
Ray-Traced Reflections in Real-Time Using Heuristic Based Hybrid
Rendering

Paulo Andrade Thales Sabino Esteban Clua Paulo Pagliosa

 UFF Tecgraf/PUC-RJ UFF UFMS

 IC, Medialab IC, Medialab FACOM

Figure 1: Screenshot of the farm virtual environment, rendered with ray traced shadows and reflections.

Abstract

Game engines typically use cube maps or screen space

local reflections for simulating reflections effects at the

real-time renderer pipeline. While these techniques

work in many situations, they cannot deal well with

reflections of reflections, reflections from covered

spaces, reflections from elements outside the screen

space or reflections from elements that change its shape

or position in real-time. In this paper, we present a

method capable of creating true real-time ray-traced

reflections by using a heuristic based method and a

hybrid renderer. Our solution maintain real-time frame

rates by selecting, for each frame, the best reflexive

surfaces to ray trace, based on the user’s point of view.

Keywords: ray-tracing, real-time rendering, hybrid

rendering, specular reflection

Authors’ contact:

paulo@andrade.com; tsabino@tecgraf.puc-rio.br;

esteban@ic.uff.br; pagliosa@facom.ufms.br

1. Introduction

Reflections are a typical component of real

environments, making it an important factor in the

creation of realistic digital images. Reflections can be

specular, producing a mirror like effect in the surface,

and can be diffuse, generating blurred reflections. The

surface can also have both characteristics, with different

intensities for each reflection.

Current game engines implement one or more

techniques to produce reflections. No current technique

can offer true real reflections for all the possible

situations. Some techniques cannot render reflection of

elements outside the screen space or elements occluded

by others, when considering the camera field of view.

Other methods cannot deal with moving elements. Most

of these limitations are due to the deferred rendering and

lighting process, commonly used by these real-time

rendering engines, where only fragments of the

elements inside the screen space are shaded.

This work presents a strategy to offer true ray-traced

specular reflections, in real-time, by using a heuristic

that can select, also in real-time, the best elements to

receive reflections, considering the first-person view of

the virtual environment. These elements are inside the

camera’s field of view and are the elements that best

contribute to the user’s visual experience. This selective

rendering approach renders only the most relevant

elements, within specific time constraints. This time

constraints are used to maintain real-time frame rates.

Tests show that, when focusing on the most relevant

elements in the virtual environment, it is possible to

offer superior visual experience, while maintaining real-

time frame rates.

Our heuristic based hybrid rendering strategy can

overcome some rendering limitations imposed by

methods used in current game engines. Some of these

methods are discussed in Section 2. The heuristic

approach can also accommodate other ray-traced

effects, like refractions and shadows.

2. Related Work

In order to generate reflections, most game engines

support an old method called cube map [Greene 1986],

a variant of the environment mapping method, proposed

by Blinn and Newell [1976]. This planar reflection

method maps all possible reflections onto six cube faces.

A texture covering these faces represents the

surrounding environment. This texture must be updated

to reflect changes in the environment. Cube maps have

three shortcomings. First, it does not deal with motion

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 921

2. First-person game players and virtual reality

users pay more attention to elements near and

in front of the virtual camera;

3. Elements that frequently change its

appearance attract more attention than

elements that maintain its overall appearance.

These considerations were used to design the

visibility metric V, presented in Section 4.1. Visibility is

computed for each candidate element to ray trace and is

used to calculate the processing cost C and relevance R

of each candidate element. C and R are stored in the

Selection Graph.

With C and R values for each candidate element,

PHRT constructs and maintain a directed graph as the

Selection Graph for the Heuristic Decision phase. The

Selection Graph is constructed during the Initialization

phase and is updated during the Heuristic Decision

phase. Later, when there is no more time available for

rendering, the Selection Graph is rebuild.

This heuristic have some similarities with the

heuristics presented in [Andrade et al. 2014b], but was

adapted to deal specifically with reflections. One of the

key differences is that this heuristic can deal

dynamically with reflections from reflections.

