
Extending Use Cases To Support Activity Design In Pervasive Mobile
Games

Luis Valente Bruno Feijó

VisionLab/Dept. of Informatics/PUC-Rio
Rio de Janeiro, Brazil

Abstract

Computer games are creative projects that require the
input of professionals with very diverse backgrounds,
including game designers, artists, and software
developers. Game development frequently is a
complex process due to different expectations of the
involved stakeholders. With pervasive games, this
situation becomes more chaotic as there are not
specific processes devoted to the design and
development of this type of game. In this paper, we
propose a template-based language to design activities
in pervasive mobile games in the conceptual design
phase, helping to fill a gap between the preproduction
and production stages of this type of game. We define
a template for activity specification based on an
extension of traditional use case templates. This
extension helps in fulfilling a set of general goals that
the activity modeling should address. We also present
examples of using the proposed modeling approach in
a real game.

Keywords:

pervasive mobile games, activity design, game
development

Authors’ contact:
{lvalente, bfeijo}@inf.puc-rio.br

1. Introduction

The process of developing a digital game (either a
pervasive game or traditional game) has two broad
stages: preproduction and production. The
preproduction stage carries out most of the “creative”
tasks related to a game. In this stage, game designers
and artists are the main players. The game designers
work on defining the storyline and non-player
character behavior, among other tasks. The artists
create assets such as graphical art, animations, music,
and audio effects, among others. The production stage
transforms the initial game vision (created in the
preproduction stage) into software.

Game development processes usually are very complex
due to the nature of the involved stakeholders, which
have different expectations and worldviews. For
example, a game designer might not understand the
technical limitations of artificial intelligence
implementation when designing the behavior of non-
player characters. A software engineer might interfere

in the initial game vision because he thinks some
features are infeasible to implement (e.g., technical
constraints, tight deadlines). In this regard, a game
development process is different from traditional
software development processes because traditional
software (i.e., productivity software) does not have a
preproduction stage.

Another important difference between digital games
and traditional software refers to the main goal that
these applications need to fulfill. Traditional software
usually concerns productivity, while digital games
offer entertainment. The focus on providing
entertainment raises issues that are not present in
traditional software. For example, digital games need
to address abstract requirements such as “fun”, “flow”,
and “enjoyment”, among others. There are not many
academic works that address these requirements,
known as “emotional requirements” [Callele et al.
2008; Furtado et al. 2010].

Callele and co-authors [2005] summarize the
aforementioned issues by stating that many problems
in game development processes (including project
failure) arise because the transition between the
preproduction and production stages is not carried out
properly. For example, major sources of problems in
game development relate to ambitious scope and
feature creep [Petrillo et al. 2009; Kanode and Haddad
2009]. Petrillo and co-authors [2009] also cite other
problems, such as the cutting of features during the
development phase, delays, and project schedules that
are too optimistic. As a result, some researches [Callele
et al. 2005; Callele et al. 2011] argue that in a game
development process, it is necessary to create a
common language that the involved stakeholders use to
communicate more effectively.

When considering pervasive games, the situation
becomes worse and more complex as pervasive games
are a recent form of entertainment and there is no
consensus about what they are. The literature on
pervasive games mixes up preproduction and
production issues. Part of the literature handles
preproduction issues (e.g., game studies, game design)
and another part is concerned with production issues
(e.g., ubiquitous and pervasive computing) [Valente et
al. 2013]. Also, to the best of our knowledge, specific
methodologies to address pervasive game development
do not exist.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 876

Based on our experience on developing mobile and
pervasive games, in this paper we propose a template-
based language to design activities in pervasive mobile
games in the conceptual design phase, helping to fill a
gap between the preproduction and production
development stages of pervasive games. In a nutshell, a
pervasive mobile game is a context-aware game that
uses mobile devices, being a subset of pervasive
games.

We define a template for activity specification based
on extensions of traditional use case templates. An
activity captures the behavior of players when
interacting with other players, non-players, the game
scene, and the game itself through context-aware
mobile devices. These extensions aim at helping to
fulfill a set of general goals that we devised for
activity modeling in pervasive games, which we
present in Section 4. We present two examples of using
the proposed modeling approach in a pervasive mobile
game that we developed.

This paper is organized as follows. Section 2 presents
the definition of what we consider as pervasive mobile
games in this paper. Section 3 presents related works.
Section 4 presents our proposal for activity modeling
in pervasive mobile games. Section 5 presents two
examples of using activity modeling in a real game.
Finally, Section 6 presents the conclusions of this
paper.

2. What Are Pervasive Mobile Games?

In the literature, there is a lot of confusion over
definitions and formalisms related to pervasive games
in general [Valente et al. 2013]. In this paper, we
consider “pervasive mobile games” as games that are
played in the physical world, where players use
context-aware mobile devices to enable the interaction
between the environment (physical world) and the
virtual world, which creates a mixed-reality. Pervasive
mobile games are a subset of the possible pervasive
games.

