
Unity3D-based Neuro-Evolutive Architecture to Simulate Player
Adriano Mendes Gil, Paulo Renato de Barros Mendonça, Bruno George de Melo Monteiro

INdT

Figure 1: Some screenshots from Wake Woody Infinity

Abstract

Procedural Content Generation has interesting advantages, like fast
production of game assets, and also working as a straightforward
way to increase variability of game elements and gameplay. One
of the challenges of a procedural approach is how to evaluate the
generated content. Player action simulation can be used to test out
levels and gameplay issues, feasibility of human-made levels and
can help defining an ideal curve for progressing the difficulty level
throughout the game. We present a Neuro-Evolutive agent to sim-
ulate players in games, specifically in the infinite runner genre. In
some endless runners, levels are formed by combining level chunks,
which are basic level structures consisting of sets of game elements
arranged by a level designer or an algorithm. A tool for analysing
level chunks was implemented on Unity3D and employed on the
mobile cross-platform game WakeWoody Infinity. This tool al-
lows fast evaluation of generated level chunks in terms of feasibility
and difficulty classification. In this paper, the learning capacity of
the proposed architecture is evaluated to achieve simple objectives,
maximising coins collected and distance travelled.

Keywords: Neural Network, Genetic Algorithms, Simulated
Game Playing

Author’s Contact:

adriano.gil@indt.org.br
paulo.r.mendonca@indt.org.br
bruno.monteiro@indt.org.br

1 Introduction

Procedural Content Generation (PCG) on games is very useful for
decreasing costs of content creation. Current methods can generate
several types of content, such as sound, textures, terrains, buildings,
cities, game elements behaviors, and game scenery. However PCG
is difficult, since the generator has to follow all constraints imposed
by a human game designer and return instances that make sense to
the player experience.

How to understand the value of generated content in terms of how
it impacts the overall gaming experience? PCG content must be
evaluated in order to better fit in the desired player experience. A
model of player behaviour could help the task of predicting the in-
duced experience from generated game content.

General Game Playing techniques could be useful to create a smart
player model for evaluating procedurally generated content. As a
first step towards this goal, this works proposes a specific game
playing approach targeting endless runners.

Wake Woody Infinity is a 2D side scrolling endless runner mobile
game that’s been released at the Windows Phone Store, iTunes and
Google Play. In an endless runner, the player needs to keep run-
ning as fast as possible while avoiding hitting obstacles. Endless

runners’ levels are usually created on the fly by an algorithm tasked
with spawning small segments of the level. Each one of these seg-
ments are called level chunks. Figure 1 shows some screenshots
of the game, where some chunks are placed. Wake Woody Infinity
gameplay requires fast reflexes from the player, who needs to give
the commands necessary to avoid obstacles while getting as much
coins and power-ups as possible. These commands are usually taps,
double taps or long presses on the smartphone’s screen.

Unity3D [uni ] is a well known tool in the games market, specially
among independent developers. It offers a features-rich game en-
gine, with a components-based architecture that supports Javascript
and C# scripting. Unity3D also works for 2D games through an
API that involves 2D versions components for rendering, physics
simulations and others. One of the great advantages of this engine
is its flexibility, allowing developers to extend the engine by means
of plugins or classes using the UnityEditor API.

Wake Woody Infinity was developed in C# using the Unity3D en-
gine. Considering that an endless runner game requires a heavy
use of colliders, rigid bodies, i.e., physics components, to properly
detect collisions, a model of the player should also react using rea-
sonable physics. Therefore an implementation of a player model in-
side Unity3D is advantageous because it will use the same physics
component that the real game also utilize.

This paper approaches the problem of evaluating procedurally gen-
erated content in endless runner games using a model for player
behaviour. To this end, we propose a Unity3d-based AI agent archi-
tecture using NeuroEvolution to aid human game designers to test
out level chunks in terms of feasibility and player learning speed.

2 Related Work

A survey of Procedural Content Generation methods is presented
in [Hendrikx et al. 2013], where some uses of PCG are listed. That
work claims that current commercial games demand a crescent need
for PCG methods. Since the production of AAA-quality games may
require a big development team, the required budget to allocate the
necessary resources could be an issue. Then PCG could lighten the
burden on artists and designers.

