
Card Game Maker:
A card game creation system for Unity

Rainer M. Vieira¹ João R. Bittencourt²

Universidade do Vale do Rio dos Sinos, Brazil

Abstract

The current article reports the development process
of a card game creation system bundled with an
engine to execute these games. To find out the
project requirements, case studies of modern card
games were used as guidelines to define common
components in card games that can be used to the
development of said system. With the data acquired
on these studies, a two-layered architecture model
had been defined, demonstrated by a class diagram.
With the architecture proposed, a study to define the
technology requirements to the project had been
made, defining the system as a Unity extension
developed in C#. When the Card Game Maker
creational process is concluded, a complete game
creation tool for card game creation is expected to be
developed.

Keywords: Game Development, Card Games, Game
Engine, Software Architecture, Unity

Author's contact:
1 rainermv@gmail.com
2 joaorb@unisinos.br

1. Introduction

Card games are part of a group of the oldest and most
popular game genre there are, next to sports games
and some board games. In classic card games, the
diversity of possible combinations of elements (color,
suit, number) allows for a variety of different games
(Poker, Solitaire, Bridge), while some games -
keeping the familiarity of card handling and reading -
extend these elements allowing limitless
combinations. For Nesi [2011], in the context of
digital games, this game type has been having
descending popularity relative to other genres, with
the absence of technology being one of the reasons.
To fulfill this technology requirement, it was decided
to propose the creation of a tool that would enable a
fast, simple and budgeted creation of digital card
games, a game creation system named Card Game
Maker (CGM).

To enable the execution of the games created by
this tool, it must attach a game engine. There are
some game engine options already on the market, but
there are few specific designed for card games [Nesi
2011]. The full development of an engine at low
level, on the other hand, has costs beyond the scope
of the project. The solution found was to use an

existing generic game engine and adapt it to run card
games employing the specifications of the creation
system. This engine, being a layer below the CGM,
was named Card Game Maker Engine (CGME).

This article is organized into six Sections: in

Section 1 the motivation for creating the CGM was
presented; In Section 2 a brief review of related work
will be done; in Section 3 the results of case studies
that demonstrate the common elements in classic and
modern card games will be reported; In Section 4 the
CGME layer proposed model will be presented; In
Section 5 the technological decisions for the
implementation of the presented model will be
presented; and finally, in Section 6 the concluding
remarks will be made, also reporting future work.

2. Related Work

This article was created based on Nesi’s Joker Engine
[2011], reporting an analysis of classic card games,
using this data as a basis for creating a model for card
game engines and a development of a generic card
games engine as an Unity [2005] extension.

There are other game engines developed for the
purpose of card games, such as the Vassal Engine
[2003], marketed as a “game engine for building and
playing online adaptations of board games, tabletop
games and card games. It allows users to play in real
time over a live Internet connection, and also by
email” [Vassal Engine 2003].

3. Case Studies

In order to extend the card games analysis made by
Nesi [2011], a case study was made which would
also include modern card games1. This study sought
to do a detailed study of three modern card games
(Magic: The Gathering [1993], Hearthstone [2014],
and Munchkin [2001]) in order to find common
features among these games that could assist in the
development of the Card Game Maker.

After the study, it was observed that the recurring
characteristics of these games can be organized into a
set of components: Rules, Player, Turn, Area, Deck,

1 Modern card games are card games that do not
use common playing cards, using, instead, specific
cards with elements developed for each particular
game.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 978

Phase, Action, Card and Resource. These
components form the basis for the creation of classes
for the CGM and CGME model.

4. Proposed Model

In order to create a proposed architecture that
satisfies the needs of a modular software, optimized
for card games, enabled to code-reusing that is
platform and technology independent, it is necessary
to make a layered division between the and Card
Game Maker and its engine, the Card Game Maker
engine.

The CGM, being a game creation system, must
have the capability of allowing the creation of card
games components and providing the data created by
the user to the game engine, which in turn, should
functionally run the game developed. The CGME, as
an independent layer, should run card games without
needing to know the upper layers of the system.

In this article, the proposed Class model will be

restricted to the Card Game Maker Engine layer, and
the definition of the upper layer will be detailed in a
future time.

Basing this research on the concepts of Design

Patterns [Gamma et al 2011], the common elements
of classical and modern card games and expanding
the Joker Engine [Nesi 2011] architecture it is
possible to create an architectural model for the Card
Game Maker engine.The diagram shown in Figure 1
presents the structural class diagram of the CGME
that demonstrates the relationship between classes.

