
Cartoon Water Rendering with Foam and Surface Smoothing
Liordino dos S. Rocha Neto

Antonio L. Apolinário Jr.
Federal University of Bahia

Figure 1: Sequence of images showing an example of the results achieved with our method for a falling water scene simulated through
smoothed particle hidrodynamics. Notice the presence of silhouette edges and foam, as well as the absence of striped artifacts common to the
separated bilateral filter smoothing results.

Abstract

We present an extension to a previously developed method for ren-
dering smooth surfaces of particle-based liquid simulations that is
suitable for use in real-time interactive environments such as video
games. Our extension uses a version of the bilateral filter to smooth
the fluid’s surface and introduce a new method for generating foam
that is appropriate for non-photorealistic styles. The method occurs
in screen space, which avoids the usual artifacts of polygonization
techniques and all the steps are implemented directly in the graphics
hardware. Performance and visual analysis are realized to demon-
strate the applicability of the approach.

Keywords: Non-photorealistic Rendering, Screen Space Render-
ing, Smoothed Particle Hydrodynamics Simulation

Author’s Contact:

liordino.neto@ufba.br.
apolinario@dcc.ufba.br

1 Introduction

Rendering physically simulated fluids has been a topic of much re-
search nowadays, thanks to the great demand for realistic simula-
tions in computer graphics [Ojeda Contreras et al. 2013]. Although
this is true for environments like movies, it represents a greater
challenge in interactive real-time applications such as games, where
the dynamic behavior of fluids can be a desirable gameplay element
[Kellomäki 2012]. Three basic steps must be performed to obtain a
graphical representation from physical simulations like these: sim-
ulating the fluid, extracting a renderable representation of it and
finally performing the rendering itself.

There are two main broad categories that fluid simulations can be
divided into: eulerian (grid-based) and Lagrangian (particle-based)
[Williams 2008]. While grid-based approaches have the advantage
of a high-quality surface straight-forward extraction, they are usu-
ally more costly than particle-based ones in both memory and com-
putation, what makes the latter preferred in real-time interactive en-
vironments [van der Laan et al. 2009].

Several approaches have been proposed recently to extract and ren-
der smooth surfaces from particle-based fluids, but the majority of
these methods aim only at photorealistic renditions [van der Laan

et al. 2009] [Fraedrich et al. 2010] [Bagar et al. 2010]. The surface
extraction and smoothing can be done either through object-space
polygonization methods like Marching Cubes or screen-space ap-
proaches. Due to the computation and memory intensive behavior
of the former, screen-space methods are prefered in real-time envi-
ronments like games [van der Laan et al. 2009]. Methods to render
non-photorealistic water were recently developed, but they are ei-
ther not meant for real-time applications [Eden et al. 2007] [You
et al. 2009], don’t use fluid simulation [Yu et al. 2007] or don’t
take into account effects like foam and spray [Neto et al. 2013].
Although techniques to generate foam and spray specifically for
cartoon water were developed recently, they rely on pre-loaded tex-
tures and procedural methods instead of on the simulation itself
[Yingst et al. 2011] [Liao et al. 2011].

Our method’s rendering style is inspired by modern cartoon anima-
tions like One Piece1 (Figure 2(a)) and Avatar: The Last Airben-
der2 (Figure 2(b)), and further enhances the visual style observed
in these examples with optical effects and silhouette edges. This
paper presents an approach to render a cartoon-style SPH simula-
tion that extends the work of Neto et al. [Neto et al. 2013] with the
following contributions:

• A surface smoothing algorithm that makes artifacts generated
by the separated version of the bilateral filter virtually unno-
ticeable while having a low performance impact;

• A neighborhood-based technique to hide stray particles and
generate foam and spray suitable for non photorealistic ren-
dering;

This paper is structured as follows: section 2 presents related works,
highlighting their contribution to our method, which section 3 de-
scribes. Section 4 explains the conducted experiments and discuss
their results. Finally, section 5 presents our conclusions, along with
suggestions for future works.

