
Experimental Approach of the Asymptotic Computational Complexity of
Shaders for Mobile Devices with OpenGL ES

Alex S. C. Lima
University of Brasilia

Edson A. C. Junior
University of Brasilia

Figure 1: Gouraud shading analysis

Abstract

The usage of mobile devices and increasingly realistic graphics is
emerging, but the graphics performance is still a critical factor in
games. There’s more hardware restriction on mobile devices than
on a computer. Thus, this paper proposes an experimental approx-
imation of the asymptotic computational complexity of miscella-
neous vertex and fragment shaders for Android and iOS platforms.
The asymptotic complexities of the shaders will be analyzed based
on number of instructions per second and rendering time metrics,
depending on the number of polygons rendered. By means of the
adjusted curves is also possible to compare the performance of the
devices used in this work, which are the Nexus 4, HTC One, iPhone
5s and iPad Air. Besides, an automatic tool – that plots the data and
uses the method of least squares to adjust the values obtained – will
be presented, being able to estimate which curve has better approx-
imation to the sampled data.

Keywords: Android, iOS, shaders, mobile devices, computer
graphics, asymptotic complexity.

Author’s Contact:

{campelo.al1,prof.edson.alves.costa}@gmail.com

1 Introduction

Graphics in games are so important that can determine the game’s
failure or success [Sherrod 2011]. Thus, the creation of three-
dimensional scenes, using mobile devices, is becoming more and
more usual and realistic [Sinthanayothin et al. 2012]. However,
there are hardware restrictions, especially in mobile devices. Ren-
dering graphics for mobile devices is still a challenge due to lim-
itations, when compared to a computer, related to CPU (Central
Processing Unit), GPU (Graphics Processor Unit) and power con-
sumption [Arnau et al. 2013].

In this context, graphics performance is a key factor for the
overall performance of the system, mainly in games, which also has
other factors that consume resources, such as artificial intelligence,
networking, audio, input events, physics, among others.

But the recent growing of mobile devices made them able to
support applications even more complex. Devices like smartphones
and tablet computers have been widely adopted, emerging as one of
the most propagated technologies. Within this context, the most
commonly used mobile operating systems are iOS and Android
platforms. Accordingly Apple’s CEO, Tim Cook, more than 800
million iOS device were already sold1 and the daily activation de-

1http://www.imore.com/more-800-million-ios-devices-sold

vices using Android platform is approximately 1.5 million [Sand-
berg and Rollins 2013].

This way, it’s possible to analyze the performance of the render-
ing process done by the GPU – in which different shaders (respon-
sible for the creation of visual effects) are applied. Then, the goal
of this work is to analyze the asymptotic computational complexity
of shaders for mobile devices, both for the whole rendering process
and for only part of it (vertex and fragment shaders).

2 Related Work

As said before, the game industry have sought to create games with
a high level of realism. One of the factors that contributes to the
increase of this realism was the introduction to programmable hard-
ware, that allowed to program the rendering process. This way, the
visual effects were the focus in [Evangelista and Silva 2007], where
were presented diverse realistic and non-realistic techniques used in
games in the last years. To achieve those effects, the programmable
rendering pipeline was used, specifically the vertex and fragment
shaders.

In [Com 1999] is shown an approach to measure graphics per-
formance, which says to develop a program that makes graphics
calls and measure the performance of the system running this pro-
gram. If industry standard graphics benchmarks are used, perfor-
mance of many different systems can be compared with minimal
effort. The graphics hardware performance is measured in terms of
maximum rate the system can achieve in drawing, like vectors/sec-
ond, shaded triangles/second, by example.

The shader performance analysis were already done in [Nunes
et al. 2011], but related to the Tessellator shader. This shader is
available on OpenGL 4 and allows the creations of vertex directly
on the GPU, reducing the amount of transfer between CPU-GPU.
The performance was analyzed increasing the number of three-
dimensional objects, what, in practical terms, is equal to increase
the number of polygons. The chosen metric to analyze the perfor-
mance was the frames per second.