We understand that pervasive mobile games must be
“context-aware” in order to support mixed-reality. Dey
[2001] defines context as “any information that can be
used to characterize the situation of an entity. An
entity is a person, place, or object that is considered
relevant to the interaction between a user and an
application, including the user and applications
themselves”. A system is context-aware if “it uses
context to provide relevant information and/or services
to the user, where relevancy depends on the user’s
task” [Dey 2001].

We use the term “mobile device” for a device that has
the following two characteristics: 1) Portability – a
battery-powered device that users are able to carry
around; and 2) Networking capabilities that are not
limited to a specific physical place. Examples include

mobile phones and tablets that use networking
infrastructure provided by a mobile operator.

A “context-aware mobile device” is a “mobile device”
equipped with sensors that enable it to sense context
information (especially, environmental properties). A
pervasive mobile game may require networking, but
this is not mandatory.

By using context-aware mobile devices as elements of
a mixed-reality, pervasive mobile games are able to
provide game activities that happen out of a game
device. A consequence is that these games may require
or foster player movement in local spaces (not
necessarily requiring network resources on the move).

We do not consider “portable” or “mobile” games as
pervasive mobile games. A “portable game” does not
require networking, while a “mobile game” requires it.
Although both types of games are played with mobile
devices, they are not context-aware.

Currently, we consider smartphones and tablets as the
main platform for pervasive mobile games because: 1)
These devices are easily accessible to the general
public; 2) These devices are equipped with embedded
sensors that makes it possible to implement (some)
context-awareness required by pervasive mobile
games; and 3) These devices makes it possible to have
mobility in pervasive mobile games (e.g., gameplay in
physical places using networking or not). In this paper,
we use the term “mobile device” as an encompassing
term to “smartphones and tablets”.

3. Related Work

We were not able to find works related directly to
specifying activities in pervasive games. Concerning
traditional games, the literature provides some works
that explore designing interactions using use case
diagrams, such as [Tang and Hanneghan 2008; Taylor
et al. 2006; Bethke 2003; Siang and Rao 2004].

Tang and Hanneghan [2008] propose a domain specific
modeling language to design serious games. This
language has a component named as “scenario”, which
concerns “the construction of a situation which
consists of characters, objects, objectives, scripted
events and problems to be solved through game-
playing” [Tang and Hanneghan 2008], which is similar
to the scenario concept that we propose (Section 4.5).
They propose extending use case diagrams with
decision trees to model scenarios. The language by
Tang and Hanneghan [2008] aims at defining higher-
level abstractions to design games, excluding low level
details of software modeling.

Taylor and co-authors [2006] propose a model named
“computer game-flow design”, which aims at modeling
the flow of player actions through a game level. The
computer game-flow design model also incorporates
use case diagrams extended with decision trees

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 877

elements and flow directionality identification.
Similarly to us, Taylor and co-authors [2006] also
share the concern of creating a tool that artists,
designers and software engineers can use to
communicate.

Bethke [2003] explores UML use case diagrams to
describe core interactions in a game, in the context of a
traditional game design process. Bethke does not
propose extensions to address specific game issues.

Siang and Rao [2004] describe gameplay as
interactions between players and the game. They
define “player to object” and “object to object”
interactions. Based on this idea, they use UML use
case diagrams and UML class diagrams to describe the
interactions in two existing games, through reverse
engineering.

Our activity modeling approach differs from the
mentioned related works in several ways. Firstly, it
provides a text-based tool to design activities, which
may be simpler to use. Secondly, we consider possible
impacts due to uncertainties related to sensors and
networking, which may lead to non-functional
requirements that may hinder game experience if they
are not addressed properly (Section 4.4).

4. Activity Modeling

In our modeling approach, an activity captures the
behavior of players when interacting in the mixed-
reality with other players, non-players, the game scene,
and the game itself. Each player uses a context-aware
mobile device as the main interaction interface with the
game (for input and output).

The game scene is part of the mixed-reality that the
game creates, being a local space (a physical space
where the game happens) that may be augmented with
smart objects. The game may use smart objects to
provide information to players, and as secondary input
sources. These smart objects are deployed in the
physical environment and are connected to a central
entity (e.g., a server) that runs the game. For example,
these devices may be: 1) plain output devices (e.g.,
public displays, audio speakers, light sources); 2)
mechanical devices equipped with actuators; and 3)
Autonomous computing devices equipped with sensors
and/or actuators (e.g., wireless sensor devices [Mottola
et al. 2006]).

The literature provides some examples of using these
kinds of objects in games and interactive installations.
The ALICE project [Bartneck et al. 2008] creates
mixed-reality environments using public displays and
mechanical devices equipped with actuators. In
Manhattan Story Mashup [Tuulos et al. 2007]), the
game uses a public display to convey information to
players. The Fun-in-Numbers project [Chatzigiannakis
et al. 2011] presents several games that provide
interactive installations using physical objects to

communicate with players. In particular, the Magnetize
Words project [FinN 2014] provides a demo that uses
light sources as output devices. Montola and co-
authors [2006] presents a game using wireless sensor
devices.

