The communication protocol proposed by Buzeto et al., uP, es-
tablishes how these concepts interact, defining the following enti-
ties:

• a service is the interface for a resource’s functionaliy, and
must have a name and zero or more parameters, which may
be optional or mandatory, and may return response data when
called;

• a driver models a resource, having a name and a collection
of services, and optionally a collection of events, which are a
special case of service, that allows the registration for asyn-
chronous notifications;

• finally, the top level entity is the device, which has a name, one
or more networks (a description of a communication channel,
such as ethernet, bluetooth, etc) and one or more drivers.

1http://unity3d.com/

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 997



All uP messages are formatted in JSON2, a lightweight text-
based data-interchange format. A service call is a JSON message
consisting of driver and service name, an optional driver instance
id and the service’s expected parameters. The response will contain
any data returned by the call or an error message in case of failure.
Special calls registerListener and unregisterListener on compatible
drivers may be used to enable asynchronous notifications for spe-
cific events.

The uOS middleware implements uP and provides a basic in-
frastructure for smart space communication. One or more channel
managers may be present, to allow communication on different in-
terfaces, such as Ethernet and Bluetooth. Also, one or more radars
may be instantiated, with different strategies to locate nearby de-
vices: ping, multicasts, centralized registries, etc. . . With regards
to resources, all uOS devices have at least a DeviceDriver driver,
responsible for responding to device searches in the environment,
with services to handshake, and list the drivers of the current de-
vice, among others. Internally, a device manager keeps track of
all known devices and a driver manager registers all known drivers
and their equivalence tree, as well as the ontology rules to look up
for resources.

All these features are accessible through a centralized class, a
Gateway, that allows applications to access the components of the
middleware and aggregates the common functionalities, such as
listing devices and calling a service on a device.

More details about the uOS implementation may be found at the
project’s website3.

3 Integration with Unity
The Unity uOS plugin4 replicates the behaviour of the reference
middleware implementation, following the same software architec-
ture and structure. The scope of the plugin is to enable the com-
munication between games developed using it and other devices
and services available on a uOS smart space. Since the middleware
provides a wide range of features, complimentary to the comunica-
tion among devices, the set of features implememented were con-
strained to the following:

• full set of uP entities and protocol translation;

• socket communication capabilities;

• device discovery and management;

• resource discovery and management;

• synchronous and asynchronous service communication;

• application integration.

Using these features, a game becomes aware of its surroundings
and able to identify which devices are available and which resources
they have, in order to access them. It also allows the game device
to publish its own resources for use by other applications at the
smart space. This enables the contruction of games that dynami-
cally adapt to the capabilities of the environment as they change.

The main challenges faced in the implementation of the middle-
ware features inside the Unity environment reside in the threading
model, i.e., the concurrent code execution system. C# and .NET5,
the framework used by Unity for its API implementation, offer a
threading environment very similar to the Java Virtual Machine’s,
the original platform of the middleware. However, Unity itself has
a very restricted model for its threads. All the engine components
and resources must be accessed exclusively from the game’s main
execution thread, i.e., from the callback methods defined by the
engine for game routines. However, it’s imperative for the mid-
dleware to run multiple execution threads, since most of the com-
munication channels require blocking operations to be performed
regularly, what causes the whole thread to stop. For this reason, a
simple and efficient mechanism was needed to exchange informa-
tion between the middleware’s multiple threads and the game main
thread created by Unity.

2http://json.org/
3http://www.unbiquitous.org/
4https://github.com/lhsantos/unity uos plugin
5http://www.microsoft.com/net

We designed a basic message engine that uses a queue associated
with a lock to ensure thread synchronization. Anytime the middle-
ware needs to deliver a message, either a data exchange, a log entry
or an exception report, it puts a message in the queue, which is
guarateed for consistency because of the lock object. A specialized
MonoBehaviour, i.e., a game object’s component inside the game,
uses the Unity frame update callback to regulary empty this queue
and handle all the pending messages. When an object running at the
main thread needs to request a service from the middleware, it may
use the asynchronous version of the call, in which a new thread is
automatically created and reports via callback when the response is
ready. This mechanism permits other game objects to interact with
the middleware without performing blocking operations or causing
delays at runtime.

For uP message serialization, a free open source library was
choosen, MiniJSON6. This is a lighweight implementation of JSON
for C#, best suited for small and simple message formatting.

All network communications were performed with the standard
.NET networking API, as provided by Unity.

4 Use Cases
To evaluate this solution, two ubigames were proposed and devel-
oped. In each case, the games were used to test the system func-
tionalities or their integration with the reference implementation of
the middleware. The next two sections describe these games.

4.1 Vidi
Vidi7 is collectible card game based on the popular board game
Dixit8. Each player has a deck of cards, and his/her goal is to ex-
pand this collection by interacting with other players.