[Hendrikx et al. 2013] recommends that a (semi-)automatic PCG
system should also evaluate the generated content. Its necessary to
understand how the generated content influences player behaviour
and how can such content fit the game in a better way. Such ques-
tions help in comprehending how to approach the PCG problem and
how can it be used to create the best possible game experience.

In [Nelson and Mateas 2007] is described a set of methods to gen-
erate games in the style of Nintendos WarioWare mini games. The
generated games are evaluated according to a heuristic measure
based on a number of constraints. The work [Togelius and Schmid-
huber 2008] proposes generation of complete games using a mea-
sure of fun. Fun is achieved by the right amount of challenge, which
could be measured by the time a learning mechanism would take

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 970



Figure 2: Woody landing on a wooden box

to learn how to beat that game. In addition, a neural controller
trained by an evolutionary computation is employed in measuring
such learning.

As shown in these works, algorithms that learn how to play games
could be very useful in production. In the literature there are some
works that use it to automatically discover exploits/bugs in games
[Denzinger et al. 2005], modelling behaviour of human players
[Fountas et al. 2011], or allowing player to train NPCs [Stanley
et al. 2005]. Our purpose is an agent architecture to learning how to
play endless runner games in order to evaluate automatically gen-
erated content.

One of possible roles of an algorithm that learned how to play a
game is to improve the player experience. That can be reached
by inducing the immersion state [Machado et al. 2012] or flow
state [Chen 2007]. The Schmidhuber’s theory of artificial curiosity
[Schmidhuber 2006] relates the flow state to the predictability of
environments. Predictable behaviours break down the immersion
and, consequently, reduces the fun factor.

In [Carvalho et al. ] a set of organised basic elements - aka level
chunk - of an endless runner is evaluated according to its estimated
difficulty. Neural Networks are employed to classify the difficulty
level of level chunks according to controllable features and player
performance data. The paper relates level chunk difficulty with the
time the player takes to cross that chunk.

According to [Machado et al. 2012] an agent could be represented
by a weighted sum of a set of variables representing specific fea-
tures of the game as shown in figure 1. In that work, such variables
and weights are defined by the observation of behaviours to infer
an agent model. Such representation could also be used as a fitness
function to train an agent how to better proceed in order to achieve
the game objectives.

According [Machado et al. 2012] an agent could be represented as
a weighted sum of a set of variables representing specific features
of the game as shown in equation 1. In that work, such variables
and weights are defined by observation of behaviours to infer agent
model. Such representation could also be used as a fitness function
to train an agent how to proceed better in order to achieve game
goals.

Pm =

N∑
i=1

wici (1)

3 Wake Woody Infinity

Wake Woody Infinity is the sequel to the Windows Phone game
Wake Woody [wak ], introducing a new gameplay mechanic to the
series. The game is a side scroller, endless runner with a time trial
mechanic, with the player having to cross checkpoints in time in or-
der to keep running, or in this case, wakeboarding. In this game, the
player controls Woody, a cartoonish dog that loves wakeboarding.
One of the player goals is to perform awesome tricks in order to in-
crease his score (figure 2). The total distance travelled is also added
to the player score. As Woody, the player must perform tricks using
touch commands, like tap, double tap and long presses.

Figure 3: Wooden boxes can be broken

Figure 4: Ramp can increase Woody velocity

With these simple inputs, the player can jump and double jump with
varying heights (short jump, long jump), perform spin moves as part
of double jumps (this moves award points) and dive underwater to
avoid obstacles. The player must also jump over obstacles, collect
coins (figure 3), boosts (figures 4, 5) and time checkpoints (figure
5) to earn more gameplay time and keep raising his score. The final
score is one of the core elements of the game and can be shared via
social networks and will be tracked in the game ranking, engaging
and challenging the players and their friends to beat their records. A
leagues system is also featured in the game, ranking users according
to their performances, pairing them with players with scores and
levels similar to their own.

With the collected coins the player accumulates with each run, it is
possible to upgrade power ups and buy helpful consumable items
in the in-game store. If the user lacks the coins necessary to buy
something, the game offers in-app purchases in the form of coin
packs. There is a mission system in the game. The user always
have sets of three missions to complete. These missions objectives
varies widely, often teaching the game in early stages, but also chal-
lenging the user to play well in later stages. Each stage corresponds
to a level. The user upgrades his level completing missions and
going to the next stage. The player level also multiplies the final
score of the game, so higher scores can be achieved more easily by
those dedicated players that are willing to complete missions and
progress further in the game. Anytime the user finds himself stuck
in a mission, its possible to skip it by spending 2000 coins and pre-
vent that mission from halting the players progress in the game.

