
Creating and Designing customized and dynamic game interfaces
using smartphones and touchscreen

Mateus Pelegrino Leonardo Torok Esteban Clua Daniela Trevisan

 Universidade Federal Fluminense - UFF - IC - Medialab
Email: {mateuspelegrino, leotorok, danielatrevisan}@gmail.com; esteban@ic.uff.br

Abstract

When playing a game, the user expects an easy and
intuitive interaction. Current controllers are physical
hardware components with a default number, size and
position of buttons. While in some cases a game uses a
few controllers buttons, in others it requires all buttons
and even a combination of them. Besides that, the use
of few buttons in a physical controller (i.e. controllers
that can’t change buttons position) may not lead to a
great usability. This work extends a previous research,
where we developed an adaptive control using a
touchscreen device with machine learning techniques
to gather input, rearrange the size and position from
buttons. In this work we propose the concept of context
sensitive adaptability, which can add, remove, change
position or size of a button, depending of a game
context. This is a new paradigm to game developers, so
they can create a controller that fits to his game and
adapts to pre-defined situations, e.g. an enemy
approaching might be a reason to increase one buttons
size, or a mini-game inside the game might change all
the buttons for a moment. To use this concept, we
developed a game to deal with the controller, adapting
to game context.

Keywords: Adaptive interfaces; adaptive game
control; context sensitive adaptability; game context;
game input; mobile; touchscreen.

1. Introduction
Gameplay experience is one of the most important
aspects when playing a video game. This process
includes several characteristics that will determine the
final impression and engagement of the user. Among
many aspects, the challenges must be correctly
balanced or the user can get frustrated by excessive
roughness or become bored because the game isn't
challenging or compelling enough. The gameplay
experience is implemented by the game rules, which is
executed through the game interface. In this sense, this
interface must be engaged with the user experience,
stimulating the user to play and commands his in-game
avatar. While several games became infamous because
of unresponsive controls or clunky and unintuitive
control schemes, others are remembered for the
opposite: fast, responsive, intuitive, efficient and
innovative control schemes, creating an enjoyable
experience that made those games memorable. But the
evolution of video game control schemes was not just

motivated by the desire to improve the reliability of
game input. With the evolution in computer graphics,
games became more complex. While in the beginning
of electronic games simply being able to control a large
pixelated character on screen to accomplish a simple
objective was the top-notch experience, the gaming
experience evolved. Games started to narrate complex
stories and present variated gameplay style and 3D
environments to be explored. A more complex world
needed a more complex control scheme to allow the
player to perform a large range of actions.
Unfortunately, an unwanted side effect became clear:
the control schemes became less intuitive. An Atari
2600 game controller in the 1970s had a stick and a
single action button. Nowadays, a modern game
controller has more than 15 different buttons and it is
not unusual to find games that use all of them, each
one with a different control scheme. Even seasoned
gamers would not be able to learn these new complex
control schemes by themselves, a fact reflected on the
long tutorial levels that most games present to the user:
a first level, usually pretty long, that is entirely
dedicated to introduce the user to the game controls,
showing how to perform actions (that can depend on
the current context) and navigate themselves in the
game environment. As a comparison, that kind of level
was extremely rare in older games, that simply relied
on the user learning the controls simply by exploring
the controller. Nowadays, trusting on the user learning
by himself the controls would simply lead to
frustration.

The lost of intuitiveness was perceived by

game developers and companies behind video game
consoles and major game publishers. To regain the
simplicity that allowed a new user to simply “get a
game and play it”, new control methods were explored,
like motion controls (Wii, PS Move, Kinect), sensors
(Wii Balance Board) and others. In a similar time
frame, the rise of smartphones started, quickly
followed by tablets. The computing power on these
mobile devices quickly improved, allowing the launch
of several mobile games with complex visuals and
refined interactions.