2 Related Work

SPH as means to simulate water in computer animation was first in-
troduced by Müller et al. [Müller et al. 2003], where it was success-
fully used in interactive real-time applications. Improvements over
the initial approach were developed, first being fully implemented

1 c©Toei Animation, http://www.toei-anim.co.jp/tv/onep/
2 c©Nickelodeon Animation Studios,

http://www.nick.co.uk/shows/avatar/

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 912



(a) (b)

Figure 2: Two examples of modern hand drawn cartoons that inspired our work: (a) One Piece, from Toei Animation and (b) Avatar: The
Last Airbender, from Nickelodeon Animation Studios.

in CPU [Adams et al. 2007] [Solenthaler and Pajarola 2009], and
later in GPU [Hoetzlein 2012] [Macklin and Müller 2013]. Our fo-
cus on this our work is on rendering SPH-based water simulations
with a traditional cartoon style, and it is assumed that an SPH simu-
lation is already carried out. The following subsections lists works
related to ours in different categories.

2.1 Surface Extraction and Smoothing

Müller’s work, while introducing the use SPH for real-time fluid
simulations, also successfully performed it’s surface extraction with
both marching cubes [Lorensen and Cline 1987] and surface splat-
ting (also called point splatting) [Zwicker et al. 2001] methods.
While marching cubes extracts a simulation iso-surface, the point
splatting objective is to render surfaces from point clouds without
any connectivity. In a recent work, Van der Laan et al. [van der
Laan et al. 2009] proposes a point splatting based screen space tech-
nique that renders particles as screen oriented point sprites through
several steps performed in the graphics hardware, reducing geo-
metric computations. The same framework was used by Neto et al.
[Neto et al. 2013] to render cartoon water. Our work uses the same
workflow, extending it with a better surface smoothing algorithm,
foam rendering and stray particles removal.

Many fluid rendering methods employee smoothing algorithms to
prevent a blobby appearance when rendering surfaces extracted
from particle-based simulations. An iterative curvature flow [Des-
brun et al. 1999] is used in Van der Laan’s work [van der Laan
et al. 2009]. This technique consists of repeatedly shifting a surface
along it’s normal vector depending on it’s mean curvature. An adap-
tive version of this filter was used in the work by Bagar et al. [Bagar
et al. 2010], varying the number of iterations in order to produce a
consistent fluid surface independent of the view distance. Green’s
work [Green 2010] shows the same workflow, but instead of curva-
ture flow it uses a separable bilateral filter [Pham and Vliet 2005] to
smooth the fluid surface. It greatly improves performance over the
full kernel bilateral filter [Tomasi and Manduchi 1998], but gener-
ates striped artifacts over the smoothed surface. Posterior shading
steps hides these artifacts in photorealistic renderings [Green 2010],
but that’s not enough if an NPR style is chosen [Neto et al. 2013].
Gastal and Oliveira [Gastal and Oliveira 2011] shows an approach
to make these artifacts virtually unnoticeable by iteratively apply-
ing a separated filter reducing it’s kernel at each iteration. This idea
was adapted to the bilateral filter, successfully removing striped ar-
tifacts while having a low performance impact.

2.2 NPR Rendering

Both Selle et al. [Selle et al. 2004] and McGuire and Fein [McGuire
and Fein 2006] presents methods to create cartoon style render-
ings with information gathered from particle-based fluid simula-
tions, being the later in real-time. Unfortunately these approaches
are used to render smoke, what makes them not ideal for our pur-
poses, since smoke don’t have a free surface that makes it’s inter-
face with air, like liquids [Eden et al. 2007]. Winemoller intro-
duced the XDoG operator [Winnemöller 2011], an extended dif-
ference of gaussians filter that produce smooth edges and stylized
images. Other approaches for image stylization are the anisotropic
Kuwahara [Kyprianidis et al. 2009] and coherence-enhancing filters
[Kyprianidis and Kang 2011]. Images can also be stylized through
bilateral filter’s iterative application [Kyprianidis et al. 2013]. Al-
though these filters can successfully create NPR style renderings,
they show visual results that differ from our traditional cartoon ap-
proach.