These are the general goals that activity modeling aims
at addressing (items in italics represent concepts that
we will detail in later sections):

G1. Specify the interactions involving players, non-
players, and the game scene elements (local space,
smart objects), using context-aware mobile devices;

G2. Specify adequate responses (acknowledgments) to
inform the player about what is happening in the
interactions, especially when the interaction is implicit.
Also, the interaction granularity should be compatible
with the sensors used for input;

G3. Specify game logic actions that change the game
state. When the game state changes, the game must
inform the player about the new state through
acknowledgments;

G4. Specify game logic events that the game needs to
inform players (through acknowledgments);

G5. Specify how the game delivers acknowledgments
through players (e.g., the actuators or smart objects
that the game uses to provide information);

G6. Specify how the game handles uncertainties
related to technology (e.g., especially sensors and
networks);

As a tool for the conceptual design stage, we consider
that activity modeling should have the level of
abstraction equivalent to traditional use cases
[Cockburn 2000]. This means that we are more
concerned about intent, and not implementation details.
We believe that this approach yields enough balance
when considering the diversity of the involved
stakeholders (e.g., game designers, artists, and software
engineers). Next subsections present the main activity
modeling concepts (Sections 4.1 to 4.5), along with the
activity specification template (Section 4.6).

4.1. Main Interacting Entities

Actors are the main entities that interact with the game.
Among actors are players, non-player characters, and
the game itself. Non-player characters may be
represented virtual characters and humans. Human
non-player characters may have direct participation in
the game (e.g., as actors representing roles) or indirect
participation (e.g., as sources of game content)
[Valente et al. 2013].

We distinguish between primary actors and secondary
actors. The primary actors are the actors that start the
activity, while secondary actors are other actors

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 878

involved or affected by the primary actor actions
(typically, other players).

4.2. Player Interactions

Player interactions can have implicit or explicit styles.
Explicit interactions occurs through direct (conscious)
player commands, meaning that he has conscious
intention to start something to achieve a goal. An
implicit interaction means that the interaction occurs
inadvertently from the player point of view. In other
words, the player is not aware that he is interacting
with something when this interaction happens. Schmidt
[2000] defines an implicit interaction as “an action,
performed by the user that is not primarily aimed to
interact with a computerized system but which such a
system understands as input”.

An example of explicit interaction would be pushing
buttons on a joystick. An example of implicit
interaction would be a player walking into a room, and
suddenly a door starts to open.

A motivation for having implicit interactions is when
designers want to deliver activities that might cause
ambiguity, surprise, unexpectedness, or disruption.
This approach could also be used to draw attention to
some aspect in the activity. For example, this is the
idea that Rogers and Muller [2006] use in their
framework to design sensor-based interactions for
promoting reflections and exploration in play.

Interactions have a granularity, which is either
discrete or continuous. A discrete granularity means
that the player is able to use a finite set of options to
perform the interaction. For example, pressing buttons,
reading a RFID tag, and positioning a device in four
possible directions. A continuous granularity means
that the interaction has an unconstrained set of options
on how to perform it. An example would be walking in
a place to find WiFi access points, or using a mouse in
traditional GUI applications. The interaction
granularity must be compatible with the involved
sensors for the purposes of the activity; otherwise the
game experience may be affected negatively. An
example of incompatibility would be using keyboard
arrow keys to draw a picture on a screen.

We understand that the game needs to provide
adequate responses (acknowledgments) in interactions,
especially when interactions are sensor-based and have
implicit style. Otherwise, the game experience might
be disturbed (especially concerning implicit
interactions).

4.3. Acknowledgments

We define an acknowledgment (or “ack”) as a response
that the game sends to players to inform them about an
important occurrence. The acknowledgments have
content (e.g., the information to be delivered) and they
are expressed through some media. The game delivers

acknowledgments to players through output channels
in mobile devices (e.g., display, audio, vibration) and
smart objects. Here are some examples:

 The player touched the mobile device screen
and the game plays a sound to notify the
player that it recognized and registered the
input;

 The game registered an implicit input
received from the player device. For example,
the game started a Bluetooth search (without
explicit player command) and later found
some devices. The game then notifies the
player about this occurrence through audio;

 The game updated its internal state and
notifies the player about the new status.

We stress the importance of acknowledgments to keep
the players informed about what is happening in the
game. When dealing with sensor-based interactions,
the game might be initiating several interactions on
behalf of the player (especially regarding implicit
interactions). This means that the players may not be in
control at all times. When not handled properly, this
lack of control may degrade the user experience,
especially when people are not expecting an interaction
to occur [Rogers and Muller 2006].

4.4. Technological Uncertainties

Technologies (especially sensors and networking) have
inherent limitations regarding precision, accuracy,
availability, and other properties. This includes
noticeable boundaries, breaks, or gaps among
technology components (i.e., seams). As a
consequence, the game needs to handle these issues to
keep the user experience smooth. There are five
general strategies to handle technology limitation
issues related to sensors and networking [Benford et
al. 2006; Bell et al. 2006]:

 Remove: designing activities so that
limitations never appear in the game. This
includes using improved technologies (which
is not always possible) or designing activities
that fit into the technology limitations;

 Hide: anticipating issues and “correcting”
them before the player has a chance to face it.
Contrary to the remove strategy, in this case
the limitations appear in the game, but are
“corrected” before the player notices them;

 Manage: includes having fall-backs to use
when the primary mode of operation fails. In
other words, the game adapts itself to the
circumstances by having several modes of
operation;

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 879

 Reveal: consists of presenting the limitations
to users and letting them decide how to act.
For example, mobile phones display the
operator signal strength in the user interface
and the users may decide to go to places with
better signal to make calls with better quality;

 Exploit: means acknowledging the existence
of issues and integrating them into the game
as a feature.