A major difference was that these devices rely

primarily on touch input, done on a large screen that
normally covers the entire device front. Besides that,
they gained several different sensors, initially to
perform specific objectives, like GPS (for map
applications) and accelerometer (automatic screen

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 819

rotation). Game developers soon started using these
data sources as input methods, like using the player's
location to trigger actions in games or using the
accelerometer to control a game avatar using motion
controls. These new technologies, both on mobile
devices and in traditional gaming machines, were the
starting point for a new wave of games using more
intuitive control schemes, bringing millions of players
that did not wanted to learn complex control schemes
to electronic games. Unfortunately, the new control
schemes have limitations. Traditional controllers, while
complex, are reliable and precise. The new methods
suffered with lack of precision in command input,
slower reaction time and limitations when trying to
map complex actions. The problem was clear in several
mobile games, that started using virtual buttons
displayed on its touchscreen to simulate a traditional
controller and all of its input options. This solution had
some problems. The biggest one is that a virtual
controller on a screen lacks the tactile feedback of a
real controller, where the user can feel the button. It's
not uncommon to miss virtual keys when trying to
input commands or having to look constantly to the
virtual gamepad to confirm where the virtual buttons
are. But a virtual controller has some advantages too.
Every game on a mobile device can have its own
virtual controller that will have the exact amount of
buttons needed for that game. A traditional controller
need to have all necessary buttons for any game, in a
way that most of the games will use only a portion of
these buttons, leading to an unnecessarily cluttered
interface.

The above conclusions were the start of this

work, a proposed new interface for electronic games,
that has the large input options of a regular gamepad
but with the flexibility of a virtual controller. This way,
the new controller has all the varied input capabilities
of the regular controller but is capable of having only
the buttons that are necessary for the current game.
This new input method aims to replace the traditional
video game joystick with a touchscreen device with a
virtual controller on its screen, creating a less cluttered
and more intuitive interface to play video game.
Beyond the fact of having only the necessaries buttons,
the interface is capable to have only the required
buttons for each moment. It can be exemplified by a
game that initially use only some buttons and a long of
the game, the character learns extra skills, and new
buttons are needed. Instead of displaying a useless
button, minimizing the useful portion of screen and
probably minimizing the size of all buttons to fit on
screen and even inducing to a bad usability, our work
suggests a new paradigm that provide the controller
necessary to a game in each situation. In this approach,
the game developer is able to deal with the controller at
any time, to change the interface to fit to the game,
creating an adaptive interface related to the game
context.

Contributions: This work proposes a framework
which permits the game developer to construct and/or
adapt the control of digital games on touch screen
mobile dynamically. The framework is adaptable,
allowing virtual keys to be proper adjusted in the
device based on game context in order to change
dynamically some control attributes such as create,
delete, resize and/or define a new position for a button.
The control and the game are implemented as a case
study of this new way of interaction based on game
context.

Paper summary: the remainder of this paper is
organized as follows. Section 2 presents some related
works on mobile devices as inputs and adaptive
interfaces and Section 3 describes the framework
architecture. Section 4 presents the case study. Finally,
in Section 5, the conclusions and future topics to
research are discussed.

2. Related Works

As this work use a mobile device as input to games that
has the controller adapted dynamically, the related
works are subdivided in two subsection : Mobile
devices as input and adaptive interfaces.

2.1 Mobile devices as input

Mobile phones have specific hardware (camera,
accelerometer, GPS, bluetooth and so on) with lots of
them being different from the ones found in traditional
game platforms, like video games and PCs. For this
reason, these devices bring new forms of user
interaction [Joselli et al. 2012a] and some of them will
be detailed in this section to provide an useful
background for this work.

Nowadays, smartphones have reliable speech

recognition which can be used for game input. This
type of voice recognition is still a processing expensive
task in this kind of devices. However, there are other
forms of speech recognition in mobile phones, like the
use of a speech server using voiceXML. The use of
voice in mobile games, and in games in general, has
been widely explored. In Zyda et al. [2007] voice in
mobile games is explored using a voiceXML server.
Zyda et al. show the application of voice in different
aspects of the game: for game command input, for
chatting in a multiplayer game and for accessing
exclusive content in a game.