Contributions by Eden et al. [Eden et al. 2007] and Yu et al. [Yu
et al. 2007] propose cartoon water rendering techniques, but they
ignore water’s optical characteristics. You et al. [You et al. 2009],
on the other hand, takes into account optical properties like trans-
parency, reflection and refraction, but don’t achieve real-time per-
formance. A surface generated by a physically based fluid simu-
lation is used as input, and several shading steps are combined to
compose it’s result, including an automatic control of reflection and
refraction also used in Neto’s work [Neto et al. 2013].

2.3 Spray and Foam Generation

Foam rendering has been the object of study of some recent works.
Yingst et al. method [Yingst et al. 2011] emulate sea foam dissi-
pation with a precomputed dither array, on a method suitable for
real-time environments, but produces pixelation as the camera ap-
proaches the liquid surface. Liao et al. [Liao et al. 2011] presents
another method, consisting of procedural modeling of water caus-
tics and foam employing a texture generated with Voronoi dia-
grams. Both methods don’t require a physical simulation. Zhang
et al. work [ZHANG et al. 2014], on the contrary, uses the Weber
number to simulate foam and sprays generated by particle-based
fluid motion. Each particle Weber number is calculated and com-
pared to critical thresholds that divides them into water, transition
and foam. Each group are them rendered in a different way to
compose the method’s result, also achieving real-time performance.
Bagar’s work [Bagar et al. 2010] also rely on Weber number to gen-
erate particle-based foam. In our method, particles are divided into
groups by comparing their neighbor count. This way we avoid do-
ing any extra calculations, since the neighbor counting is a process

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 913



Figure 3: Overview of the intermediate steps of our method. From the particles position a depth map is obtained and smoothed out. Next,
silhouette edges are retrieved from the smoothed depth map. Then water thickness is obtained, along with the foam/spray mapping, which is
morphologically eroded to prevent a blobby aspect. Finally, the intermediate steps are blended with the background scene texture to generate
the final compositing.

already done in SPH simulations.

3 Technique Overview

Our technique is built on top of the cartoon water rendering pre-
sented in a previous work [Neto et al. 2013]. We assume that an
SPH simulation is already carried out, and use it’s particles posi-
tions as input. Figure 3 shows a step by step overview of the tech-
nique. The process start by obtaining the fluids frontmost surface
depth, thickness and grouping with a point splatting technique and
storing each one in an offscreen buffer. Next, a smoothing step is
performed on the depth map in order to prevent a blobby aspect on
the fluid’s surface. Two versions of the bilateral filter were used for
smoothing the depth map of in a previous work [Neto et al. 2013]: a
simple bilateral filter and it’s separated version. The problem with
these two ways to apply the bilateral filter were performance and
the generation of striped artifacts, respectively. In this work an iter-
ative version of the separated bilateral filter is used in the smoothing
step to remove the artifacts created by it’s separated version while
having a low performance impact (section 3.1). Stray particles are
removed while creating the particle grouping texture, that is mor-
phologically eroded in order to remove unwanted details (section
3.2). These steps are then incorporated into the final composite
step (section 3.3). Simple silhouette edges are also added using the
difference of Gaussians (DoG) operator [Marr and Hildreth 1980],
to further enhance the cartoon style.

3.1 Surface Smoothing

After obtaining a fluid surface from particle positions, a smoothing
process is needed to prevent a blobby-like appearance in the final
rendering. A simple Gaussian blur is not suitable for this task, since
it would blur the fluid’s silhouette edges, blending the particles with

background surfaces [Green 2010]. Usually a bilateral filter is used
to overcome this limitation [Tomasi and Manduchi 1998], employ-
ing a regular Gaussian filter with a spatial kernel f and a function
g on the intensity domain to determine a pixel’s weight. This way
two Gaussian filters are combined, one in the spatial domain and
another in intensity domain, what makes the value of a certain out-
put pixel s more influenced by pixels close to it in both domains
[Durand and Dorsey 2002]. Its output is:

Js =
1

k

∑
p∈Ω

f(p− s)g(Ip− Is)Ip (1)

where p is a pixel on the image Ω, Ip and Is are the values of pixels
p and s on the intensity domain, and k is a normalization term:

ks = f(p− s)g(Ip− Is) (2)