When a player enters a smartspace where other devices are run-
ning the game, he or she may propose a challenge. The challenger
must pick a card and describe it with one word (Figure 1 (a)). The
other players then must pick a card they think matches the descrip-
tion (Figure 1 (b)). Then, all the players must guess which of the
cards was the chosen one (Figure 1 (c)). If there’s an equilibrium
between right and wrong guesses, the challenger wins all the pro-
posed cards; otherwise, the cards are distributed amongst the other
players.

Players may also discover new cards by directly trading with
other players in the smartspace.

(a) challenge

(b) players pick their cards

(c) players make guesses

Figure 1: Vidi challenge mechanics (the cards’ artwork is copy-
righted to Libellud – http://en.libellud.com/).

Using the Unity uOS plugin, Vidi makes available for the smart
space a resource driver that represents the player. This driver con-
tains synchronous services to implement the basic elements of the
game mechanics like “start a challenge”, “find challenge” and “reg-
ister a challenge guess”. It also uses events to notify the end of a
challenge or a card trade.

6https://gist.github.com/darktable/1411710
7https://bitbucket.org/lucasncv/vidi
8http://en.libellud.com/games/dixit

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 998



Because of the spontaneous nature of the game, it’s best suited
for mobile devices where the test efforts where focused.

4.2 Ubimon
Ubimon9 is inspired in the game PokémonTM10, by Nintendo, and
is designed to explore ubiquitous games concepts. The player takes
the role of a Ubimon Trainer, travelling around the (real) world and
encountering monsters in his way, which he must face and may
capture.

The battle system is very similar to the original PokémonTM

game, the ubiquity aspects explored for our test purposes reside in
the concept of device capacity and stations. Each device the player
may use has a limited capacity, defined by the resolution of the de-
vice, in comparison to a reference resolution adopted by the game.
If a device is full and no longer able to carry any more ubimon,
all newly captured monsters will be immediately released, forcing
the player to choose carefully which and how many ubimons he
will carry at one time. To store unused ubimon, trading stations
are available around the world. These stations are desktops with a
public display, and may be used by any player.

The player uses the radar (Figure 2 (a)) to find out nearby players
and stations. When a station is within reach, the player may access
it by clicking on the button with its name at the screen. If nobody
else is already using the station, the player is granted access to it
and his device switches to the station control mode (Figure 2 (b)),
while the station itself enter the player mode (Figure 2 (e)). In this
setting, the player may use his device to get (Figure 2 (c)) or send
(Figure 2 (d)) ubimon between his current device and the station.

To implement this mechanic, two ubiquitous applications were
developed. A client application, which is the game running on mo-
bile devices, implemented in Unity with the proposed plugin; and a
server application, running on desktops, implemented in Java using
the reference implementation of the middleware.

At the client’s side, two uOS drivers were created:

• a GlobalPositionDriver, with a discrete service getPos return-
ing a tuple <latitude, longitude, delta>, and a POS CHANGE
event, which notifies listeners any time the device’s global po-
sition changes;

• a GoogleMapsDriver with services updatePos, receiving a tu-
ple <latitude, longitude> to inform the driver of the current
global position, and render, which schedules a GoogleMaps11

texture capture and render at the world map, given the current
global position.

At the server’s side, a PositionRegistryDriver was created to
model a global registry for entities in the world, with the services:

• checkIn, receiving parameters clientName, latitude, longitude,
delta and metadata, to insert a client at the registry and re-
trieve a clientId for subsequent calls;

• update, receiving parameters clientId, latitude, longitude,
delta and metadata, to update the current data for a client;

• checkOut, receiving a clientId, to remove a client from the
registry;

• and listNeighbours, receiving latitude, longitude, delta and
range, to list all registered clients near a given global position;

The server also implements a set of application services, all re-
lated to the station logic:

• enter, receiving a playerId, admits a player to the station, as
long as no one else is already using it;

• leave releases the station from the current player, making it
available for other players;

• cursorToLeft, cursorToRight, cursorToUp and cursorToDown
all receive a playerId and are used to move the selection cursor
inside the station;

9https://github.com/lhsantos/ubimon
10http://www.pokemon.com/
11https://developers.google.com/maps/

• peek retrieves a representation of the currently selected ubi-
mon;

• removeSelected removes the currently selected ubimon from
the station;

• and store sends a ubimon to be saved at the station, as long as
there’s enough room.

Ubimon demonstrates how the Unity uOS plugin integrates
seamlessly with other uOS devices using the reference implemen-
tation in the smart space, all of them consuming and providing re-
sources and services.

(a) world map (b) station home screen

(c) station get interface (d) station send inter-
face

(e) station server interface

Figure 2: Ubimon station interfaces (all PokémonTM

graphics in these images are copyrighted to Nintendo –
http://www.nintendo.com/).