Mobile phone touch screen devices are very

common. Most devices that have such features possess
few buttons, with almost all input made by touch. This
way, mobile touchscreen games must be designed to
accept most of their input by touch, that will be be used
in games in a similar way to mouse clicks on a regular
computer, allowing developers to make different types
of mobile games based on virtual buttons.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 820

Consequently, the screen can draw buttons and use it to
simulate button input [Joselli et al. 2012b]. Another
type of input is through touch gestures, as presented in
a First Person Shooter mobile game [Wei et al. 2008].

Several researches in the field of human

interaction have been developed to use the mobile
devices as well as their sensors. As a result, game
applications are employed to help rehabilitation or as a
complementary therapy, instead of being used for fun
[Golomb et al. 2010; Burke et al. 2009; Laikari 2009;
Brandao et al. 2010]. In human interaction research
field, two groups are well explored: sensors and
computer vision. In Stenger et al. [2010], computer
vision is adopted, so that it can recognize a pattern to
be employed as a player's input.

 Mobile phones are already been proposed as
input for simulations. The Poppet Framework [Vajk et
al. 2008] can be used as a simulation control that can
send and receive data information to and from
simulation, respectively. To perform this, the
framework uses Bluetooth communication. The
movement applied to the mobile phone, detected by its
accelerometer, is sent to a central control server that
does the player’s avatar movement.

Malfatti et. al [2010] propose the BlueWave

framework for using mobile phones as simulation input
through Bluetooth technology. BlueWave is
implemented using Java technology, requiring a java
enabled mobile phone. Unfortunately, the disadvantage
of the proposed framework is that it uses the mobile
phone hardware keypad for control input, which can be
completely different from a mobile phone to another
(and is not valid for more modern devices, that does
not have physical keys). In this case, a key layout that
could works well for a mobile phone could not work
appropriately for another one, causing frustration for
the player.

2.2 Adaptive Interfaces

An adaptive user interface is an interactive software
system that improves its ability to interact with a user
based on partial experience with that user [Langley
1997]. Adaptation of interactive systems describes
changes of the interface that are performed to improve
the usability or the user satisfaction.

 The observation of user behavior is a
prerequisite for performing adaptations. Based on an
observation of basic events, such as button presses,
speech input, or internal state changes, user preferences
are derived. Different algorithms extract information
from these basic events, such as preferences of the user
or a prediction of the most likely following user action.

As computer systems are getting more and

more used by different type of people, considering age
and experience in this field, researches about interfaces

that try to help the users and improve the usability are
always on focus. So, Rogers et al. [2010] developed
models that treat uncertain input touch and use this to
deal with the handover of control between both user
and system. They demonstrate a finger map browser,
which scrolls the map to a point of interest when the
user input is uncertain. Keeping the same goal, but in a
different way, Weir et al. [2012] used Machine
Learning approach for learning user-specific touch
input models to increase touch accuracy on mobile
devices. They proposed mapping data or touch location
to the intended touch point, based on historical touch
behavior of a specific user.

Bi and Zhai [2013] conceptualized finger touch input
as an uncertain process, and used statistical target
selection criterion. They improve the touch accuracy
using a Bayesian Touch Criterion and decrease
considerably the error rate. But, even improving the
accuracy in a higher level, the user keeps missing the
buttons and, the interface needs to calculate the
intended target.

Personalized inputs have been commonly

used, for example key-target resizing on soft keyboards
[Baldwin and Chai 2012], but this type of adaptability
has some disadvantages, as the needs of using only on
meaning of process language, and it just adapt
according to model of language and of user typing
behavior. Our work provides a framework for adaptive
controller, which allows game developers to design a
game controller that best fit to each game's context.
The developer, in addition to create the game, can
change the controller. These changes are executed in
real-time, due some moments, like a mini-game inside
the game(e.g. Mario Party) or an enemy approaching.
So, from these contexts, the developer can decide what
the controller might looks like, for example, he can
decide to change completely the layout, add, remove,
increase or decrease some buttons.

This work is an extension of Zamith et al.