Figure 1 – CGME Class Diagram

The functions of each class within this diagram,
their communication with other classes of this model
and their relation to the components of card games
described in Section 4 will be demonstrated in the
following sub-Sections.

4.1 Manager

Manager is a “Singleton" class that acts as the engine
module manager. Manager is initiated using the
"Run" public method which starts the engine by
using the class "Builder" to get a single instance of
"Game". The Manager uses this instance to perform
the sequence of phases and actions defined in the
“Ruleset”. Manager is accessed by instances of
"Action" to modify other components of the game
(players, decks and cards).

4.2 Builder

Builder is an instance of the “Builder” design Pattern.
When the "Build" method is called by the Manager,
the Builder creates and returns the class "Game".
Having settings that depend on the created game
configuration, it is the only class that relies on the
upper layer to work.

4.3 Game

Game is a class that represents physical card game
set; it contains the rules and game elements. Game is
created by "Builder" through the "Manager" and
keeps a group of instances of "Ruleset" and also a
group of instances of "Player".

4.4 Actor

Actor is an instance of the “Decorator” pattern. It
represents a game component that may have extended
functionality that can access and modify resources.
Actor is a child of the “Component” class and can
contain multiple instances of "Component".

As a “Decorator”, Actor delegates its methods to
an instance of “Base Actor”, which in turn contains
multiple instances of "Resource".
The Ruleset, Phase, Action, Player, Deck and Card
classes have one instance of Actor each.

4.5 Resource

According to the definitions of card games, cards and
other game components may contain resources.
These resources are contained by a “Base Actor”
class, are represented by the Resource class and
contain the information necessary to the game logic,
as well as the actions that can be performed by the
corresponding actor. Resource is an abstract class so
that multiple types of data can be used as resources.

The child classes of resources and the data they
represent are: “TextResource” that represents a

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 979

string, “NumberResource” that represents an integer
value, “BooleanResource” that represents a “true or
false” statement and “ActionResource” that
represents an action.

4.6 Ruleset

The Ruleset class represents a set of rules of a card
game. It contains a set of instances of "Phase" and a
single instance of “Actor”. When a game starts, only
a single instance of "Ruleset" is executed.

4.7 Phase

Phase represents a card game phase; it has a set of
instances of “Action” that run sequentially. Phase
also contains a single instance of “Actor”.

4.8 Action

Actions are the logical sequences representing card
game actions. Action is an abstract class of an
instance of the “Composite” design pattern and
contains an abstract method that defines the action
execution.

Action Group is a concrete class, child of Action,
which comprises multiple instances of Action. In an
Action Group, the execution method is delegated to
its children.

Player Action is an abstract class, child of Action,

which represents the actions made by players. Player
Actions are only executed when there is a player
input.

Game Action is an abstract class, child of Action,
which represents the actions of the game rules.
Unlike Player Actions, Game Actions do not depend
on player input, and are executes automatically when
the corresponding phase starts.

To be able to modify game components, Actions
must use methods of the Singleton “Manager” class.
Actions also have a single instance of “Actor”.

4.9 Player

Player is a class that represents a player in a card
game. Player contains a group of “Deck” instances
and a single instance of “Actor”.

4.10 Deck

Deck is a class that represents a set of cards and an
area on a card game field. Deck has a list of instances
of “Card” and a single instance of “Actor”.

4.11 Card

Card is a class that represents a card in a card game.
It contains only an instance of “Actor”.

5. Technological decisions

Having defined the classes’ architecture on Section 4,
the technologies that will be used to implement the
CGM and CGME remain undefined. For this
technology to be chosen, there are some required
characteristics that are essential. These requirements
are: the ability of classes-reusing, ease of portability,
speed of development and also the possibly to be
acquired at a low cost.

5.1 Unity

Unity 4 [2014] is a powerful development platform
that was used to create the Hearthstone card game by
Blizzard Entertainment. Unity allows extensions to
add features and to modify its interface via dynamic
libraries (DLLs). This feature enables the creation of
engines and genre-specific game creation systems as
a complementary layer to Unity.

Unity is able to compile and export its games to
various platforms (PC, Mac, Android, iOS, web, etc.)
with minor adjustments in the controllers and
minimal requirement to change the source code,
satisfying the requirement of "portability".