5 Conclusion
In this paper we presented a solution to integrate a game engine
with an existing ubiquitous application framework and facilitate the
development of new ubigames. Our solution creates a basic infras-
tructure for games based on the Unity game engine to communi-
cate with uOS smart spaces, listing available devices and resources,
and calling services, as well as making its own resources and ser-
vices available for the smart space. This also improves the uOS
ecosystem to a broader range of platforms supported by the Unity
3D Game Engine, like iOS and Windows Phone.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 999



The games Vidi and Ubimon demonstrate how the solution is
a stable and powerful tool for developing games that dynamically
integrate devices in the smart space.

For future research topics, we propose the expansion of the plu-
gin’s feature set, to include security measures, resource rerouting
and ontology and heuristics support, all already available for the
original middleware.

We also propose the adaptation of the plugin’s networking layer
to remove all references to the .NET standard API on mobile de-
vices. The use of the standard API imposes a restriction for the plu-
gin, since Unity only gives access for this API at mobile devices in
its professional version. This means that it’s currently impossible to
build applications for Android, iOS and Windows Phone using the
plugin without a Unity Pro license. However, this limitation would
be removed with the replacement of the networking layer with na-
tive networking libraries for these platforms, broadening the range
of potential uses for this solution.

At last, our current efforts are also placed in the creation of other
games using the platform. These games aim to stress not only how
the use of a game engine can reduce the development effort, but also
enable the evaluation of new genres and the collection of important
metrics regarding the scalability of the solution.

References
AITENBICHLER, E., KANGASHARJU, J., AND MÜHLHÄUSER,

M. 2007. MundoCore: A Light-weight Infrastructure for Perva-
sive Computing. Pervasive Mob. Comput. 3, 4, 332–361.

BUZETO, F. N., PAULA, C. B., CASTANHO, C. D., AND JACOBI,
R. P. 2010. DSOA: A Service Oriented Architecture for Ubiq-
uitous Applications. In Advances in Grid and Pervasive Com-
puting, P. Bellavista, R.-S. Chang, H.-C. Chao, S.-F. Lin, and
P. Sloot, Eds., vol. 6104 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 183–192.

BUZETO, F. N., CASTANHO, C. D., AND JACOBI, R. P. 2011.
uP: A Lightweight Protocol for Services in Smart Spaces. In
Ubi-Media Computing (U-Media), 2011 4th International Con-
ference on, Ieee, 25–30.

BUZETO, F. N., CAPRETZ, M. A. M., CASTANHO, C. D., AND
JACOBI, R. P. 2013. uOS: A Resource Rerouting Middleware
for Ubiquitous Games. In Ubiquitous Intelligence and Comput-
ing, 2013 IEEE 10th International Conference on and 10th In-
ternational Conference on Autonomic and Trusted Computing
(UIC/ATC), Ieee, 88–95.

BUZETO, F., 2010. Um conjunto de soluções para a construção de
aplicativos de computação ubı́qua.

DA COSTA, C. A., YAMIN, A. C., AND GEYER, C. F. R. 2008.
Toward a General Software Infrastructure for Ubiquitous Com-
puting. IEEE Pervasive Computing 7, 1, 64–73.

GREGORY, J. 2009. Game Engine Architecture. CRC Press, Boca
Raton, FL, USA.

MODAHL, M., BAGRAK, I., WOLENETZ, M., HUTTO, P., AND
RAMACHANDRAN, U. 2004. MediaBroker: an architecture for
pervasive computing. In Pervasive Computing and Communi-
cations, 2004. PerCom 2004. Proceedings of the Second IEEE
Annual Conference on, 253–262.

RABIN, S. 2010. Introduction To Game Development, Second
Edition. Cengage Learning, Independence, KY, USA.

SACRAMENTO, V., ENDLER, M., RUBINSZTEJN, H. K., LIMA,
L. S., GONCALVES, K., NASCIMENTO, F. N., AND BUENO,
G. A. 2004. MoCA: A Middleware for Developing Collabora-
tive Applications for Mobile Users. Distributed Systems Online,
IEEE 5, 10, 2.

SCHULTE, W. R., AND NATIS, Y. V. 1996. Service Oriented
Architectures Parts 1 and 2. Gartner.

SOUSA, J. A. P., AND GARLAN, D. 2002. Aura: An Architec-
tural Framework for User Mobility in Ubiquitous Computing
Environments. In Proceedings of the IFIP 17th World Com-
puter Congress - TC2 Stream / 3rd IEEE/IFIP Conference on
Software Architecture: System Design, Development and Main-
tenance, Kluwer, B.V., Deventer, The Netherlands, The Nether-
lands, WICSA 3, 29–43.

STACH, C. 2012. GameworkA Framework Approach for Cus-
tomizable Pervasive Applications. mirlabs.org 4, 66–75.

WEISER, M., AND BROWN, J. J. S. 1996. Designing Calm Tech-
nology. POWERGRID JOURNAL 1, 1–5.

WEISER, M. 1991. The computer for the 21st century. Scientific
american 3, 3, 66–75.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 1000