[2013] where a framework for building mobile game
controls adaptive is presented. In this previous work,
the adaptability was related to machine learning and
statistical analysis over the inputs gathered by the
client. To realize this type of adaptability, the client
sends the buttons pressed and the mistaken buttons.
With these data, the server ran the k-means algorithm
[Smola and Vishwanathan 2008] and suggests where
each buttons should stay to increase the button's hit
rate. The major difference between this work and
Zamith et al. [2013] is in how the adaptability works,
one in the game and other in the client/server, which
the adaptability is extremely different because one uses
the game context and the other uses history of touches
on buttons and wrong touches.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 821

3. The Proposed Framework

The proposed framework can be divided in three main
blocks: client, server and game, as presented in Figure
1. In this division, each one has a particular and
necessary main functions. The client is responsible for
all data acquisition, which in our proposal corresponds
to a mobile device. The data can be acquired by
accelerometer and touch in buttons that are, first of all
designed by the game developer and then dynamically
drawn at the touch screen, through the game context.
The server is responsible for delivering data between
client and game. To perform its function, the server
synchronizes the game and the controller state. And
lastly, the game is connected with the server in order to
update the current state and to inform its new state to
the server. Fig. 1 illustrates our proposed framework.

Figure 1: Framework Architecture

In this work, the client is based in Zamith et
al. [2013], which is a software that runs on the device
used by the player to interact with games, but the
connection method used differs from the previous,
where it was TCP/IP and Bluetooth. This framework,
provides a connection between client and server only
using Bluetooth. Since the mobile device is able to
play sound, vibration as well as render, these features
are also employed by client component in order to
provide feedbacks to the player.

The server component is responsible for

processing the user connection requests and the data
input. It works as a layer between the game and the
game control. In this architecture, these data are
received by the server and sent to the game. The server
synchronizes, for each frame, the game state with the
controller state.

The game, in this case, is the most important

component. Inside the game loop, when the game
updates, it is able to send it's context to the server. So,
for each frame, it can send or not the context, asking
the client to update or not the interface. We pre-defined
four methods that the game is capable to call according
to its context. The methods are: create, remove, change
size and change position of a button. So, in one step,

the game is able to call all four methods and multiple
times of them, allowing to change the role interface.

In order to make all methods to work in any

device, the game does not know the screen resolution,
working only with percentage of resolution and the
client apply this value to it's screen. The position and
size of the game cannot extrapolate screen size,
causing loss of useful area. So, we estimated and do
not permit that a button exceed the size of 25% of the
screen. This value is very high and was empirically
estimated to prohibit that a button gets too large and
then cause an usability problem. If a button stays
extremely large, the other ones that borders it may not
increase their size in case of this large one does not
decrease. This rule is important because a button
cannot overwrite the other ones, so it can just increase
size, change position or even create a new button if it
won't overwrite any part of some button.

The client, as mentioned above, is responsible

for sending input data to the server, which transfers it
to the game. The game executes its game loop and
when updating the state, if it is in context of modifying
the controller's interface, the server receives this
information from the game and transfer to the client.
Then, the client analyze if it is possible perform this
change, and do it or don't, according to the established
constraints. After rendering the new interface, the
client can also present a feedback, such as a sound or
vibration. This loop remains until the client ask for
disconnect .When this happens,the server informs to
the game, which closes and disconnect. This sequence
is made in every game that is developed with our
framework. The unique deviation is if the interface
should or not be modified on both game(when it
request) and on mobile(when it can or not adapt).

Each button of the interface is represented by

a finite-state machine (FSM), according to Figure 2.
There are four states, which coincides with the four
methods that our framework implements, and they are
C, R, P and D. The initial state is C, which means the
state of button creation. There are also the state R, that
represents resize, P that is the position change state,
and D the delete state. As their names suggests, every
button begin as a C and can stay forever as C, but if the
game asks for resize the button, state R is achieved,
even as the state P can be achieved if the game asks for
change the current position of this button. Even in
cases that a same button comes back again to the
interface, we assume that a new button is created and
then it's state is C.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 822

Figure 2: Button FSM

3.1 Framework Application

This framework is used to give the game the chance of
"preview the future" and then help the gamers to
achieve more points, increase accuracy, provide a
better use of the mobile screen showing and using only
buttons that has meaning in the immediate situation of
the game, beyond others advantages. This might be a
great tool to some specific group of users, for example
old adults and users impaired disabled.