3 Background Information

This section gives some brief background information that is
needed to understand certain parts of the work. It describes the
definition of shader, asymptotic complexity and the least squares
method.

3.1 Shader and OpenGL ES

Shading is the process of using an equation for computing the sur-
face behavior of an object [Moller et al. 2008]. Shader algorithms

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 857

are written by the programmer to override the predefined function-
ality of the rendering process performed by the GPU, by the usage
of graphic libraries such as OpenGL ES.

Before the shaders were created, the rendering pipeline was
completely fixed. But with the introduction of the shaders, it’s pos-
sible to customize part of this process, like the vertex and fragment
processing (vertex and fragment shaders).

The OpenGL ES (OpenGL for Embedded Systems) were re-
leased in 2003, being the OpenGL version to embedded systems.
As said by [Guha 2011], the OpenGL ES is one of most popular API
(Application Programming Interface) for graphics programming in
mobile devices. It uses the GLSL (OpenGL Shading Language) as
shading language, that is based on the C language.

3.2 Asymptotic Complexity

Asymptotic complexity is a way to compare the efficiency of an al-
gorithm, in terms of time, memory or processing, by example. To
not depend on the platform nor programming language, the asymp-
totic complexity is based on a function (logic measure) [Drozdek
2002]. It expresses a relationship between the amount of data and
time required to process them.

The calculation of the asymptotic complexity aims to model
the behaviour of the algorithm performance, as the number of data
increases. This way, the terms that doesn’t affect the order of mag-
nitude are eliminated, generating the approximation called asymp-
totic complexity. For instance, the Equation 1

y = n2 + 10n + 1000 (1)

could be approximated by the Equation 2.

y ≈ n2 (2)

3.3 Least Squares Method

The least squares method is used to adjust a set of points (x,y) to
a determined curve. In linear adjustment case, by example, repre-
sented by y = a + bx,in most cases the points in the set aren’t
collinear. In this situation, as said in [Rorres 2001], it’s impossible
to find coefficients a and b that satisfy the system. Thus, the dis-
tances between those values to the line can be considered as error
measures and the points are adjusted by the same vector. This way,
there’s a linear least squares adjustment to the data and its solution
is given in Equation 3.

v = (MTM)−1MT y (3)

where

M =


1 x1

1 x2

...
...

1 xn

 , v =

[
a
b

]
e y =


y1

y2

...
yn

 (4)

The adjustment to a second and third degree functions is simi-
lar, but the M matrix is redefined to Equation 5

M =


1 x1 x2

1

1 x2 x2
2

...
...

...
1 xn x2

n

 (5)

and Equation 6, respectively.

M =


1 x1 x2

1 x3
1

1 x2 x2
2 x3

1

...
...

...
...

1 xn x2
n x3

n

 (6)

The exponential adjustment is a little bit different. [Leithold
1994] says that the exponential function can be represented as the
Equation 7,

y = ce−kt (7)

where e, c, k are constants. Applying the logarithmic function on
both sides, the Equation 8 is obtained

ln y = ln c + ln e−kt (8)

and it can be simplified as the Equation 9 (where b̄ is a new con-
stant).

ȳ = ā + b̄t (9)

This equation is equivalent to a linear equation and the linear
least squares method can be applied. The final values of the ā and b̄
coefficients determine the c and k parameters through the relation-
ships shown in Equation 10

c = eā e b̄ = −k (10)

4 Materials and Methods

This section describes the steps taken in this work, showing since
the equipment used until the implementation, collection and analy-
sis of data.

4.1 Equipment Used

The computer used for development on Android platform was an
Alienware M14x manufactured by Dell with Intel Core i7 proces-
sor, 2GB of GeForce GTX as GPU and 8 GB of RAM. For the
development on iOS platform, a Macbook Pro 11.1 was used, with
Intel Core i5 processor and 8GB of RAM.

