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Figure 1: Screenshot of the farm virtual environment, rendered with ray traced shadows and reflections. 

 

Abstract 
 

Game engines typically use cube maps or screen space 

local reflections for simulating reflections effects at the 

real-time renderer pipeline. While these techniques 

work in many situations, they cannot deal well with 

reflections of reflections, reflections from covered 

spaces, reflections from elements outside the screen 

space or reflections from elements that change its shape 

or position in real-time. In this paper, we present a 

method capable of creating true real-time ray-traced 

reflections by using a heuristic based method and a 

hybrid renderer. Our solution maintain real-time frame 

rates by selecting, for each frame, the best reflexive 

surfaces to ray trace, based on the user’s point of view.   
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1. Introduction 

 

Reflections are a typical component of real 

environments, making it an important factor in the 

creation of realistic digital images. Reflections can be 

specular, producing a mirror like effect in the surface, 

and can be diffuse, generating blurred reflections. The 

surface can also have both characteristics, with different 

intensities for each reflection. 

 

Current game engines implement one or more 

techniques to produce reflections. No current technique 

can offer true real reflections for all the possible 

situations. Some techniques cannot render reflection of 

elements outside the screen space or elements occluded 

by others, when considering the camera field of view. 

Other methods cannot deal with moving elements. Most 

of these limitations are due to the deferred rendering and 

lighting process, commonly used by these real-time 

rendering engines, where only fragments of the 

elements inside the screen space are shaded. 

 

This work presents a strategy to offer true ray-traced 

specular reflections, in real-time, by using a heuristic 

that can select, also in real-time, the best elements to 

receive reflections, considering the first-person view of 

the virtual environment. These elements are inside the 

camera’s field of view and are the elements that best 

contribute to the user’s visual experience. This selective 

rendering approach renders only the most relevant 

elements, within specific time constraints. This time 

constraints are used to maintain real-time frame rates. 

Tests show that, when focusing on the most relevant 

elements in the virtual environment, it is possible to 

offer superior visual experience, while maintaining real-

time frame rates. 

 

Our heuristic based hybrid rendering strategy can 

overcome some rendering limitations imposed by 

methods used in current game engines. Some of these 

methods are discussed in Section 2. The heuristic 

approach can also accommodate other ray-traced 

effects, like refractions and shadows. 

 

2. Related Work 
 

In order to generate reflections, most game engines 

support an old method called cube map [Greene 1986], 

a variant of the environment mapping method, proposed 

by Blinn and Newell [1976]. This planar reflection 

method maps all possible reflections onto six cube faces. 

A texture covering these faces represents the 

surrounding environment. This texture must be updated 

to reflect changes in the environment. Cube maps have 

three shortcomings. First, it does not deal with motion 
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2. First-person game players and virtual reality 

users pay more attention to elements near and 

in front of the virtual camera; 

3. Elements that frequently change its 

appearance attract more attention than 

elements that maintain its overall appearance. 

 

These considerations were used to design the 

visibility metric V, presented in Section 4.1. Visibility is 

computed for each candidate element to ray trace and is 

used to calculate the processing cost C and relevance R 

of each candidate element. C and R are stored in the 

Selection Graph. 

 

With C and R values for each candidate element, 

PHRT constructs and maintain a directed graph as the 

Selection Graph for the Heuristic Decision phase. The 

Selection Graph is constructed during the Initialization 

phase and is updated during the Heuristic Decision 

phase. Later, when there is no more time available for 

rendering, the Selection Graph is rebuild. 

 

This heuristic have some similarities with the 

heuristics presented in [Andrade et al. 2014b], but was 

adapted to deal specifically with reflections. One of the 

key differences is that this heuristic can deal 

dynamically with reflections from reflections.  

 

4.1 Selection Graph Construction 
 

The Selection Graph is first constructed during the 

Initialization phase and considers all the candidate 

(reflexive) elements in the virtual environment. Every 

node in the Selection Graph corresponds to an element. 

In addition, every node has an estimated processing cost 

C, and a relevance R. C is estimated by taking into 

account the element visibility V and its ray tracing cost 

Q. The ray tracing cost Q initial value is 1 for every 

element. Q value is increased by 1 when a secondary ray 

from its surface hit another reflexive surface in the 

virtual environment, and so on. Q is the equivalent of 

the number of ray bounces between reflexive surfaces, 

and it is limited to 5, representing 5 bounces after the 

primary ray hit in the reflexive surface. This limitation 

is only due to performance constraints of the target 

hardware used in the tests. When two reflexive surfaces 

are involved, C is the sum of the costs of each surface.  

 

Equation (1) present visibility V. In Equation (1), A 

is the visible area of the element projection in the view 

plane of the camera. P is the normalized distance 

between the geometric center of the element bounding 

box and the center of the view plane. P equals 1 means 

that the element is in the view plane center, and P equals  

0 means that the element is outside the view plane. D is 

the distance between the element and the view plane in 

the virtual environment. The higher is distance from the 

view plane, the smaller is visibility V, making big and 

distant elements less “visible” than near elements with 

the same area A in the view plane. Equation (2) present 

the element cost C. O is only used when the selected 

element also reflect a reflexive surface. O equals 1 when 

the distance between the two reflexive surfaces is equal 

or less than D. O increases in 1 every time the distance 

between the two reflexive surfaces doubles, when 

compared to D.    