 The feature that allow a button to increase the
size some seconds before it is needed to be pressed,
might help users that want to play, but for some
disability takes longer to recognize what action is
needed or even knows what have to press but click
outside the button due the small button size. The
features of create and delete a button help to construct
a succinct interface, due the ability to show just the
useful buttons and hide them when not necessary
anymore. The repositioning is good to associate the
game to the controller more intuitively, for example
games that the user needs to press the button in a
sequence as the Genius or mini games like Mario
Party, which the gamer often needs to press two
buttons (e.g. A and B), he could press each button with

one hand's finger instead of the same finger pressing
two buttons, improving his result and the game
playability. Figure 3 illustrates this example, where the
left interface is the usual, but as the game requires just
A and B,in a specific moment, all the unecessary
buttons are excluded, creating a more a intuitive and
clean interface.

4. Case Study

The proposed framework was implemented using the
Java language, being developed as a library that can be
added to any game project and allows the game to
collect the input data from the joystick and to perform
modifications in the controller’s layout dynamically
during the gameplay interaction. All requests for
controller changes will be passed to the mobile
component that will evaluate if the change is possible
and will try to perform it as best as it can. This kind of
decision is made in the controller to guarantee that the
layout won’t achieve an inconsistent configuration like
buttons that overlap with each other or that are
rendered out of the screen. An example of this kind of
intelligence would be if the game requests that a button
increases its size by a factor of 2. Instead of denying
the request, the controller will grow the button as much
as it can without causing the overlap, effectively trying
the best it can to follow the commands given by the
game.

To demonstrate our work and generate a real

study case, it was developed a game to make use of the
proposed framework, called Aliens Front. This game is
a 2D adventure, shown in Figure 4, where the player
controls a warrior and has to pass through a horde of
enemies. As usual, the player is capable of hitting with
a sword to destroy enemies, that will be trying to
destroy him with their weapons as well. The player
will have to react fast to avoid threats and hit enemies.
Special power-ups will be available in some parts of
the games to perform a stronger attack that is capable
of destroying several enemies. These kinds of
characteristics allows several possible improvements as
we will see next.

Figure 3: Basic interface on the left and the interface adapted when just buttons A and B are required

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 823

Figure 4: Aliens Front game

In this game, the control scheme uses a
directional button or D-Pad, an attack button and a
power-up button, used to activate the special power-up
when it is available, positioned following a traditional
joystick layout, with the D-pad at the left side of the
screen and the action button in the right side, all of
them positioned close to the bottom of the screen. The
game uses the framework, calling the libraries methods
to control and communicate with the virtual joystick.
The first step that the game accomplishes is to initialize
the Bluetooth library and wait for a controller. After
the virtual controller, running on the mobile device,
successfully connects to the PC, the game is notified
by the framework. With the connection established, the
game can define, using the proper classes Joystick and
Button provided by the framework, the position and
amount of buttons on the controller. The mobile device
will receive this data and display the buttons in the
correct positions. It’s important to remember that the
game can request at anytime that the controller wants
to remove or add new buttons or change the position or
size of any of them. This kind of flexibility allows the
game to not only create an ideal layout but to change it
at any moment to adapt the controller to the challenges
on the game.

Figure 5: Default controller

Aliens Front makes use of this characteristic
by initializing a normal controller with a D-Pad and an
attack button, presented in Figure 5. In this game, it’s
very important to be able to quickly evade enemy fire
and contact. To help the player with this task, often
complicated on sections full of enemies, the game

determines the best escape route for the player and
grows the buttons on the D-Pad that represents the best
directions to avoid the hazard. The decision is simple:
if the hazard comes from the right side of the screen in
the player direction, he will need to evade vertically, so
the D-Pad will present bigger buttons for “Up” and
“Down”, as shown in Figure 6. If the danger comes
from behind or above, it will be necessary to move the
character horizontally, resulting in bigger buttons for
“Left” and “Right” like Figure 7. These adaptations
will probably happen without the player even noticing,
but they demonstrate how the developer can use the
ability to change the controller to improve chances of
success for the player.