A "Pro" Unity license is priced at $ 1,500.00, a

value below other technologies available in the
market. Its "Free" version contains all the features
needed to fully develop the tool at no cost, satisfying
the requirement of "low cost".

Unity, in its basic package, has full 2D and 3D

rendering, sound, Input modules and various other
optional features and configurable modules. The
Unity Editor also has an interface that includes a
scene viewer and customizable windows via code
(extensions). All these features help to meet the
requirement of "agility".

 The Unity editor supports two programming
languages for creating scripts and libraries:
JavaScript and C #.

Being object-oriented and able to develop the
concepts of Design Patterns, the C# programming
language is fully able to implement the architecture
model defined in Section 4 and to be exported as a
dynamic library, satisfying the requirement of
"portability".

5.2 Technology Definitions

Being observed the best options for the development
of the project requirements, it was decided that the
CGM and the CGME will be developed in C# and
exported in DLLs as extensions of Unity. The CGM
will use the extensibility of the Unity editor interface
to support the creation of components of card games.
These components, in turn, will be included in a

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 980

game scene and will be run under the control of the
CGME. A complete game developed by Unity with
the Card Game Maker is able to be compiled for
multiple platforms and released to the market as a
standalone title.

6. Conclusion

In the development process of the technology
described in this article process the market
motivations that led to the need for the creation of a
card game creation system were clarified, case
studies were done to find the common components in
modern card games, an architectural model classes
was proposed to define the creation of an engine
specific designed for card games and also the better
technological decisions that met the system
requirements.

Observing then the progress already made and the
steps to be executed, it is possible to describe the
strengths and weaknesses of the project.

 The Card Game Maker, when fully functional,
should be able to create classic and modern games
much faster than existing technologies. Games
created with the CGM can be executed without the
need for other technologies. The CGM does not have
costly requirements, so it can be sold with little or no
cost, encouraging the development of card games to
the market.

 The Card Game Maker is dependent on the Unity
engine and editor, so it cannot run by itself.
Moreover, this dependence requires developers to
have some knowledge of Unity.

Being Unity a generic game engine and the Card
Game Maker Engine an extension of it, there is a
worry that the performance of complex games in
relation to a low-level engine specially developed for
this type of game.
 In order to conclude the development of the Card
Game Maker, the implementation of the CGME
classes is expected, followed by a second of
architectural model creation for the main layer of the
CGM and a second stage of development to
implement it, finishing the integration with the Unity
editor.

To conclude the project and to validate the CGM
as a functional tool to assist in the development of
digital card games, there will be a workshop in which
a group of developers will be divided into groups to
create games using the CGM tool, comparing them
with groups that did not use it. If the proposed
objectives are achieved, the CGM can be finally
made available to the public as an extension of Unity.

References

GAMMA , E. et al., 2011 Design Patterns: Elements of

Reusable Object-Oriented Software. Westford,
Massachusetts: Addison-Wesley.

GREGORY, J., 2008 Game Engine Architecture. Natick,

Mass.: A. K. Peters.

Hearthstone's official website. Blizzard Entertainment.

Available from: http://us.battle.net/hearthstone/en/.
[Accessed May 1, 2014].

Magic: the Gathering, rulebook summarized. Wizards of

the Coast. Available from
http://www.wizards.com/magic/rules/mtg9edrulebook_
en.pdf. [Accessed April 25, 2014].

Munchkin Deluxe rulebook. Steve Jackson Games.

Available from
http://www.worldofmunchkin.com/rules/deluxe_rules.p
df[Accessed April 30, 2014].

NESI, L., 2011 Joker Engine: Um motor genérico para

desenvolvimento de jogos de cartas.. São Leopoldo:
UNISINOS, 2011. Monograph (Undergraduate) -
Graduation of Digital Games, Universidade do Vale do
Rio dos Sinos, São Leopoldo.

Unity, official website. Available from:

http://unity3d.com/unity. [Accessed May 6, 2014].

Vassal Engine, official website. Available from:

http://www.vassalengine.org/ [Accessed July 20, 2014].

WAWRO A., 2014. Interview with Jason Chayes and Bryan

Chang, Hearthstone developers, digital card game
created in Unity.. Available from:
http://gamasutra.com/view/news/214930/QA_Hearthst
one_heralds_new_challenges_for_Blizzard_on_mobile.
php [Accessed June 12, 2014].

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 981