Bilateral filter iterates through both width and height of its spa-
tial kernel at the same time, making it expensive as the kernel size
grows. For this reason, a faster approximation version of this fil-
ter that still satisfies the noise reduction and edge preservation re-
quirements can be used for the sake of performance. This version
first applies a one-dimensional filter to one dimension of the image,
and then filters this intermediate result in the subsequent dimension
[Pham and Vliet 2005]. This way the computational complexity
of the separated Bilateral Filter becomes equals O(p), faster than
the O(p2) full kernel approach, where p is the number of pixels in
the image [Paris et al. 2007]. Although this complexity reduction
is obtained at the expense of the generation of some artifacts, this
strategy was applied successfully to the photo-realistic water ren-
dering method presented in [Green 2010], since this artifacts was
masked by it’s shading steps. In a cartoon style rendition, though,
the shading steps aren’t enough to hide the artifacts [Neto et al.
2013].

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 914



(a) (b)

Figure 4: Results of the morphological erosion process over a particle grouping map: (a) Before the erosion, (b) after the erosion.

Gastal and Oliveira [Gastal and Oliveira 2011] shows that these
striped artifacts come from the fact that the filtering of a 2D sig-
nal using a 1D transform is not a separable operation. This occurs
because with a single iteration of a 1D filtering (a horizontal pass
followed by a vertical pass, or vice-versa) some pixels that belong
to the same region, affected by the filter’s kernel, may end not being
combined. To solve this problem, a simpler version of their tech-
nique was implemented, relying on two key observations: every 1D
step removes artifacts introduced by the previous, what makes the
stripes present only along the last filtered dimension, and that their
length is proportional to the dimensions of the kernel used on the
last pass. This way a sequence of vertical and horizontal passes are
interleaved, reducing it’s kernel dimensions in half at every new it-
eration and progressively reducing the extension of the striped arti-
facts, making them virtually unnoticeable. According to the authors
three iterations are usually enough to achieve good results, what we
confirmed in our experiments (section 4).

3.2 Particle Grouping

Artifacts generated by the presence of stray particles and the ab-
sence of spray and foam are the main limitations pointed by [Neto
et al. 2013]. Both of these limitations are addressed with the sepa-
ration of the particle set in three groups: water, spray or foam and
stray particles. Assuming that an SPH simulation has been already
carried out and that it has a neighbor counting (Ncount) process for
each particle, this value is compared with two different thresholds
Tstray and Tfoam to set each particle group Pgroup:

Pgroup =


Stray if Ncount <= Tstray

Spray/Foam if Tstray < Ncount <= Tfoam

Water Otherwise
(3)

After setting the group of an particle it is drawn: stray particles are
ignored, spray or foam particles are painted white, and finally, the
group of particles are painted black. This way a binary texture that
tells how to render each particle on the final rendering is generated
and stored in an offscreen buffer.

Since the particles are first rendered as spherical point sprites, the
obtained foam and spray map has a blobby appearance. To smooth
it, we could use the same iterative separated bilateral filter, but it
would have no effect on a binary image. A morphological erosion
[Serra 1982] was an adequate approach, as it can be used to remove
unwanted details on binary images. This operation performs a con-
volution where pixels are removed from object boundaries, turning
white pixels (i.e. the object) into black. This is done by searching
for the minimum value of the neighborhood (defined by the kernel)
and setting it to the current pixel. Figure 4 shows the result of a

erosion applied over the particle grouping map.

3.3 Final Compositing

With all the intermediary textures available, they are finally com-
bined to render the cartoon water. To determine how to render each
particle the grouping texture (generated in section 3.2) is used, and
the final illumination of the Cartoon Water Shader Iwcs is obtained
as follows:

Iwcs =

{
a+ bFr if Pgroup = Water

F (s) if Pgroup = Spray/Foam
(4)

where a is the refracted fluid color, b is the reflected scene color and
Fr is the reflection factor. The reflection effect, represented by b, is
produced with the sampling of a cubemap texture. F (s) represents
the outcome of a erosion function to that particular pixel, and is
computed only for spray and foam, as explained in section 2.3.