The Table 1 shows the used devices, which are equipment with
different resolutions and hardware configurations. The benchmark
app called 3D Mark was used to compared the different perfor-
mances of these devices. It runs several graphical tests, in order
to stress the GPU and to give a final punctuation related to the per-
formance. The higher the score, the better the performance. This
score is shown in the Table 2.

Table 1: Mobile devices

Device Platform Resolution GPU
Nexus 4 Android 768 x 1280 Adreno 320
HTC One Android 1080 x 1920 Adreno 320
iPad Air iOS 2048 x 1536 PowerVR G6430
iPhone 5s iOS 1136 x 640 PowerVR G6430

Table 2: Benchmark

Device Score
Nexus 4 7.106
HTC One 10.184
iPad Air 14.952
iPhone 5s 14.750

4.2 Android Implementation

To make the asymptotic computational complexity analysis pos-
sible, firstly was necessary to implement the shaders on Android
platform. This was done using the graphics library called OpenGL
ES. The object-oriented paradigm was used and the Figure 2 shows
the class diagram and how the code was structured. This diagram
presents a set of classes and their relationships, being the central
diagram of object-oriented modeling.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 858

Figure 2: Android implementation: class diagram

4.2.1 Front-end Screen

The front-end screen is responsible for the interaction with the user,
passing the input information to the back-end. The Android plat-
form uses the term Activity to describe the application’s front-end
screen. It has design elements like text, buttons, graphics, among
others. In this work, there are two Activity classes: Shader Activity
and Splash Activity (Figure 3).

Figure 3: Shader Activity and Splash Activity

The Splash Activity is responsible for the visualization of
the loading screen while the necessary resources – like the three-
dimensional objects and textures – are loaded by a thread. This
resources are managed by the Resources class, that uses the project
pattern called Singleton. This pattern ensures that there’s only one
instance class, which will be accessed later.

The Shader Activity is responsible for creating an instance of
the Renderer class, which renders the three-dimensional objects.
Besides, it controls the touch events, that allows scaling and rotating
these objects. It also shows the buttons that increase and decrease
the number of polygons.

4.2.2 Three-dimensional Object

The three-dimensional object is represented by the composition of
the 3DObject and Texture classes. The 3DObject class is respon-
sible for reading and interpreting the obj files, that contains the in-
formation about the object. After this, the position, normal and
texture vertices are stored into a buffer. The Texture class generates
the textures, used by some shaders, from images. Those images
are created for each three-dimensional model, using the UV Map-
ping technique. It maps the texture coordinates to an image, like is
shown on Figure 4.

4.2.3 Renderer

The Renderer class works like a controller, being responsible for
the rendering. It is the main class for the calls from the view
(Shader Activity) and model (3DObject, Shader and Timer) classes.
This class implements the functions from the OpenGL ES li-

Figure 4: UV Mapping technique

brary called onSurfaceCreated(), onDrawFrame() and
onSurfaceChanged().

4.2.4 Shader

The Shader class reads, attaches and links the ver-
tex and fragment shaders. Furthermore, it has the
abstract methods getParamsLocation() and
initShaderParams(Hashtable params). The first
method stores the location of each variable specified in the shader.
The second method initializes these variables based on a hash,
which contains the values for each variable. This way, every shader
inherits from the Shader class and must implement these abstract
methods. The implemented shaders can be seen on Figure 5.

Figure 5: Implemented Shaders

4.2.5 Calculation of Rendering Time

The Timer class measures the rendering time in nanoseconds. Each
measurement is done using the C language and the OpenGL ES ex-
tension called GL EXT disjoint timer query. The integra-
tion between the code in C language and the code in Java is done

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 859

by the class called NativeLib. If the extension is not available for
the device, an alert is issued.

4.3 iOS Implementation

The structure of the code on iOS platform is similar to the Android,
as is shown in Figure 6. It follows the Model-View-Controller pat-
tern, which the controller is responsible for the integration between
the Shader, 3DObject classes and the view RendererView.

Figure 6: iOS implementation: class diagram

The 3DObject class interprets the obj file to the format ac-
cepted by OpenGL ES. The Shader class, as in Android platform,
reads, attaches and links the vertex and fragment shaders.