4.1 Selection Graph Construction

The Selection Graph is first constructed during the

Initialization phase and considers all the candidate

(reflexive) elements in the virtual environment. Every

node in the Selection Graph corresponds to an element.

In addition, every node has an estimated processing cost

C, and a relevance R. C is estimated by taking into

account the element visibility V and its ray tracing cost

Q. The ray tracing cost Q initial value is 1 for every

element. Q value is increased by 1 when a secondary ray

from its surface hit another reflexive surface in the

virtual environment, and so on. Q is the equivalent of

the number of ray bounces between reflexive surfaces,

and it is limited to 5, representing 5 bounces after the

primary ray hit in the reflexive surface. This limitation

is only due to performance constraints of the target

hardware used in the tests. When two reflexive surfaces

are involved, C is the sum of the costs of each surface.

Equation (1) present visibility V. In Equation (1), A

is the visible area of the element projection in the view

plane of the camera. P is the normalized distance

between the geometric center of the element bounding

box and the center of the view plane. P equals 1 means

that the element is in the view plane center, and P equals

0 means that the element is outside the view plane. D is

the distance between the element and the view plane in

the virtual environment. The higher is distance from the

view plane, the smaller is visibility V, making big and

distant elements less “visible” than near elements with

the same area A in the view plane. Equation (2) present

the element cost C. O is only used when the selected

element also reflect a reflexive surface. O equals 1 when

the distance between the two reflexive surfaces is equal

or less than D. O increases in 1 every time the distance

between the two reflexive surfaces doubles, when

compared to D.

𝑉 =
(𝐴 ∗ 𝑃)

𝐷

(1)

𝐶 = ∑(𝑉 ∗ 𝑄/𝑂)
(2)

While cost C is a strategy to measure how much

work is necessary to render a particular element,

relevance R represents the element contribution to the

visual experience. In (3), selection S is a binary value

where 1 means that the element was previously selected

for ray tracing and the value 0 means it was not.

Selection weight I is a constant that defines how

important is select a previously selected element.

 𝑅 = (𝑆 ∗ 𝐼 + 𝑉) ∗ 𝐾 (3)

The Selection Graph has two types of edges. The

first type is a linked list, where one node connects to the

other node where the cost C is smaller than its own cost

but bigger than the cost C of all the other nodes. The

second type, also a linked list, connects each node to all

the other nodes where relevance R is bigger than its own

relevance but with cost C equal or less its own cost. The

edges related to cost C identify the elements that can be

rendered, given the time constraint T, and the edges

related to relevance R are used to identify the element

that best contribute to the visual experience.

Figure 4 represents a Selection Graph with the edges

related to relevance R. The cost C for each node is in the

green (left) part of the circles. The relevance R is in the

blue (right) part of the circles. The arrows point to the

nodes with cost smaller or equal than the actual node

and relevance equal or bigger than the actual node.

Figure 4: Visual representation of a Selection Graph.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 924

Table 1 summarizes all the parameters for Equation

(1), (2) and (3). For each parameter, Const. and Var.

indicate if the parameter value is constant or variable

during PHRT execution.

Table 1: Heuristic parameters.

Param. Definition Const. Var.

K Element relevance among the others X

V Element visibility X

Q Ray tracing cost X

O Factor for the relative distances between 2
reflexive surfaces

 X

C Processing cost X

A Element area in the view plane X

P Distance from the center of the view plane X

D Distance from the view plane (camera) X

R Relevancy X

S Element was previously selected or not X

I Weight of element being previously selected X

At the end of this phase, the heuristic has a directed

graph ready for use during the rendering phase.

4.2 Node Selection

Node Selection happens during the Heuristic Decision

phase. The heuristic selects the N most relevant R nodes

whose cost C allows the nodes to be rendered and still

maintains the expected frame rate. N is the number of

the stream processors of the target GPU. If there is still

time to render other elements, the heuristic choose the

most relevant nodes that have cost C small enough to be

rendered in the available time T.