Handling uncertainties is critically important to keep
the player experience smooth. Ignoring the role of
uncertainties in a pervasive game probably will disrupt
the game experience. As a result, our modeling
approach includes uncertainty handling policies as part
of activity specification. The policies that we refer to
are one of the five general strategies that we presented
in this section. For more details on uncertainty
handling and specific examples, the reader should refer
to [Valente and Feijó 2013].

4.5. Scenarios

A scenario consists of a sequence of steps that describe
the primary actor achieving or failing to achieve the
main goals of an activity. Similar to use cases, the
activity specification has a main (or default) scenario
where the primary actor successfully achieves the
activity goals. The activity specification has alternative
scenarios to represent situations where the primary
actor fails to achieve the activity goals. Scenarios need
to address the general goals that we described at the
beginning of Section 4.

The steps in scenarios describe actions. An action is
something that affects, changes or acknowledges the
game state. Actions can be player interactions (Section
4.2), acknowledgments (Section 4.3), or a game logic
action. A game logic action refers to actions that
evaluate game inputs, apply game rules, or run other
processes related to game logic.

Game logic events are events that result from game
logic processing. These events represent occurrences
that affect the current game state. Hence, the game
needs to inform the players about these occurrences
(through acknowledgments). Interaction events are
events (related to game logic) resulting from player
interactions. For example, a player might issue a
command to move in a virtual environment and hits a
wall. The occurrence of “hitting a wall” is the
interaction event in this example.

4.6. Activity Specification Template

The activity template is based on traditional use case
templates, as the ones provided by Cockburn [2000].
We devised some extensions to represent the concepts
that we defined in previous subsections. Figure 1
illustrates the complete template for activity
specification, with all fields.

Primary Actors Actors that start the activity

Secondary Actors Other actors affected in the
activity

Level “player level”, “subfunction”,
“mobile device events”*

Inputs* Input sources related to mobile
devices (e.g., sensors, screen)

Outputs* Output channels in mobile
devices that the game uses
(e.g., display, vibration,
audio)

Smart objects* The smart objects used in the
activity

Interaction
granularity*

“discrete”*, “continuous”*,
“mixed”*

Control* “explicit”*, “implicit”*,
“mixed”*

Overview
Brief overview if desired.

Main scenario
The default flow, with numbered steps.

Alternative scenarios
The specification of alternative scenarios, which
can be successful or not.

Operation parameters*
Specification of these requirements if necessary.

Uncertainty handling policy*
List of policies and how they should be applied.

Miscellaneous
Miscellaneous and open issues.

Figure 1: The complete activity template. Fields marked with
an asterisk represent extensions that we propose in this paper

The primary actor* is the player that starts the activity.
The secondary actors* can be other players involved in
the activity. The game being designed is always a
secondary actor. As a result, we do not list it all the
time in the activity specification.

All activities have a level*, which denotes the level of
detail that the activity specification presents. The level
can be: “player level”, “subfunction”, and “mobile
device event”. The “player level” concerns a high level
activity that describes the flow of actions involving the
primary and secondary actors. The subfunction level
represents reusable flow specifications to use in
“player level” activities. The “mobile device event”
level corresponds to activities related to events specific
to mobile devices that might interrupt the activity, as
“low battery situations” and “incoming calls”.

The inputs and outputs section refer to sensors,
actuators and output devices present in the mobile
devices that players carry.

The smart objects section lists the smart objects that
the activity uses, if any.

The interaction granularity section summarizes the
granularity of all interactions in the activity. A discrete

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 880

granularity means that all interactions have discrete
granularity. Continuous granularity means all
interactions have continuous granularity. Finally,
mixed granularity means that there is a mixture of
discrete and continuous interactions in the activity.

The control section summarizes the type of control that
the primary actor has in the activity. Explicit control
means that all interactions are explicit. Implicit control
means all interactions are implicit. Mixed control
means that there is a mixture of implicit and explicit
interactions in the activity.

The main scenario* corresponds to the typical,
“happy-path” flow for the activity. This corresponds to
the situation where the primary actor successfully
achieves the activity goals. The alternative scenarios*
present other ways to achieve the activity goal, or
situations where the activity fails. Alternative flows
may end the whole activity, or just the flow of actions
that it has started.

The operation parameters section defines a set of
parameters related to sensors and actuators that the
game must consider. For example, an activity using
location might require a maximum error of 10 meters
in the reported location.

The uncertainty handling policy section specifies
which general strategy (remove, hide, manage, reveal,
and exploit in Section 4.4) that the game uses to handle
uncertainties, and how the game applies it.