As Woody advances, some obstacles and collectibles are presented
along the way. Below, each element is described:

1. Sand banks and islands - Basic obstacles, Woody can jump
over or dive under them. If the player collides with them,
Woody becomes temporarily dizzy and its velocity decreases.

2. Platforms - Elements that help Woody perform some tricks
and reach higher areas.

3. Ramps - Ramps that give a speed boost for some seconds and
also allow Woody to jump higher.

4. Speed Rings - Floating rings that give a speed boost, helping
Woody get to the checkpoint in time.

5. Checkpoints - When Woody crosses checkpoints his remain-
ing time become 15 seconds. Meaning the player has 15 more
seconds to get to the next checkpoint.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 971



Figure 5: Jump into a Speed Ring can increase Woody velocity

Figure 6: Missions that player have to complete

A set of such elements is called a level chunk. The whole level in
each gameplay session is defined by the selection and placement of
level chunks. Such placement is constrained by the current diffi-
culty. A difficulty curve raises the difficulty level according to the
player success in the active run.

4 Neuro-Evolutive Architecture

The AI agent architecture depicted on figure 8 can be broken into
three major components: perception, learning mechanism and out-
put. The perception module combines information from the en-
vironment modelling and produces a feature vector. This feature
vectors feeds the learning mechanism with a floating value output.
Then, the output is converted in a player action inside the envi-
ronment (jump, double jump, etc.). That architecture follows the
abstract concept of a learning agent as described in [Russell and
Norvig 2002].

The perception function’s implementation was based on a series of
raycasts traced from the player character perspective as shown on
figure 9. Each frame, rays are cast and each one gives the following
set of information:

• a boolean value that indicates if a game element is hit

• which type of game element, e.g, islands, platforms. . .

• the total distance from the player to that game element

In order to accomplish the challenge of making the player agent

Figure 7: Ranking among player friends

Figure 8: Architecture of Agents High-level functions

Figure 9: Scene view showing Raycasts that are part of the agent
perception

learn how to play, some learning methods are used: 1) Neural
Network to model player behaviour; 2) Genetic Algorithms - also
called evolution strategy (ES) component - to alter Neural Network
parameters in order to achieve the best possible fitness value. It was
used a Neural Network implementation from AForge.NET Frame-
work [afo ]. A MonoBehaviour script called AIAgentBehaviour
was defined with a Neural controller as class member.

Each frame the AI Agent takes a feature vector from the Percep-
tion object and feed it to the Neural Network instance. The output
represents a successfully touch if the output is greater than a prede-
fined value. Initially, a genetic algorithm creates a population of 30
instances. For each simulation, the neural network receives weights
from the current GA instance. When the simulation is over, the cur-
rent genotype is evaluated according to the fitness function. The
fitness function was defined according to the equation 2:

Pm = w1c1 + w2c2 + w3c3 (2)

Where c1 means the total distance travelled , c2 the total coins col-
lected and c3 the total points scored. The weights were defined
experimentally, respectively as 0.00007, 0.001 and 0.00002. A
Unity3D Editor extension was coded to launch simulations using
the proposed architecture. The AI Agent implementation is totally
decoupled from the Player implementation by means of the input
simulation. That means that different endless runner games or even
platformers can be compatible with this implementation.

5 Evaluation

To define the best parameter configuration of the neural architecture
and the number of GA generations, several simulations took place
in a Unity3D test scene. One of the goals with this experiment was
to verify how many generations it is necessary so the AI agent can
learn to jump over simple obstacles.

Figure 10 shows a graph of the fitness value along generations
comparing with different neural architectures. The best results are
achieved with neural architecture 145-8-1, the simplest architecture
in tests.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 972



Figure 10: Fitness value versus population size according to neural
architecture

6 Conclusion

As PCG methods become more commonplace on game production,
we should think of how to evaluate it. One possible approach is
using, an AI agent to test generated content. Our work describe
an architecture based on NeuroEvolution and implemented on the
Unity3D game engine. The architecture was used to simulate player
action inside the game Wake Woody Infinity, a side scrolling end-
less runner. This architecture is a straightforward approach to define
desirable AI behaviours using only a weighted sum as the fitness
value. A more complex behaviour could be learned by using an it-
erative approach and several simulations with different versions of
the fitness function.