The Gouraud Shader was chosen to be implemented and pos-
teriorly to do the comparisons between the different devices on dis-
tinct platforms. The result is seen on Figure 7.

Figure 7: Gouraud Shader on iOS platform

4.4 Experimental Estimation of Asymptotic Com-
plexity

The experimental estimation of asymptotic complexity of each
shader was done by diverse measurements for each polygon count-
ing (represented by each three-dimensional model). The asymptotic
complexity was analyzed by two points of view: related to the en-
tire rendering process and only related to the vertex and fragment
shaders.

4.4.1 Rendering Process

In Android platform, as mentioned in Section 4.2.5, an OpenGL
ES extension was used to get the rendering process time, done by
the glDrawArrays() function. In iOS platform, the module –
from Xcode development tool – called Instruments was used, which
informs the elapsed time of each OpenGL ES function in microsec-
onds.

This way, the measures were gathered for the devices Nexus 4,
iPhone 5s and iPad Air. It wasn’t possible to collect for the HTC
One device, because the extension wasn’t available for this Android
device.

4.4.2 Vertex and Fragment Shaders

The vertex and fragment shaders measurements were only possible
to do in Android devices. The reason is because the Instruments
module of Xcode – in iOS implementation – doesn’t exhibit any
information about them. Then, the tool used to collect the measures
for Android devices was the Adreno Profile, because the GPUs of
these devices are Adreno.

The chosen metrics were instructions per second per vertex
and instructions per second per fragment. These metrics were gath-
ered for each polygon counting, being exported in CSV (Comma-
Separated Values) format.

4.4.3 Plot

After the measurements were done, the charts were plotted both for
the rendering process, as for the vertex and fragment shaders. The
first set of charts is related to the time, in nanoseconds, versus the
polygon count. The second is related to the number of instructions
per second per vertex (or fragment) versus the polygon count.

4.4.4 Automation of Curves Adjustments

To do the curve adjustment, it was used the least squares method to
linear, quadratic, cubic and exponential functions. The squared er-
rors associated to each adjustment were also calculated, in order to
determine which function had a better approximation to the original
measures. Smaller the error, the better the approximation.

A program in Python was created to automate this calculation
process. It reads CSV or TXT files, calculates the average of the
measures, plots the charts and does the curve adjustment (also plot-
ting the data). The program is command-line based, having as pa-
rameters the shader name and the measurement used (if it’s related
to the whole rendering process or just to the vertex and fragment
shaders).

The Listing 1 shows two command-lines examples: the first
is related to the rendering process of the Gouraud shader and the
second is related only to the vertex and fragment shaders.

Listing 1: Command-lines
$ py thon s h a d e r C o m p l e x i t y . py gouraud

r e n d e r t i m e
$ py thon s h a d e r C o m p l e x i t y . py gouraud

v e r t e x f r a g m e n t

The Figure 8 shows how this program is structured. The Read-
CSV and ReadTxt classes are responsible for reading the CSV and
TXT files. The PlotChart class plots the original and adjusted data
and the LeastSquares calculates these adjustments and their errors.

In Figure 9 the result of the tool for the rendering process
is presented, which is composed by four screens. The first one
(top-down) is the plot of the linear adjustment, the second is the
quadratic adjustment, the third is the cubic adjustment and the last
one is the exponential adjustment.

In Figure 10 and Figure 11 the results of the tool for the vertex
and fragment shaders are presented, which are four screens with the
adjustments as well. At the end, the program shows the equations
related to each adjustment and their errors.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 860

Figure 8: Tool implementation: class diagram

Figure 9: Automatic Adjustments: rendering process

Figure 10: Automatic Adjustments: vertex shader

Figure 11: Automatic Adjustments: fragment shader

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 861

5 Results

For each shader were plotted the charts related to the entire render-
ing process and to the vertex and fragment shaders for different de-
vices. After these plots, it was noticed that the charts for all shaders
and devices had similar curves for each measure type (rendering
process, vertex and fragment shader).