The miscellaneous section refers to special
requirements, remarks, or behaviors that do not fit
elsewhere.

5. Activity Modeling Examples

This section presents two examples of using our
modeling approach in a real game. While presenting
the examples, we introduce some extensions to
traditional use case notation [Cockburn 2000] that we
propose to represent activity modeling concepts.

The examples come from Pervasive Word Search,
which is a single-player pervasive mobile game
developed by the first author. The main goal in
Pervasive Word Search is to find the letters of a word
that the game draws. The player must explore the
environment surrounding him to find the letters. While
exploring the physical world, the player may interact
with some game zones – the dark, open, and wireless
zones. The “dark zone” is a place with “low” ambient
light. An “open zone” corresponds to an outdoor area.
A wireless zone corresponds to a place with a certain
number of WiFi access points and Bluetooth devices.
Interacting with these zones is an important part in this
game.

In Figure 2, a player plays Pervasive Word Search with
the word “REYNOLD”. The player points the device

to a tennis shoe to capture a “gray” color – thus getting
the letters “g”, “r”, “a”, and “y”, and eliminating “r”
and “y” of the target word. The game identifies a finite
set of colors: red, yellow, orange, green, purple, blue,
pink, black, white, and gray. The player goes to
wireless zones to get letters that do not exist in the
basic color names (like “f”, considering names in
English). The player has a finite time to find all letters.
Interacting with some game zones changes the game
clock behavior. For example, if a wireless zone has lots
of Bluetooth devices, the game clock runs slower. If
the player is inside an open zone, the game clock runs
faster.

Figure 2: A player captures a “gray” color in Pervasive Word
Search.

The player has a finite time to find all the letters. The
player is able to get letters by capturing colors with the
device camera and interacting with the wireless and
dark zones. The captured colors have a limited life
span. When this time span runs out, the color “dies” –
it becomes unavailable and the player loses all
associated letters. In this case, the player has to capture
the color again. When the player enters a “dark zone”,
he earns “white” and “gray” automatically, and those
colors remain live as long as the player stays in a dark
zone.

In Pervasive Word Search, there are four activities of
level “player level”: Capture color, Interact with
wireless zone, Interact with dark zone, and Interact
with open zone. The first activity has explicit control,
while the last three activities have implicit control.
While there is an active player session, these three
activities happen concurrently. The game has one
activity of level “subfunction”, which is End play
session. The next subsections presents these activities:
“Capture color” and “Interact with wireless zone”.

5.1. The “Capture Color” Activity

In this activity, the player wanders around and points
the device to an object to capture its color. The game
evaluates the color (informing the player about the
results through acks) and updates the target word. If all
letters have been found, the game ends the play
session. Figure 3 illustrates the activity specification.

The scenarios should be specified using a series of
numbered action steps, as in traditional use cases. In

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 881

this example, the main scenario has two main steps.
Each step has an associated acknowledgment. We
propose the following bold notations to represent
acknowledgments:

ack (T): [information] – short for “the game triggers
acknowledgment about information through medium
T”.

ack (obj, T): [information] – short for “the game
triggers acknowledgment about information through
smart object obj, using medium T”.

Primary Actors Player
Level player level
Inputs camera, screen
Outputs display
Interaction granularity discrete
Control explicit

Main scenario
1. Player positions camera to focus the target

object and captures its color

• ack (display): captured color

2. Game identifies the color and uses the color
name to update the target word state

• ack (display): current target word state

Alternative scenarios
2a. All letters of target word have been captured:

1. Perform End play session

• ack (display): announces player victory

*a. Main game clock runs out:
1. Perform End play session

• ack (display): announces player defeat
2. EOA

*a. A color dies:
1. Update target word state

• ack (display): info about lost color

• ack (display): current target word state

Uncertainty handling policy

• Hide

▫ The colors are represented with a limited
set of options. Similar “colors” then are
grouped with the same name (e.g., all
variations of “red” are considered as
“red”)

Figure 3: Capture color specification

There are two input sources in this activity: the device
camera and the device screen. The game uses the
device screen to provide acknowledgments about the
interactions.

This activity has only one interaction, which starts at
step 1. The granularity of this interaction is discrete, as
there is only one way to capture a color – by pointing
the device camera to an object and touching the device
screen to instruct the game to capture a color.
Consequently, in this activity the player has explicit
control. The game issues an acknowledgment at step 1
(through the device display) to inform the player that it
recognized a color.

Step 2 represents a game logic action that affects the
game state. As a result, at this step there is an

acknowledgment to inform the player about the new
state.

Acknowledgments may occur concurrently or may
occur in a specific sequence. For concurrent
acknowledgments, we propose using bullet lists to
represent this concept (as in alternative scenario “a
color dies” in Figure 3). For acknowledgments that
should occur in a specific sequence, we propose using
a numbered list to reflect the desired sequence.