First the reflection factor Fr is obtained by a function that inter-
polates between reflection and refraction according to the viewers
position in relation to the fluid’s surface, depicting these two ef-
fects separately like traditional hand drawn animations. Next, the
diffuse intensity Id with quantized colors is obtained by a modifica-
tion of the photorealistic shading model, giving the fluid a cartoon
appearance. After that the refracted fluid color a is obtained by the
blending of the fluid’s refracted color with the background using
the obtained thickness as a threshold:

a = lerp(IdCf , Cs, e
−T (x,y)Fr) (5)

Finally, all acquired values are combined with the equation 4, gen-
erating the Iwcs value for each fragment, which are then mixed with
the silhouette edges obtained using the DoG operator. For more de-
tails about this process see [Neto et al. 2013].

4 Results and Discussion

To evaluate the technique a series of experiments were conducted
using a machine with a 3.4 GHz Intel Core i7 4770 processor, 16
GB DDR3 RAM and an NVIDIA GeForce GTX 680 in 1024 x
768 resolution. This video card has a 2048MB GDDR5 memory
and 1536 CUDA cores. The development environment consisted
in Windows 7, CUDA, OpenGL and GLSL. Fluid was simulated
using Fluids v3 [Hoetzlein 2012], a real time SPH fluid simulator.
For the tests we used two scenes: the Large Ocean Waves, com-
posed of 262144 particles and part of the Fluids v3 environment,
and the Falling Water, composed of 127832 particles and created
for the tests. All parameter values used in the experiments were

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 915



(a) (b) (c)

Figure 5: Results for different smoothing parameter values: (a) for domain σ = 0.01 and spatial σ = 2.0 a blobby aspect is clearly visible
on water’s surface, (b) domain σ = 0.05, spatial σ = 10.0 smooths the surface and (c) with domain σ = 0.23, spatial σ = 15.0 the high value
of domain σ cause the fluid blending with the background.

(a) (b) (c)

Figure 6: Results for different foam and spray generation parameter values: (a) with Tstray = 1 and Tfoam = 6 some stray particles are
still visible and almost no foam is generated, (b) Tstray = 2 and Tfoam = 10 effectively removes stray particles and creates a good amount
of foam and (c) Tstray = 4 and Tfoam = 15 hides particles that should have been foam or water, and generates foam where there should be
water.

obtained empirically. Figure 5 displays the visual results with dif-
ferent parameter values for the smoothing process, showing that a
small value of spatial σ leave a blobby aspect that gradually de-
creases with the increase of this parameter. Increasing the value
of domain σ too much, on the other hand, increases the influence
of pixels that have distant depth values, causing the fluid to blend
with the background. Figure 6 shows the variation of results for the
particle grouping process with different parameter values. In this
case, while a low value of Tstray keep stray particles in the final
render, a value that is too high can hide more particles than needed.
A similar behavior occurs with Tfoam, but in this case increasing
it’s value continuously increases the amount of foam.

Performance values, including the SPH simulation cost are pro-
vided in table 1, comparing the separated bilateral filter, which can
be interpreted as a single iteration, with it’s iterative version with
several numbers of iterations. A performance comparison between
the full kernel and single iteration separated versions of the bilateral
filter is shown in [Neto et al. 2013]. All the methods are compared
with different kernel sizes, to check it’s impact on the performance.

Table 1: Performances results: expressed in FPS.

Scene Kernel Size 1x 2x 3x 4x
10x10 37 36 35 34

Large Ocean 20x20 36 35 34 34
Waves 30x30 35 35 34 33

10x10 42 42 40 40
Falling 20x20 41 41 40 39
Water 30x30 41 40 39 39

Employing multiple iterations with reduced kernel sizes in the sep-
arated version of the bilateral filter doesn’t have a high impact in
performance when compared with the single iteration separated bi-
lateral filter, making this method the most appropriate for cartoon
rendering. This low performance impact is explained by the linear
behavior of the algorithm and the kernel reduction performed on
each new iteration, making it faster than the previous one.