4.3 Selection Graph Reconstruction

When there is no more time available to select another

node, the Selection Graph is reconstructed and updated

for the next rendering phase. New cost C and relevance

R are calculated and the node edges are rebuilt. When

the new graph is created, the renderer clears the G-

Buffer and renders the new frame.

5 Tests and Results

PHRT, the real time hybrid renderer developed for this

work is not a true game engine so, many common

optimizations present in the game engines are not

implemented, which limit our tests to small

environments. In addition, at the moment of the tests,

OptiX was not optimized for games, making the ray

tracing part of the pipeline very demanding. However,

these limitations do not impair the validation of heuristic

use, on the contrary, with an increased rendering

performance, the heuristic can offer even better results.

To test our heuristic, we created two virtual

environments, one outdoor and one indoor. The outdoor

environment is a cartoon like farm, where ponds,

troughs and barrels have reflexive surfaces. The indoor

environment is an underground sewer, where some

elements, the water surface and some walls are

reflexive. The water surface of the indoor environment

is divided in segments, since the water surface covers

huge areas.

For both environments, a fixed forward only camera

path was created. These paths are used test how the

heuristic performs considering element placement and

surface sizes. In both paths, the camera “see” elements

with different sizes and areas with big and small number

of reflexive surfaces. Both camera paths runs for 10.000

frames in the animation and modeling software. For the

tests, both paths were traversed 10 times. During the

traversal, we measure the time to render each frame and

which elements were selected for ray tracing, during the

frame rendering.

The indoor environment was designed to offer many

opportunities for recursive reflections, as shown in

Figure 5.

Figure 5: Examples of recursive reflections.

 The virtual environments were designed to be

traversed in real time (20 frames per second or more).

This environment design for real time follows the same

principles applied in level design for games: 3d meshes

with low polygonal count (low poly meshes), adequate

distribution of meshes in the virtual environment and

optimized textures. The low poly meshes were bought

from the Unity Asset Store [Unity 2014].

 Figures 6 and 7 are top and perspective views of the

farm and sewer environments, respectively. The farm

and sewer use 3d meshes from Cartoon Town and Farm

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 925

Cater, K., Chalmers, A., Ledda, P., 2002. Selective quality

rendering by exploiting human inattentional blindness:

looking but not seeing, in: Human Factors. ACM, pp.
17–24. doi:10.1145/585740.585744

Cater, K., Chalmers, A., Ward, G., 2003. Detail to attention:

exploiting visual tasks for selective rendering, in:

EGRW 03 Proceedings of the 14th Eurographics

Workshop on Rendering Techniques. Eurographics
Association, pp. 270–280.

Cater, K.F., 2004. Detail to Attention : Exploiting Limits of

the Human Visual System for Selective Rendering.

Computer (Long. Beach. Calif). University of Bristol.

Chalmers, A., Debattista, K., Mastoropoulou, G., Paulo, L.,

2007. There-Reality : Selective Rendering in High
Fidelity Virtual Environments. Int. J. 6, 1–10.

Coombes, D., 2014. Introducing NVIDIA GameWorks

[WWW Document]. NVIDIA Website. URL

https://developer nvidia.com/content/introducing-

nvidia-gameworks (accessed 7.26.14).

Debattista, K., Sundstedt, V., Santos, L.P., Chalmers, A.,

2005. Selective component-based rendering. Proc. 3rd

Int. Conf. Comput. Graph. Interact. Tech. Australas.
South East Asia Graph. 05 13–22.

Debevec, P., 1998. Rendering Synthetic Elements into Real

Virtual environments: Bridging Traditional and Image-

based Graphics with Global Illumination and High

Dynamic Range Photography, in: Siggraph 98. p. 10.
doi:10.1145/280814.280864

Debevec, P., 2001. A real time high dynamic range light
probe. SIGGRAPH 2001 Tech. Sketch 4.