The alternative scenarios may replace a specific step,
or may replace the entire main scenario. For example,
the alternative scenario “2a. All letters of target word
have been captured:” is an alternative to step 2 in the
main scenario. The alternative scenarios usually have a
trigger condition that starts the scenario, which is
represented by the condition followed by a comma.
The alternative scenario 2a happens when all the letters
have been found, which represents the end of the
playing session. The alternative scenario 2a also
demonstrates how to reference another activity (“End
play session”).

When an alternative scenario may replace any step in
the main scenario, we use the notation *a to represent
this situation. In this activity, there are examples of this
situation: when the main game clock runs out, and
when a color disappears (“dies”). These two conditions
are game logic events. The alternative scenario
represented by “main game clock runs out” illustrates
an example of using the EOA notation. This notation
indicates “end of activity”, which means that the whole
activity should be terminated at that point. We
proposed this notation to make it more clear when
activities should be terminated in alternative flows.

Finally, this activity applies the strategy hide to handle
uncertainties related to using colors and camera. The
game hides the imprecisions and ambiguities related to
color capturing and representation by using a finite set
of colors and grouping “similar” colors into the same
group.

5.2. The “Interact With Wireless Zone” Activity

In this activity, the player wanders around in the
physical world while the game searches for Bluetooth
and WiFi devices in the background (an implicit
interaction). When the search for Bluetooth and WiFi
devices is over, the game uses the letters of device
names (defined here as “wireless letter set”) to
complete the target word. The activity starts
automatically when a play session starts. The activity
ends if the target word is completed (the player wins),
or if the main clock runs out (the player loses).

This example demonstrates some actions that occur in
parallel (player wandering around and wireless device
search). To represent this situation, we defined the
notation [parallel: a, b], where a and b specify the
parallel flow steps. Figure 4 illustrates the activity

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 882

specification, which uses this notation. In the
conceptual design stage, we do not distinguish whether
the actions specified with this notation will be
implemented using either concurrent or parallel
programming.

Primary Actors Player
Level player level
Inputs bluetooth, wifi
Outputs display, vibration
Interaction granularity continuous
Control implicit

Main scenario
 [parallel: 1, 2-4]

1. Player wanders around in the physical
environment

2. Game finds Bluetooth and WiFi devices, updates
current wireless set

• ack (display): entered wireless zone

• ack (vibration): entered wireless zone

• ack (display): current wireless set status
(lost letters and letters added to the set)

3. Game updates target word with letters of the
current wireless set

• ack (display): target word status

4. Game adjust time speed to “default”

• ack (display): time speed status

Alternative scenarios
2a. Number of Bluetooth and WiFi devices is zero:

1. Notifications

• ack (display): left wireless zone

• ack (display): all wireless letters are
lost

2. Game updates target word state

• ack (display): target word status

3. Game restarts activity

3a. All letters of target word have been captured:
1. Perform End play session

• ack (display): announces player victory
2. EOA

4a. Number of Bluetooth devices is greater or equal
than 6:

1. Game adjusts time speed to “slow”

• ack (display): time speed status

*a. Main game clock runs out:
1. Perform End play session

• ack (display): announces player defeat
2. EOA

*a. A color dies:
1. Update target word state

• ack (display): info about lost color

• ack (display): current target word status

Uncertainty handling policy

• Hide

▫ Announce 'enter zone' and 'leave zone'
events only – do not inform query status
(started, finished, in progress, identify
devices found and lost, etc.).

▫ Do not provide area maps with devices

Figure 4: Interact with wireless zone specification

The main scenario corresponds to the situation where
the player wanders around (step 1) and finds a wireless
zone (step 2), which may affect the target word state

(step 3) but does not complete it. Also, the number of
devices found is not enough to slow down the game
clock (step 4).

As the process of interacting with the wireless zone is
unpredictable, this activity has continuous granularity.

Step 2 describes an interaction event (“Game finds
Bluetooth and WiFi devices”) with three associated
acknowledgments. These acknowledgments do not
have to follow a specific sequence, so they are
indicated as unnumbered lists. If they were to be
delivered in a specific order, they would be specified
using numbered lists to reflect the sequence.

Steps 3 and 4 correspond to game logic actions that
affect the game state, and for this reason these steps
have associated acknowledgments.

The alternative scenarios 2a and 4a represent other
outcomes related to the search for wireless devices:

 If there are no wireless devices (Bluetooth and
WiFi) around the player (2a), the player
leaves the wireless zone and this may affect
the target word state (2a, 2). As in this case it
does not make sense to go back to the main
scenario, the activity is restarted (2a, 3);

 If the number of Bluetooth devices around the
player is above a certain amount (six, in the
example), the game slows down the game
clock. We designed this feature to foster the
player to move to areas that might benefit
him.

The player wins if the letters of the wireless set help
him to complete the target word. Alternative scenario
3a represents this situation. When the player wins, the
activity ends (hence, the EOA notation).

The game logic events “Main game clock runs out” and
“A color dies” are the same ones that appeared in the
Capture color activity. In this game, these specific
events may happen in all activities.