To assess the visual quality of the iterative method, it is compared
with the results obtained with the full kernel and separated versions
of the bilateral filter, although the performance of the full kernel fil-
ter and the artifacts generated by its single iteration separated ver-
sion makes their use in practical situations unfeasible. Figure 7(a)
shows the Falling Water scene without depth smoothing, while Fig-
ure 7(b)-(f) shows the same dataset rendered with different smooth-
ing methods: full kernel, single, 2, 3 and 4 iterations separated bi-
lateral filter, respectively, all with the same parameters. Striped ar-
tifacts generated by the single iteration separated bilateral filter can
be clearly seen in Figure 7-(c), while Figure 7-(d)-(f) shows that
they are gradually removed if the iterative filter is applied. Two it-
erations are applied to obtain the results shown in Figure 7-(d), that
shows smaller artifacts when compared with the single iteration al-
gorithm. If 3 iterations are applied (Figure 7-(e)) these artifacts
become virtually unnoticeable, what suggests that the application
of a fourth iteration (Figure 7-(f)) isn’t necessary. A close-up of
the water surface is shown on Figure 8(a)-(c), rendered with the
full kernel, single iteration and three iteration methods respectively,
with a kernel size of 30x30. Figure 9 shows how the surface be-
comes smoother as the kernel size grows when applying the algo-
rithm, also with three iterations.

Regarding the foam and spray generation it’s possible to notice that
the blobby appearance of this element is seen if the viewer is close

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 916



(a) (b)

(c) (d)

(e) (f)

Figure 7: The Falling Water scene rendered with different methods: (a) Without smoothing, (b) Full kernel bilateral filter, (c) Single iteration
separated bilateral filter, (d) the same filter with 2 iterations, (e) 3 iterations, and (f) 4 iterations. The same parameters where used for all the
methods: spatial kernel dimensions of 30x30, domain σ = 0.01, spatial σ = 10.0, Tstray = 2 and Tfoam = 10.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 917



(a)

(b)

(c)

Figure 8: A close-up on the fluid surface rendered with a kernel
size of 30x30 and different methods: (a) Full Kernel Bilateral Fil-
ter, (b) Separated Bilateral Filter and (c) Multi Iteration Separated
Bilateral Filter. Domain σ = 0.01, spatial σ = 10.0, Tstray = 2 and
Tfoam = 10.

to the fluid’s surface (Figure 8), suggesting that the erosion algo-
rithm applied is not sufficient to create a natural looking foam. An-
other limitation of our method is the flickering caused by the foam
generation. It can be explained by the separation of the particles
performed with simple thresholds, causing a rough transition be-
tween water and foam. Animation results can be seen in the ac-
companying video.

By replacing the interpolation function from which reflection and
refraction are obtained with a Fresnel effect and removing the sil-
houette edges, our method can also generate a photorealistic ren-
dering, as shown on Figure 10(a)-(b). While Figure 10(a) shows
that the cartoony features of our method’s foam effect doesn’t gen-
erate a consistent look with a photorealistic water, on Figure 10(b)
we can see that this kind of rendering can be obtained with small
changes on the approach.

(a)

(b)

(c)

Figure 9: The same scene smoothed with the iterative separated
bilateral filter and different dimensions for the kernel: (a) 10x10,
(b) 20x20 and (c) 30x30. Domain σ = 0.01, spatial σ = 10.0, Tstray

= 2 and Tfoam = 10.

5 Conclusion and Future Works

In this paper a method that extends the real-time screen space ren-
dering of cartoon water [Neto et al. 2013] and renders a visualiza-
tion based on an SPH fluid simulation that achieves real-time per-
formance while removing stray particles and adding spray and foam
effects to the final rendering was presented. The iterative separated
bilateral filter algorithm used to smooth the fluid surface is capa-
ble of generating visual results almost identical to it’s full kernel
version while successfully removing striped artifacts and having a
low performance impact when compared with it’s single iteration
version. A reduction of the blobby aspect of the fluid’s surface
even when the viewer is close to it is also obtained with this filter.
The proposed method should be able to be integrated in any game
engine that employees SPH simulations to obtain the results here
presented, and tests are in progress to apply it on PhysX3 based
engines.