Deering, M., Winner, S., Schediwy, B., Duffy, C., Hunt, N.,

1988. The Triangle Processor and Normal Vector

Shader: A VLSI System for High Performance

Graphics. ACM SIGGRAPH Proc. 22, 21–30.
doi:10.1145/54852.378468

Desimone, R., Duncan, J., 1995. Neural mechanisms of

selective visual attention. Annu. Rev. Neurosci. 18,
193–222.

Dormans, J., 2010. Adventures in level design: generating

missions and spaces for action adventure games. …

Work. Proced. Content Gener. Games 1–8.
doi:10.1145/1814256.1814257

Feil, J., Scattergood, M., 2005. Beginning Game Level
Design, Technology.

Forge, 3d, 2014. TaD - Sewer Kit [WWW Document]. Unity

Asset Store. URL

https://www.assetstore.unity3d.com/en/#!/content/128
67 (accessed 7.26.14).

Green, C.S., Bavelier, D., 2003. Action video game modifies

visual selective attention., Nature. Nature Publishing
Group.

Greene, N., 1986. Environment Mapping and other

Applications of World Projection. IEEE Comput.
Graph. Appl. 6, 21–29.

Hasic, J., Chalmers, A., 2009. Saliency in motion, in:

Proceedings of the 2009 Spring Conference on

Computer Graphics - SCCG ’09. ACM Press, New

York, New York, USA, p. 173.
doi:10.1145/1980462.1980496

Hullett, K., 2010. The science of level design, in: Proceedings

of the Fifth International Conference on the

Foundations of Digital Games - FDG ’10. pp. 262–264.

doi:10.1145/1822348.1822387

K4, M., 2014. Cartoon Town and Farm [WWW Document].

Unity Asset Store. URL

https://www.assetstore.unity3d.com/en/#!/content/172
54 (accessed 7.26.14).

Lever, L., Mcderby, M., Et Al., 2005. Selective Parallel
Rendering for High-Fidelity Graphics. Theory Pract.

Ludvigsen, H., Elster, A.C., 2010. Real-Time Ray Tracing
Using Nvidia OptiX. Science (80-.). 1–4.

Mania, K., Mourkoussis, N., Zotos, A., 2008. Selective

rendering based on perceptual importance of virtual

environment regions, 2008 IEEE International

Conference on Systems Man and Cybernetics.
doi:10.1109/ICSMC.2008.4811515

Parker, S., 2009. Interactive ray tracing with the
NVIDIA®OptiXTM engine. SIGGRAPH.

Parker, S., Parker, M., Livnat, Y., Sloan, P.P., Hansen, C.,

Shirley, P., 1999. Interactive ray tracing for volume

visualization. IEEE Trans. Vis. Comput. Graph. 5, 238–
250.

Parker, S.G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock,

J., Luebke, D., Mcallister, D., Stich, M., 2010. OptiX:

A General Purpose Ray Tracing Engine. ACM Trans.

Graph. TOG, SIGGRAPH ’10 29, 1–13.
doi:10.1145/1833349.1778803

Pritchard, M., Brooks, J., Geldreich, R., 2004. Deferred
Lighting and Shading.

Rege, A., 2014a. How Epic Games Is Putting Power of Unreal

Engine 4 Into More Hands Than Ever [WWW

Document]. NVIDIA Blog. URL

http://blogs.nvidia.com/blog/2014/03/19/epic-games/
(accessed 7.26.14).

Rege, A., 2014b. Crytek Adds NVIDIA GameWorks to

“Warface” [WWW Document]. NIVIDA Blog. URL

http://blogs.nvidia.com/blog/2014/03/19/crytek/

(accessed 7.26.14).