The Uncertainty handling policy is hide. This activity
applies this strategy by deliberately presenting
information about the wireless zone in imprecise and
ambiguous ways – it does not display a zone map and
it does not inform the player about lower-level events
related to queries about wireless devices. Instead, the
game just informs if the player has entered or left the
wireless zone. Bluetooth and WiFi queries are slow
operations. In our experiments, a Bluetooth query
could take up to 10s to complete. It is also possible that
some queries miss some devices or return false
positives. Hence, this activity does not require using
Bluetooth and WiFi data in real-time fashion. This
strategy also applies to other game zones in the game
(the dark and open zones), controlled through other
activities.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 883

6. Conclusions

Game development is a multidisciplinary process
because it involves stakeholders with different
backgrounds and worldviews. As digital games take
form as software, game developers have tried to apply
traditional software development process to create
games, only to fail in many circumstances because
these traditional software development processes do
not consider key features that games have. A major
reason is that traditional (non-game) software often
focus on productivity, while games focus on providing
entertainment, which brings several issues into
discussion (e.g., how to handle abstract requirements
such as “fun”, “enjoyment”, “immersion”, and “flow”).

Another key issue is that games, being creative
products, have a preproduction phase (where designers
and artists work) that does not exist in traditional
software. As a result, many game projects fail due to
inadequate transition between the preproduction and
production stages. The integration of these teams that
speak “different languages” is an important (and
complex) issue in game development [Callele et al.
2005; Callele et al. 2011; Alves et al. 2007].

When considering pervasive games, this situation
becomes more complex as this area is very recent and
is no consensus on what pervasive games are (early
examples of pervasive games date back from 2001).
The available literature on pervasive games often
mixes up preproduction issues and production ones
and, as far as we know, there are no methodologies or
processes for pervasive game development that
integrate preproduction and production issues,

Considering the scenario described previously, in this
paper we reported our attempt at creating a language to
apply in the transition between preproduction and
production stages in pervasive mobile game
development. This language extends traditional use
case templates [Cockburn 2000]. We believe that this
text-based tool provides an adequate abstraction level,
when considering the involved stakeholders in the
conceptual design stage (e.g., game designers, artists,
and software engineers)

The activity modeling approach that we presented in
this paper considers important aspects related to the
nature of pervasive mobile games – interactions with
sensors, mobile devices, and handling uncertainties
related technologies that support this kind of game.

Uncertainty handling is crucially important to keep the
integrity of the game experience, as it may be affected
negatively if the role of uncertainties is ignored in a
game. In this regard, we consider uncertainty handling
in activities from the very start. Applying uncertainty
handling policies may lead to non-functional
requirements. Non-functional requirements place
restrictions on how the desired functionality can be
implemented, and not considering non-functional

requirements in the beginning of a project may lead to
lots of costly changes [Chung and Leite 2009].

To demonstrate the applicability of this language, we
presented two activities of real game. We opted to
choose one activity with explicit control and another
activity with implicit control to demonstrate how to
apply the concepts of our language.

With this paper, we started to touch upon a subject that
still has a long road ahead. We envisage as future
works in this area:

 Create more games with this language to test
how it works in different examples and to
uncover possible issues;

 Explore consistency rules to help in checking
if an activity specification meets the general
goals that we outlined at the beginning of
Section 4;

 Conduct a feasibility study to understand if
creating a visual version of this language
would provide value for the development
process;

 Evaluate the applicability of this language by
requesting feedback of game designers and
software engineers.

Acknowledgments

The authors thank CNPq and FINEP for the financial
support to this work.

References

ALVES, C., RAMALHO, G. AND DAMASCENO, A., 2007. Challenges
in Requirements Engineering for Mobile Games
Development: The Meantime Case Study. In
Requirements Engineering Conference, 2007. RE ’07.
15th IEEE International. Requirements Engineering
Conference, 2007. RE ’07. 15th IEEE International. pp.
275 –280.

BARTNECK, C., HU, J., SALEM, B., CRISTESCU, R. AND
RAUTERBERG, M., 2008. Applying Virtual and Augmented
Reality in Cultural Computing. IJVR, 7[2], pp.11–18.

BELL, M. ET AL., 2006. Interweaving mobile games with
everyday life. Proceedings of the SIGCHI conference on
Human Factors in computing systems, pp.417–426.

BENFORD, S., CRABTREE, A., FLINTHAM, M., DROZD, A., ANASTASI,
R., PAXTON, M., TANDAVANITJ, N., ADAMS, M. AND ROW-
FARR, J., 2006. Can you see me now? ACM Transactions
on Computer-Human Interaction (TOCHI), 13, pp.100–
133.

BETHKE, E., 2003. Game Development and Production, Plano,
Tex: Wordware Publishing, Inc.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 884

CALLELE, D., NEUFELD, E. AND SCHNEIDER, K., 2011. A report on
select research opportunities in requirements engineering
for videogame development. In 2011 Fourth International
Workshop on Multimedia and Enjoyable Requirements
Engineering - Beyond Mere Descriptions and with More
Fun and Games (MERE). 2011 Fourth International
Workshop on Multimedia and Enjoyable Requirements
Engineering - Beyond Mere Descriptions and with More
Fun and Games (MERE). pp. 26 –33.