5.1 Android Devices

With the Nexus 4 device was possible to plot the charts related to
the rendering process and to the vertex and fragment shaders. The
charts about the vertex shader visually resulted in a linear function
(with different slopes). The Figure 12 shows the charts related to
the vertex shader of all implemented shaders.

Figure 12: Vertex shader: curves comparison

The curves related to the rendering process and to the fragment
shader had similar shapes, but it wasn’t possible to determine the
exact curve only by visual inspection. These curves are shown in
the Figure 13 and Figure 14.

Figure 13: Fragment shader: curves comparison

Figure 14: Rendering process: curves comparison

Then, the adjustments to the predefined curves were done by
the automated tool and plotted for each shader. The smallest errors
were also determined, in order to discover which curve had the best
approximation. By this analysis, all the shaders had better approx-
imation to a third degree curve, both for the fragment shader as for
the rendering process.

For the HTC One device was only possible to measure the per-
formance related to the vertex and fragment shader. The results

were the same as in the Nexus 4, which the vertex shader had a
linear behavior and the fragment shader, a cubic behavior (Figure
15).

Figure 15: HTC One device

5.2 iOS Devices

With the iOS devices, it was only possible to plot the charts related
to the rendering process. The shapes of the obtained curves are sim-
ilar to the obtained curves in Nexus 4, and the best approximations
were also to a third degree curve. The Figure 16 shows these curves
for the iPhone 5s and for the iPad Air.

Figure 16: iOS devices

5.3 Analysis of the Equations

With the automated tool, it was also possible to calculate the equa-
tions of the adjusted curves, for each shader of the Nexus 4. They
are shown in Table 3, Table 4 and Table 5. Although the curves are
of the same family, their coefficients are not identical. The shaders
relatively more complexes had steeper slopes compared to the sim-
ple shaders and they had greater x2 and x3 coefficients.

Analyzing the equations, it’s possible to see that the vertex
shader that had better performance was the Flat Shader, which only

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 862

Table 3: Equations related to the vertex shader

Shader Name Vertex Instructions per Second
Gouraud y = 40.16× 106 + 7486.43n
Phong y = 14.95× 106 + 5211.02n
Red y = 8.02× 106 + 4545.69n
Toon y = 10.17× 106 + 4673.96n
Flat y = 7.65× 106 + 3738.61n
Random Color y = 20.58× 106 + 5640.13n
Simple Texture y = 8.80× 106 + 4540.32n
CubeMap y = 8.67× 106 + 4540.40n
Reflection y = 18.03× 106 + 5470.95n

Table 4: Equations related to the vertex shader

Shader Name Fragment Instructions per Second

Gouraud y = 19.43× 108 + 297.00n
−0.0065n2 + 0.50× 10−7n3

Phong y = 19.84× 108 + 1752.43n
−0.0389n2 + 3.32× 10−7n3

Red y = 19.39× 108 + 64.34n
−0.00090n2 + 0.05× 10−7n3

Toon y = 19.44× 108 + 268.89n
−0.0044n2 + 0.30× 10−7n3

Flat y = 19.39× 108 + 74.94n
−0.0013n2 + 0.08× 10−7n3

Random Color y = 19.43× 108 + 250.33n
−0.0050n2 + 0.37× 10−7n3

Simple Texture y = 19.41× 108 + 160.00n
−0.0030n2 + 0.22× 10−7n3

CubeMap y = 19.43× 108 + 245.89n
−0.0047n2 + 0.37× 10−7n3

Reflection y = 19.59× 108 + 698.57n
−0.0094n2 + 0.47× 10−7n3

determines the x and y coordinates (since the z is zero). The vertex
shader that had worst performance was the Gouraud Shader, which
calculates the light components in the vertex shader.

The shader with better performance – related to the fragment
shader – was the Red Shader, in which only determines the frag-
ment color to red. The fragment shader with worst performance was
the Phong Shader, which does the same calculation as the Gouraud
shading but in the fragment shader instead of the vertex shader.