Sabino, T., Andrade, P., Gonzales Clua, E., Montenegro, A.,

Pagliosa, P., 2012. A Hybrid GPU Rasterized and Ray

Traced Rendering Pipeline for Real Time Rendering of

Per Pixel Effects, in: Herrlich, M., Malaka, R., Masuch,

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 928

M. (Eds.), Entertainment Computing - ICEC 2012 SE -

25, Lecture Notes in Computer Science. Springer Berlin

Heidelberg, pp. 292–305. doi:10.1007/978-3-642-
33542-6_25

Sabino, T.L.R., 2012. Uma Arquitetura de Pipeline Híbrida
para Rasterização e Traçado de Raios em Tempo Real.

Saito, T., Takahashi, T., 1990. Comprehensible Rendering of

3-D Shapes. ACM SIGGRAPH Comput. Graph.,

{C}omputer {G}raphics {P}roceedings, {A}nnual

{C}onference {S}eries 24, 197–206.
doi:10.1145/97880.97901

Sinha, S.N., Kopf, J., Goesele, M., Scharstein, D., Szeliski, R.,

2012. Image-based rendering for virtual environments

with reflections. ACM Trans. Graph.
doi:10.1145/2185520.2335451

Sousa, T., Kasyan, N., Schulz, N., 2011. Secrets of Cryengine
3 Graphics Technology. ACM SIGGRAPH.

Sundstedt, V., Debattista, K., Longhurst, P., Chalmers, A.,

Troscianko, T., 2005. Visual attention for efficient

high-fidelity graphics. Proc. 21st spring Conf. Comput.

Graph. SCCG 05 169. doi:10.1145/1090122.1090150

Unity, 2014. Unity Asset Store [WWW Document]. URL

https://www.assetstore.unity3d.com (accessed
7.26.14).

Whitted, T., Weimer, D., 1982. A Software Testbed for the

Development of 3D Raster Graphics Systems. ACM
Trans. Graph. 1, 43–58.

Yan, S., Seif El-Nasr, M., 2006. Visual Attention patterns in

Games, in: Symposium of Eye Tracking Applications.
pp. 21–24.

Yu, J., Yang, J., McMillan, L., 2005. Real-time reflection
mapping with parallax. Proc. 2005 Symp. ….

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 929

	01-1-131364_3
	Introduction
	Related Work
	Crowd simulation
	Multiples GPUs architecture
	Evaluation
	Results
	Conclusions and Future Work

	01-2-131441_3
	Introduction
	Background
	Crowds
	BioCrowds

	Classical AI Planning
	Planning Languages
	Classical Planning Algorithms

	BioPlan: A classical planning extension to BioCrowds
	Implementation
	Domain Knowledge
	Map Contour
	Perception and choice
	Heuristic

	Results
	Random Scenario
	Lab Scenario
	Snack Bar Scenario

	Conclusion and Future Work

	01-3-131477_3
	02-1-131744_3
	02-2-130950_3
	02-3-130991_3
	02-4-131833_3-a
	02-5-131455_3
	02-6-131800_3
	03-1-130536_3
	03-2-131250_3
	03-3-131950_3
	03-4-130628_3
	04-1-131314_3
	04-2-131421_3-e
	04-3-131910_3-n
	04-4-131502_3
	04-5-131276_3
	04-6-130546_3
	05-1-131361_3
	05-2-131828_3
	05-3-131339_3
	1. Introduction
	2. What are pervasive mobile games?
	3. Related work
	4. Activity modeling
	4.1. Main interacting entities
	4.2. Player interactions
	4.3. Acknowledgments
	4.4. Technological uncertainties
	4.5. Scenarios
	4.6. Activity Specification template

	5. Activity modeling examples
	5.1. The “Capture color” activity
	5.2. The “Interact with wireless zone” activity

	6. Conclusions

	05-4-131854_3
	06-1-131531_3
	06-2-131702_3
	06-3-131788_3-np
	Introduction
	Related Work
	Surface Extraction and Smoothing
	NPR Rendering
	Spray and Foam Generation

	Technique Overview
	Surface Smoothing
	Particle Grouping
	Final Compositing

	Results and Discussion
	Conclusion and Future Works

	06-4-131498_3