The best neural architecture between current simulations was 145−
8− 1, i.e., 145 inputs and 8 neurons on the first layer and 1 neuron
on the output layer. One possible reason of such result is that heavy
architectures require more generations to converge, while simple
architectures converge faster.

The process of evolving an AI agent to play a game allows mea-
suring the difficulty of learning how the player should interact with
specific game elements. Measurements of learning depend on the
precision of the modeled perception. When such metrics are de-
rived from the game environment itself, i.e., from the Unity3d
scene, the perception and action of the AI agent are the most pre-
cise model. It turns out that Unity3d is a natural benchmarking
environment to spawn algorithms that learn how to play a game.

In the endless runner context, a learning mechanism could be used
for classification of level chunks. Estimated player performance
data can be derived from executing the AI Agent on the generated
content.

GA allows a more creative AI game controller than one based only
on simulated input. In future works, we plan to compare the learn-
ing performance between a Neural agent trained via an evolutive
estrategy and another one trained using a supervised approach as
Neural Network Backpropagation.

News ways to model perception could be achieved in order to obtain
a more precise player vision model, for example, parallel rays could
be traced to get a broader view of the current game scene. Another
approach would be using a screenshot of the scene as the input to
the learning mechanism, but it would require a heavier processing.

Acknowledgements

We would like to thank INdT for all the support during this research.

References

Aforge.net framework. http://www.aforgenet.com/. Ac-
cessed: 2014-07-23.

CARVALHO, L. V., MOREIRA, Á. V., VICENTE FILHO, V., AL-
BUQUERQUE, M. T. C., AND RAMALHO, G. L. A generic
framework for procedural generation of gameplay sessions.

CHEN, J. 2007. Flow in games (and everything else). Communi-
cations of the ACM 50, 4, 31–34.

DENZINGER, J., LOOSE, K., GATES, D., AND BUCHANAN, J. W.
2005. Dealing with parameterized actions in behavior testing of
commercial computer games. In CIG.

FOUNTAS, Z., GAMEZ, D., AND FIDJELAND, A. 2011. A
neuronal global workspace for human-like control of a com-
puter game character. In Computational Intelligence and Games
(CIG), 2011 IEEE Conference on, 350–357.

HENDRIKX, M., MEIJER, S., VAN DER VELDEN, J., AND IOSUP,
A. 2013. Procedural content generation for games: A survey.
ACM Trans. Multimedia Comput. Commun. Appl. 9, 1 (Feb.),
1:1–1:22.

MACHADO, M. C., PAPPA, G. L., AND CHAIMOWICZ, L. 2012.
Characterizing and modeling agents in digital games. In Pro-
ceedings of the XI Brazilian Symposium on Computer Games
and Digital Entertainment (SBGames), SBGames, 26–33.

NELSON, M. J., AND MATEAS, M. 2007. Towards automated
game design. In AI* IA 2007: Artificial Intelligence and Human-
Oriented Computing. Springer, 626–637.

RUSSELL, S. J., AND NORVIG, P. 2002. Artificial intelligence: a
modern approach (international edition).

SCHMIDHUBER, J. 2006. Developmental robotics, optimal arti-
ficial curiosity, creativity, music, and the fine arts. Connection
Science 18, 2, 173–187.

STANLEY, K. O., BRYANT, B. D., AND MIIKKULAINEN, R.
2005. Real-time neuroevolution in the nero video game. Evo-
lutionary Computation, IEEE Transactions on 9, 6, 653–668.

TOGELIUS, J., AND SCHMIDHUBER, J. 2008. An experiment
in automatic game design. In Computational Intelligence and
Games, 2008. CIG’08. IEEE Symposium On, IEEE, 111–118.

Unity3d website. http://unity3d.com/. Accessed: 2014-
07-10.

Wake woody. http://www.windowsphone.
com/pt-br/store/app/wake-woody/
864a1e57-32db-4c82-b246-2b0ffb2bd55e. Ac-
cessed: 2014-07-23.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Short Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 973