The shaders with better performance – related to the rendering
process – were the Flat, Toon and Red Shaders. The shaders with
worst performance were the Reflection and Gouraud Shaders.

Besides, with the equations, it’s possible to estimate the num-
ber of vertex or fragment instructions per second. Taking the Toon
Shader as example, which its vertex shader equation is y(n) =
10.17× 106 + 4673.96n, the estimated number of instructions per
second for 60,000 polygons is 29.06 × 107. With the tool Adreno
Profiler it was possible to see that this value is close to the measured
(28.49× 107).

Another relevant result is about the Gouraud and Phong
Shaders. The first had the worst vertex shader performance and the
second had the worst fragment shader performance. But the shader
that had the worst rendering process performance was the Phong
Shader. This result is consistent because the fragment shader, by
this experiment, has asymptotic complexity O(n3) and the vertex
shader, O(n), influencing this worst outcome.

5.3.1 Devices Comparison

With the obtained curves and equations, it was also possible to com-
pare the devices. The Figure 17 and Figure 18 shows the curves
related to the vertex and fragment shaders for the Nexus 4 and HTC

Table 5: Equations related to the rendering process

Shader Name Rendering Process Time (ns)

Gouraud y = 24.31× 104 + 48.89n + 7, 60
×10−5n2 − 1.19× 10−9n3

Phong y = 31.25× 104 + 49.28n + 0.12
×10−5n2 − 1.43× 10−9n3

Red y = 30.37× 104 + 32.92n + 0.26
×10−5n2 − 0.00019× 10−9n3

Toon y = 27.28× 104 + 37.30n + 0.23
×10−5n2 − 1.93× 10−9n3

Flat y = 32.82× 104 + 33.84n + 0.28
×10−5n2 − 2.15× 10−9n3

Random Color y = 26.25× 104 + 38.42n + 0, 20
×10−5n2 − 1.76× 10−9n3

Simple Texture y = 24.51× 104 + 38.88n + 0, 18
×10−5n2 − 1.65× 10−9n3

CubeMap y = 29.87× 104 + 44.70n + 0.11
×10−5n2 − 1.28× 10−9n3

Reflection y = 33.63× 104 + 57.31n− 9.18
×10−5n2 − 0.35× 10−9n3

One devices. The Figure 19 compares the shaders related to the
rendering process for the Nexus 4 and the iOS devices.

Figure 17: Nexus 4 and HTC One comparison: vertex shader

Figure 18: Nexus 4 and HTC One comparison: fragment shader

By the measurements and obtained equations, the device that
had better performance, related to the rendering process, was the
iPad Air, which is the device with better hardware configuration.
And as it was shown in Section 4.1, the iPad Air was the device
with better position in the benchmark app. The device with worst
performance was the Nexus 4 and this is consistent because it has
the worst hardware configuration.

For the vertex shader, the Nexus 4 had better performance than
the HTC One. On the other hand, for the fragment shader, the HTC
one had better performance than the Nexus 4.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 863

Figure 19: Nexus 4, iPhone 5s and iPad comparison: rendering
process

5.3.2 Final Thoughts About the Equations

Through the results, it was revealed that both rendering process and
fragment shader tended to present as asymptotic complexity a third
degree function for any shader. However, even that the squared er-
rors were smallest to a third degree function, the coefficients related
to the n3 term are very small, being of the order 10−7, 10−8 and
10−9. In case of 10−7, by example, it will be added or subtracted
one unit for each 100 million units of n (for a y(n) function), which
can be considered irrelevant.

This way, the curve related to the second degree function, even
with bigger squared error, represents the reality of the shader better
than the third degree function. Then, the asymptotic complexity of
the fragment shader and of the rendering process can be considered
O(n2). The analysis done to the third degree equations is still valid
to the second degree equations.