CALLELE, D., NEUFELD, E. AND SCHNEIDER, K., 2008. Emotional
Requirements. IEEE Software, 25[1], pp.43 –45.

CALLELE, D., NEUFELD, E. AND SCHNEIDER, K., 2005.
Requirements engineering and the creative process in the
video game industry. In 13th IEEE International
Conference on Requirements Engineering, 2005.
Proceedings. 13th IEEE International Conference on
Requirements Engineering, 2005. Proceedings. pp. 240 –
250.

CHATZIGIANNAKIS, I., MYLONAS, G., KOKKINOS, P., AKRIBOPOULOS,
O., LOGARAS, M. AND MAVROMMATI, I., 2011. Implementing
multiplayer pervasive installations based on mobile
sensing devices: Field experience and user evaluation
from a public showcase. Journal of Systems and Software,
84[11], pp.1989–2004.

CHUNG, L. AND LEITE, J.C.S. DO P., 2009. On Non-Functional
Requirements in Software Engineering. In A. T. Borgida,
V. K. Chaudhri, P. Giorgini, & E. S. Yu, eds. Conceptual
Modeling: Foundations and Applications. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 363–379.
Available at:
http://www.springerlink.com/content/l8p285p273461j60/
[Accessed June 25, 2011].

COCKBURN, A., 2000. Writing Effective Use Cases 1st ed.,
Addison-Wesley Professional.

DEY, A.K., 2001. Understanding and Using Context.
Personal and Ubiquitous Computing, 5[1], pp.4–7.

FINN, 2014. Magnetize Words. Available at:
http://funinnumbers.eu/index.php?
option=com_content&view=article&id=15 [Accessed
July 10, 2014].

FURTADO, A.W.B., SANTOS, A.L.M. AND RAMALHO, G.L., 2010.
Streamlining Domain Analysis for Digital Games Product
Lines. In J. Bosch & J. Lee, eds. Software Product Lines:
Going Beyond. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 316–330. Available at:
http://link.springer.com/chapter/10.1007/978-3-642-
15579-6_22 [Accessed February 16, 2013].

KANODE, C.M. AND HADDAD, H.M., 2009. Software
Engineering Challenges in Game Development. In Sixth
International Conference on Information Technology:
New Generations, 2009. ITNG ’09. Sixth International

Conference on Information Technology: New
Generations, 2009. ITNG ’09. pp. 260 –265.

MOTTOLA, L., MURPHY, A.L. AND PICCO, G.P., 2006. Pervasive
games in a mote-enabled virtual world using tuple space
middleware. In Proceedings of 5th ACM SIGCOMM
workshop on Network and system support for games.
NetGames ’06. New York, NY, USA: ACM. Available at:
http://doi.acm.org/10.1145/1230040.1230098 [Accessed
September 23, 2013].

PETRILLO, F., PIMENTA, M., TRINDADE, F. AND DIETRICH, C., 2009.
What Went Wrong? A Survey of Problems in Game
Development. ACM Computers in Entertainment, 7[1],
pp.13:1–13:22.

ROGERS, Y. AND MULLER, H., 2006. A framework for designing
sensor-based interactions to promote exploration and
reflection in play. International Journal of Human-
Computer Studies, 64[1], pp.1–14.

SCHMIDT, A., 2000. Implicit human computer interaction
through context. Personal Technologies, 4[2-3], pp.191–
199.

SIANG, A.C. AND RAO, G.S.V.R.K., 2004. Designing
Interactivity in Computer Games: a UML Approach.
International Journal of Intelligent Games & Simulation,
3[2]. Available at:
http://www.scit.wlv.ac.uk/OJS_IJIGS/index.php/IJIGS/art
icle/view/92 [Accessed June 22, 2014].

TANG, S. AND HANNEGHAN, M., 2008. Towards a Domain
Specific Modelling Language for Serious Game Design.
In 6th International Game Design and Technology
Workshop, Liverpool, UK.

TAYLOR, M.J., GRESTY, D. AND BASKETT, M., 2006. Computer
Game-flow Design. Comput. Entertain., 4[1]. Available
at: http://doi.acm.org/10.1145/1111293.1111300
[Accessed June 21, 2014].

TUULOS, V., SCHEIBLE, J. AND NYHOLM, H., 2007. Combining
Web, Mobile Phones and Public Displays in Large-Scale:
Manhattan Story Mashup. In A. LaMarca, M.
Langheinrich, & K. Truong, eds. Pervasive Computing.
Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, pp. 37–54. Available at:
http://dx.doi.org/10.1007/978-3-540-72037-9_3.

VALENTE, L. AND FEIJÓ, B., 2013. A survey on pervasive
mobile games, Rio de Janeiro: Departamento de
Informática, PUC-Rio.

VALENTE, L., FEIJOÓ, B AND LEITE, J.C.S.P. , 2013. Features
and checklists to assist in pervasive mobile game
development. In Proceedings of SBGames 2013. 2013
Brazilian Symposium on Games and Digital
Entertainment (SBGAMES). São Paulo: Sociedade
Brasileira de Computação, pp. 90–99.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 885