Figure 6: Controller vertically adapted

However, there is another capacity of the
controller being actively used by the controller. When
describing the control requirements for this game, it
was necessary to use a D-Pad and two action buttons:
attack and power-up. But the game actually initialized
the controller with a single action button used to attack
with the sword. That’s because while the attack button
will be used pretty much during the entire game, the
power-up button only is useful when the player gets
one and, after using its single powerful magic, it won’t
be needed until another power-up is available. So, the
game will only add a power-up button when the player
can use it, as Figure 8, and will remove the button as
soon as it is no longer needed. A simpler interface, that
only contains the necessary buttons for the given
gameplay section, results in a more intuitive control
scheme and a more casual-friendly game. Of course,
this is a simple example, but in more complex games
that use sometimes 8 or 10 buttons the capacity of
displaying only the necessary buttons for a section can
simplify considerably the interface and provide more
screen space for the buttons that will be really used in a
given moment.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 824

Figure 7: Controller horizontally adapted

All of these changes are simple to be
implemented on the game. The only work needed is to
call the methods from the framework to request a
change in the controller. The bluetooth
communication, serialization of data and all the
necessary steps to the pass the changes to the controller
are handled in the framework, allowing the game
developer to concentrate on its own logic and in
determining how it wants the controller to be in order
to provide the best gameplay experience customized
for its needs.

Figure 8: Controller with all buttons

5. Conclusions and Future Works

Nowadays, several ways of user's input are being
presented by the game industry to attract more players
enhance the immersion during the gameplay. And
actually, some games have a complex input system,
which may avoid users to play. As this work presents,
using a mobile device as the game input, which is a
hardware that is known by the user, and making it the
most simple possible at the game context and even
helping the gamer in specific moments, can give
opportunity to users that may avoid complex input
system to try and possibly enjoy playing games using
their mobile devices. And, this could eliminate the
enter barrier found in novice game players.

This work shows how the game developer can
create the specific controller to his game, and then take
advantage of that, modifying the layout according to
the game context. This feature can be used in different
ways, focusing in help users and change buttons'
layout. And this is a property that, is not seen in

traditional game controllers and many related works on
game input.

 The authors would like to investigate in the
future, how this framework behaves in different kind of
users applying an usability test varying the age, sex,
experience with games and mobile devices. In the field
of accessibility, an investigation of how this kind of
control could improve the game interaction of older
adults and users with disabilities that have some motor
skills limitations or even by augmenting the gameplay
experience of such users.

As this work is an extension of an previous
work, this framework might be unified with the
previous to originate a better game input, taking
advantage not only by game context but also by history
of touches, using machine learn techniques.

 The authors also pointed the study of other
ways of adaptability, changing not only the button size
and position, but also the shape. This would be a great
advance, including the study about user and interface
behave after modify shapes of buttons.

Acknowledgements

The authors gratefully acknowledge NVIDIA,
FAPERJ, CNPq and CAPES for the financial support
of this work.

References

BALDWIN, T., AND CHAI, J., 2012. Towards online adaptation

and personalization of key-target resizing for mobile
devices. In IUI ’12, 11–20.

BI, X., ZHAI, S., 2013. Bayesian Touch – A Statistical

Criterion of Target Selection with Finger Touch. ACM
UIST ’13 51-60.

BRANDAO, A., TREVISAN, D., BRANDAO, L., MOREIRA, B.,
NASCIMENTO, G., VASCONCELOS, C., CLUA, E. AND
MOURAO, P., 2010. Semiotic inspection of a game for
children with down syndrome. In: Games and Digital
Entertainment (SBGAMES), 2010 Brazilian Symposium
on, nov. 2010, 199 –210.

BURKE, J. W., MCNEILL, M., CHARLES, D., MORROW, P.,

CROSBIE, J. AND MCDONOUGH, S., 2009. Serious games
for upper limb rehabilitation following stroke. In:
Proceedings of the 2009 Conference in Games and
Virtual Worlds for Serious Applications, ser. VS-GAMES
’09. Washington, DC, USA: IEEE Computer Society,
103–110. [Online] Available from:
http://dx.doi.org/10.1109/VS-GAMES.2009.17
[Accessed 20 July 2014].