5.4 Estimates in Production Environments

In the gaming industry, the metric commonly used to determine
the performance of a game is the FPS (Frames Per Second). This
metric represents the number of images rendered per second. This
way, it’s also possible to convert the obtained results in this work to
this metric, like is shown in the Equation 11, where t is the time in
seconds (the metric used for the rendering process).

FPS =
1

t
(11)

It’s also possible to obtain this time metric based on the num-
ber of instructions per second (the metric used for the vertex and
fragment shaders). The Equation 12 shows how to do this conver-
sion, in which is necessary to use the tool Adreno Profiler to get the
number of instructions for one frame.

t =
IF
IS

(12)

where IF is the number of instructions for one frame and IS is the
number of instructions per second.

Before converting the time metric to frames per second, for the
rendering process, it was added to the t variable, the time spent by
the other functions in the OpenGL ES. These are the functions used
for one frame in the draw call, that doesn’t vary with the number
of polygons, like the function that sets the background color, by
example.

In Android devices, these times were obtained with the same
OpenGL ES extension used before. In iOS devices, they were ob-
tained with the Instruments tool, that informs the time spent by each
function.

The Table 6 presents the converted results in frames per second,
taking the Gouraud Shader as example, for the Nexus 4 device. An
important observation is that these measures don’t include the other
factors present in a real production environment, like input events
and physics, by example.

Number
of Polygons

Time Spent (s):
glDrawArrays

Time Spent (s):
Other Functions FPS

10,000 0.000698 0.0000140 1,405
20,100 0.00127 0.0000140 779
30,000 0.00181 0.0000140 548
40,678 0.00231 0.0000140 430
50,679 0.00271 0.0000140 367
60,662 0.00315 0.0000140 316
80,256 0.00410 0.0000140 243

152,840 0.00525 0.0000140 190

Table 6: Estimated FPS

5.5 Experimental Process of Estimation of
Asymptotic Complexity

The process used in this work for empirically estimate the computa-
tional asymptotic complexity is represented in Figure 20. The step
Implement Shaders can be done taking as base the implemented
code in this work. It’s just necessary to inherit from the Shader
class and implement its abstract methods. The step Measure Per-
formance is done manually, depending on the GPU profiler needed.
The steps Plot Charts, Adjust Curves and Obtain Equations can be
done by the implemented tool.

Figure 20: Asymptotic complexity process

6 Discussion and Future Work

Through the experiments, it was revealed that the asymptotic com-
plexity behaved linearly for the vertex shader. This happened in-
dependently of the shader used. This way, all implemented vertex
shaders have the same asymptotic complexity. But the equations
for each one have different coefficients, that can determine which
shader has better or worse performance.

Analyzing the theory about the OpenGL rendering process for
the vertex shader, it can be seen that this result is consistent. The
vertex shader program is used for each vertex, then its asymptotic
complexity is linear, taking the number of vertices as input. So, the
flow of the shader’s execution can be represented by the Listing 2.

Listing 2: Representation of the vertex shader execution
1 f o r (i n t i = 0 ;
2 i < v e r t e x B u f f e r . l e n g t h ; i ++)
3 {
4 e x e c u t e V e r t e x S h a d e r (v e r t e x B u f f e r [i]) ;
5 }

The rendering process and the fragment shader tended to have
as asymptotic complexity a polynomial of second degree. The List-

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 864

ing 3 shows a generic flow representation of the fragment shader
execution.

Listing 3: Representation of the fragment shader execution
1 t r i a n g l e S t r e a m = Mesh . t r i a n g l e s ;
2
3 f o r (i n t i = 0 ;
4 i < t r i a n g l e S t r e a m . l e n g t h ; i ++)
5 {
6 f r a g S t r e a m = t r i a n g l e S t r e a m [i] . f r a g m e n t s ;
7
8 f o r (i n t j = 0 ;
9 j < f r a g m e n t S t r e a m . l e n g t h ; j ++)

10 {
11 e x e c u t e F r a g S h a d e r (f r a g m e n t S t r e a m [i]) ;
12 }
13
14 }

As explained in OpenGL’s documentation 2 for each primitive
of the mesh, it’s generated the fragments (candidates for pixels).
For each fragment, the horizontal and vertical orientations of the
screen are traversed (being a matrix).