 

𝑉 =  
( 𝐴 ∗  𝑃 )

𝐷
 

(1) 

𝐶 = ∑(𝑉 ∗ 𝑄/𝑂) 
(2) 

 

While cost C is a strategy to measure how much 

work is necessary to render a particular element, 

relevance R represents the element contribution to the 

visual experience. In (3), selection S is a binary value 

where 1 means that the element was previously selected 

for ray tracing and the value 0 means it was not. 

Selection weight I is a constant that defines how 

important is select a previously selected element. 

 
         𝑅 =  ( 𝑆 ∗  𝐼 +  𝑉 )  ∗  𝐾 (3) 

 

The Selection Graph has two types of edges. The 

first type is a linked list, where one node connects to the 

other node where the cost C is smaller than its own cost 

but bigger than the cost C of all the other nodes. The 

second type, also a linked list, connects each node to all 

the other nodes where relevance R is bigger than its own 

relevance but with cost C equal or less its own cost. The 

edges related to cost C identify the elements that can be 

rendered, given the time constraint T, and the edges 

related to relevance R are used to identify the element 

that best contribute to the visual experience. 

 

Figure 4 represents a Selection Graph with the edges 

related to relevance R. The cost C for each node is in the 

green (left) part of the circles. The relevance R is in the 

blue (right) part of the circles. The arrows point to the 

nodes with cost smaller or equal than the actual node 

and relevance equal or bigger than the actual node.  

 
Figure 4: Visual representation of a Selection Graph. 
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Table 1 summarizes all the parameters for Equation 

(1), (2) and (3). For each parameter, Const. and Var. 

indicate if the parameter value is constant or variable 

during PHRT execution. 

 
Table 1: Heuristic parameters. 

Param. Definition Const. Var. 

K Element relevance among the others X  

V Element visibility  X 

Q Ray tracing cost   X 

O Factor for the relative distances between 2 
reflexive surfaces 

 X 

C Processing cost  X 

A Element area in the view plane  X 

P Distance from the center of the view plane   X 

D Distance from the view plane (camera)  X 

R Relevancy  X 

S Element was previously selected or not  X 

I Weight of element being previously selected X  

 

At the end of this phase, the heuristic has a directed 

graph ready for use during the rendering phase. 

 

4.2 Node Selection 
 
Node Selection happens during the Heuristic Decision 

phase. The heuristic selects the N most relevant R nodes 

whose cost C allows the nodes to be rendered and still 

maintains the expected frame rate. N is the number of 

the stream processors of the target GPU. If there is still 

time to render other elements, the heuristic choose the 

most relevant nodes that have cost C small enough to be 

rendered in the available time T. 

 

4.3 Selection Graph Reconstruction 
 

When there is no more time available to select another 

node, the Selection Graph is reconstructed and updated 

for the next rendering phase. New cost C and relevance 

R are calculated and the node edges are rebuilt. When 

the new graph is created, the renderer clears the G-

Buffer and renders the new frame. 

 

5 Tests and Results 
 

PHRT, the real time hybrid renderer developed for this 

work is not a true game engine so, many common 

optimizations present in the game engines are not 

implemented, which limit our tests to small 

environments. In addition, at the moment of the tests, 

OptiX was not optimized for games, making the ray 

tracing part of the pipeline very demanding. However, 

these limitations do not impair the validation of heuristic 

use, on the contrary, with an increased rendering 

performance, the heuristic can offer even better results.   

 

To test our heuristic, we created two virtual 

environments, one outdoor and one indoor. The outdoor 

environment is a cartoon like farm, where ponds, 

troughs and barrels have reflexive surfaces. The indoor 

environment is an underground sewer, where some 

elements, the water surface and some walls are 

reflexive. The water surface of the indoor environment 

is divided in segments, since the water surface covers 

huge areas.   

 

For both environments, a fixed forward only camera 

path was created. These paths are used test how the 

heuristic performs considering element placement and 

surface sizes. In both paths, the camera “see” elements 

with different sizes and areas with big and small number 

of reflexive surfaces. Both camera paths runs for 10.000 

frames in the animation and modeling software. For the 

tests, both paths were traversed 10 times. During the 

traversal, we measure the time to render each frame and 

which elements were selected for ray tracing, during the 

frame rendering. 

 

The indoor environment was designed to offer many 

opportunities for recursive reflections, as shown in 

Figure 5. 

 

 
Figure 5: Examples of recursive reflections. 

 

 The virtual environments were designed to be 

traversed in real time (20 frames per second or more). 

This environment design for real time follows the same 

principles applied in level design for games: 3d meshes 

with low polygonal count (low poly meshes), adequate 

distribution of meshes in the virtual environment and 

optimized textures. The low poly meshes were bought 

from the Unity Asset Store [Unity 2014].  

 

  Figures 6 and 7 are top and perspective views of the 

farm and sewer environments, respectively. The farm 

and sewer use 3d meshes from Cartoon Town and Farm 
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