GOLOMB, M. R., MCDONALD, B. C., WARDEN, S. J.,

YONKMAN, J., SAYKIN, A. J., SHIRLEY, B., HUBER, M.,
RABIN, B., ABDELBAKY, M. E. NWOSU, M., BARKAT-
MASIH, M. AND BURDEA, G. C., 2010. In-home virtual
reality videogame telerehabilitation in adolescents with

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 825

hemiplegic cerebral palsy. Archives of Physical Medicine
and Rehabilitation, vol. 91, no. 1, 1 – 8.e1. [online]
Available from:
http://www.sciencedirect.com/science/article/pii/S00039
9930900817X [Accessed 21 July 2014].

JOSELLI, S., JUNIOR, J.R.S., ZAMITH, M., CLUA E. AND SOLURI,

E., 2012, A content adaptation architecture for games.
In: SBGames. SBC.

JOSELLI, M., SILVA JUNIOR, J. R., ZAMITH, M., SOLURI, E.,

MENDONCA, E., PELEGRINO, M. AND CLUA, E. W. G.,
2012. An architecture for game interaction using mobile.
In: Games Innovation Conference (IGIC), 2012 IEEE
International, August 2012, 73–77.

LANGLEY, P. Machine learning for adaptive user interfaces.

1997. In KI-97: Advances in artificial intelligence,
Springer Berlin Heidelberg. 53-62.

LAIKARI, A., 2009. Exergaming - gaming for health: A bridge

between real world and virtual communities. In:
Consumer Electronics. ISCE ’09. IEEE 13th
International Symposium on, may 2009, 665 –668.

MALFATTI, S. M., DOS SANTOS, F. F. AND DOS SANTOS, S. R.,

2010. Using mobile phones to control desktop
multiplayer games. In: Proceedings of the 2010 VIII
Brazilian Symposium on Games and Digital
Entertainment, ser. SBGAMES ’10. Washington, DC,
USA: IEEE Computer Society, 74–82.

ROGERS, S., WILLIAMSON, J., STEWART, C., AND MURRAY-

SMITH, R., 2010. Fingercloud: uncertainty and autonomy
handover in capacitive sensing. In ACM CHI ’10, 577–
580.

SMOLA, A. AND VISHWANATHAN, S. Introduction to Machine

Learning. Cambridge University, UK (2008) 32- 34.

STENGER, B., WOODLEY, T. AND CIPOLLA, R., 2010. A vision-

based remote control. In: Computer Vision: Detection,
Recognition and Reconstruction, 233–262.

VAJK, T., COULTON, P., BAMFORD, W. AND EDWARDS, R.,

2008. Using a mobile phone as a wii-like controller for
playing games on a large public display. Int. J. Comput.
Games Technol., vol. 2008, January 2008, 4:1–4:6.
[Online]. Available from:
http://dx.doi.org/10.1155/2008/539078 [Accessed 21 July
2014]

WEI, C., MARSDEN, G. AND GAIN, J., 2008. Novel interface for

first person shooting games on pdas. In: OZCHI ’08:
Proceedings of the 20th Australasian Conference on
Computer-Human Interaction, OZCHI. New York, NY,
USA: ACM, 113–121.

WEIR, D., ROGERS, S., MURRAY-SMITH, R., AND LÖCHTEFELD,

M., 2012. A user-specific machine learning approach for
improving touch accuracy on mobile devices. In ACM
UIST ‘12, 465-476.

ZAMITH, M., JOSELLI, M., SIVA JUNIOR, J., PELEGRINO, M.,

MENDONÇA, E., CLUA, E. AdaptControl: An adaptive

mobile touch control for games. In SBGames 2013, 137-
145.

ZYDA, M., THUKRAL, D., JAKATDAR, S., ENGELSMA, J.,

FERRANS, J., HANS, M., SHI, L., KITSON, F. AND
VASUDEVAN, V., 2007. Educating the next generation of
mobile game developers. IEEE Computer Graphics and
Applications, vol. 27, no. 2, 96, 92–95.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 826