Although the neighbor counting efficiently separates the fluid body

3www.geforce.com/hardware/technology/physx

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 918



(a)

(b)

Figure 10: Two different photorealistic renderings of the Falling Water scene with reflection and refraction obtained through a fresnel effect
and no silhouette edges: (a) with foam and (b) without foam.

from spray, foam and stray particles, the method still has some
limitations: the transition between fluid and foam is currently not
smooth and cause flickering. Occasionally a group of particles can
detach from the system and only after breaking up into smaller
groups be considered stray, what makes them suddenly disappear.
Investigating a way to make the particle/foam transition smoother,
as well as tracking stray particles to prevent their suddenly disap-
pearance could improve the visual results of the method. Replac-
ing the simple neighbor counting particle separation process with
a physically based approach, like the one presented by Ihmsen et
al. [Ihmsen et al. 2012], could also benefit our method visual re-
sults. Different from our method, modern cartoons like the ex-
amples shown in Figure 2(a)-(b) depict the foam with more than
one color. We leave the implementation of this behavior for future
works.

Acknowledgements

The authors would like to thank Rama Hoetzlein, author of the Flu-
ids v3 project [Hoetzlein 2012], for his support to our project since
it’s conception, and FAPESB, for financing the machines used in
the development and tests of this work.

References

ADAMS, B., PAULY, M., KEISER, R., AND GUIBAS, L. J. 2007.
Adaptively sampled particle fluids. In ACM Transactions on
Graphics (TOG), vol. 26, ACM, 48.

BAGAR, F., SCHERZER, D., AND WIMMER, M. 2010. A lay-
ered particle-based fluid model for real-time rendering of water.
In Computer Graphics Forum, vol. 29, Wiley Online Library,
1383–1389.

DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A. H.
1999. Implicit fairing of irregular meshes using diffusion and
curvature flow. In Proceedings of the 26th annual confer-
ence on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., 317–324.

DURAND, F., AND DORSEY, J., 2002. Fast bilateral filtering for
the display of high-dynamic-range images.

EDEN, A. M., BARGTEIL, A. W., GOKTEKIN, T. G., EISINGER,
S. B., AND O’BRIEN, J. F. 2007. A method for cartoon-style
rendering of liquid animations. In Proceedings of Graphics In-
terface 2007, ACM, 51–55.

FRAEDRICH, R., AUER, S., AND WESTERMANN, R. 2010. Effi-
cient high-quality volume rendering of sph data. Visualization
and Computer Graphics, IEEE Transactions on 16, 6, 1533–
1540.

GASTAL, E. S. L., AND OLIVEIRA, M. M. 2011. Domain trans-
form for edge-aware image and video processing. ACM TOG 30,
4, 69:1–69:12. Proceedings of SIGGRAPH 2011.

GREEN, S. 2010. Screen space fluid rendering for games. In
Proceedings for the Game Developers Conference.

HOETZLEIN, R. C., 2012. Fluids v.3 - a large-scale, open source
fluid simulator. Released under Z-lib license.

IHMSEN, M., AKINCI, N., AKINCI, G., AND TESCHNER, M.
2012. Unified spray, foam and air bubbles for particle-based
fluids. The Visual Computer 28, 6-8, 669–677.

KELLOMÄKI, T. 2012. Water simulation methods for games: a
comparison. In Proceeding of the 16th International Academic
MindTrek Conference, ACM, 10–14.

KYPRIANIDIS, J. E., AND KANG, H. 2011. Image and video ab-
straction by coherence-enhancing filtering. In Computer Graph-
ics Forum, vol. 30, Wiley Online Library, 593–602.

KYPRIANIDIS, J. E., KANG, H., AND DÖLLNER, J. 2009. Image
and video abstraction by anisotropic kuwahara filtering. In Com-
puter Graphics Forum, vol. 28, Wiley Online Library, 1955–
1963.

KYPRIANIDIS, J., COLLOMOSSE, J., WANG, T., AND ISENBERG,
T. 2013. State of the” art”: a taxonomy of artistic stylization
techniques for images and video. IEEE transactions on visual-
ization and computer graphics 19, 5, 866.