This way, the function executeFragShader(fragment)
assigns to the fragment a color and a depth value (this values will
be used in the last steps of the rendering process to discard some
fragments). The quadratic asymptotic complexity probably is asso-
ciated with the color attribution (which traverses a matrix, that is
quadratic).

Besides, the obtained results are not obvious, because when a
shader source code is analyzed it induces the programmer to think
that its asymptotic complexity is constant, which this work showed
that it isn’t. An example of a simple vertex shader is shown in
Listing 4.

Listing 4: Example of vertex shader
1 un i fo rm mat4 uMVPMatrix ;
2 a t t r i b u t e vec4 a P o s i t i o n ;
3
4 void main () {
5 g l P o s i t i o n = uMVPMatrix ∗ a P o s i t i o n ;
6 }

Since all the shaders (of the same type) present the same asymp-
totic complexity, a way to compare their performance is by their
equations and coefficients. This analysis can be done related to the
entire rendering process and only specifically to the vertex and frag-
ment shaders. The comparison can be done to different shaders and
to the same shader, to see if it was optimized or not. Another pos-
sible comparison is between devices, as it was done in this work.
The iPhone 5s, that is from a more recent smartphone generation,
had better performance than the Nexus 4.

As seen on this work, when rendering objects in a scene with a
shader, different performances were obtained for each device. This
way, these performance differences could influence the user expe-
rience while playing a game. The rendering in some devices are
expected to be smoother than in others. This is because the up-
date frame rates are affected differently, depending on the hardware
configuration used.

Another important contribution was the automation of most of
the asymptotic complexity analysis, like the shader implementation
basis and curve adjustments. Like this, such a procedure can be
reproduced quickly and reliably. As future work, would be interest-
ing to implement more shaders, specially for iOS platform and also
compare more devices.

References

ARNAU, J., PARCERISA, J., AND XEKALAKIS, P. 2013. Teapot:
A toolset for evaluating performance, power and image quality

2http://www.opengl.org/wiki/Fragment Shader

on mobile graphics systems. International Conference on Super-
computing (June), 37–46.

COMPAQ COMPUTER CORPORATION. 1999. Graphics Perfor-
mance: Measures, Metrics and Meaning.

DROZDEK, A. 2002. Estrutura de Dados e Algoritmos em C++,
2 ed. Cengage Learning, Sao Paulo, Sao Paulo.

EVANGELISTA, B., AND SILVA, A. 2007. Criando efeitos fotore-
alistas e no- fotorealistas para jogos. SBGames.

GUHA, S. 2011. Computer Graphics Through OpenGL, 1 ed. CRC
Press, Boca Raton, Florida.

LEITHOLD, L. 1994. O Calculo com Geometria Analitica, 3 ed.
Harbra, Sao Paulo, Sao Paulo.

MOLLER, T. A., HAINES, E., AND HOFFMAN, N. 2008. Real-
Time Rendering, 2 ed. CRC Press, Boca Raton, Florida.

NUNES, G., BRAGA, R., VALDETARO, A., RAPOSO, A., AND
FEIJO, B. 2011. Ganho de performance e economia de largura
de banda com o uso do tessellator. SBGames.

RORRES, A. 2001. Algebra Linear com Aplicacoes, 8 ed. Book-
man, Porto Alegre, Rio Grande do Sul.

SANDBERG, R., AND ROLLINS, M. 2013. The Business of Android
Apps Development, 2 ed. Apress, New York, New York.

SHERROD, A. 2011. Game Graphics Programming, 1 ed. Course
Technology, Boston, Massachusetts.

SINTHANAYOTHIN, C., WONGWEAN, N., AND BHOLSITHI, W.
2012. Interactive virtual 3d gallery using motion detection of
mobile device. International Journal of Advancements in Com-
puting Technology 4, 7, 239–250.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 865