LIAO, J., YU, J.-H., AND JIA, L. 2011. Procedural modeling of
water caustics and foamy water for cartoon animation. Journal
of Zhejiang University SCIENCE C 12, 7, 533–541.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes:
A high resolution 3d surface construction algorithm. In ACM
Siggraph Computer Graphics, vol. 21, ACM, 163–169.

MACKLIN, M., AND MÜLLER, M. 2013. Position based fluids.
ACM Transactions on Graphics (TOG) 32, 4, 104.

MARR, D., AND HILDRETH, E. 1980. Theory of edge detection.
Proceedings of the Royal Society of London. Series B. Biological
Sciences 207, 1167, 187–217.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 919



MCGUIRE, M., AND FEIN, A. 2006. Real-time rendering of
cartoon smoke and clouds. In Proceedings of the 4th interna-
tional symposium on Non-photorealistic animation and render-
ing, ACM, 21–26.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. In Proceed-
ings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation, Eurographics Association, 154–159.

NETO, L., DEÓ, F., APOLINÁRIO, A., AND MELLO, V. 2013.
Real-time screen space rendering of cartoon water. In SBGames
2013 - Trilha de Computação.

OJEDA CONTRERAS, J., ET AL. 2013. Efficient algorithms for the
realistic simulation of fluids.

PARIS, S., KORNPROBST, P., TUMBLIN, J., AND DURAND, F.
2007. A gentle introduction to bilateral filtering and its applica-
tions. In ACM SIGGRAPH 2007 courses, ACM, 1.

PHAM, T. Q., AND VLIET, L. J. 2005. Separable bilateral filter-
ing for fast video preprocessing. In In IEEE Internat. Conf. on
Multimedia & Expo, CD14, IEEE, 1–4.

SELLE, A., MOHR, A., AND CHENNEY, S. 2004. Cartoon ren-
dering of smoke animations. In Proceedings of the 3rd interna-
tional symposium on Non-photorealistic animation and render-
ing, ACM, 57–60.

SERRA, J. 1982. Image analysis and mathematical morphology, v.
1. Academic press.

SOLENTHALER, B., AND PAJAROLA, R. 2009. Predictive-
corrective incompressible sph. In ACM transactions on graphics
(TOG), vol. 28, ACM, 40.

TOMASI, C., AND MANDUCHI, R. 1998. Bilateral filtering for
gray and color images. In Computer Vision, 1998. Sixth Interna-
tional Conference on, IEEE, 839–846.

VAN DER LAAN, W. J., GREEN, S., AND SAINZ, M. 2009. Screen
space fluid rendering with curvature flow. In Proceedings of the
2009 symposium on Interactive 3D graphics and games, ACM,
91–98.

WILLIAMS, B. W. 2008. Fluid surface reconstruction from parti-
cles. PhD thesis, Citeseer.

WINNEMÖLLER, H. 2011. Xdog: advanced image styliza-
tion with extended difference-of-gaussians. In Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Non-
Photorealistic Animation and Rendering, ACM, 147–156.

YINGST, M., ALFORD, J. R., AND PARBERRY, I. 2011. Very
fast real-time ocean wave foam rendering using halftoning. Pro-
ceedings of the 6th International North American Conference on
Intelligent Games and Simulation (GAMEON-NA), 27–34.

YOU, M., PARK, J., CHOI, B., AND NOH, J. 2009. Cartoon
animation style rendering of water. In Advances in Visual Com-
puting. Springer, 67–78.

YU, J., JIANG, X., CHEN, H., AND YAO, C. 2007. Real-time car-
toon water animation. Computer Animation and Virtual Worlds
18, 4-5, 405–414.

ZHANG, L., GUO, C., TANG, Y., LV, M., LI, Y., AND ZHAO,
J. 2014. Real-time and realistic simulation of large-scale deep
ocean wave foams based on gpu. Journal of Computational In-
formation Systems 10, 7, 28212828.

ZWICKER, M., PFISTER, H., VAN BAAR, J., AND GROSS, M.
2001. Surface splatting. In Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques, ACM,
371–378.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 920




