
Evolving the Behavior of Autonomous Agents in Strategic Combat
Scenarios via SARSA Reinforcement Learning

Clauirton A Siebra Gutenberg P Botelho Neto

Federal University of Paraiba, Dept. of Informatics, Brazil

Figure 1: Snapshots of experiments, using the BWAPI for Starcraft Brood War, where behaviors of autonomous agents are
evolved via Reinforcement Learning techniques.

Abstract

Computational agents of commercial Real Time

Strategic (RTS) games mostly have their behaviors

designed via simple ad hoc and static techniques,
which require manual definition of actions. Thus, such

agents are not able to adapt themselves to diverse

situations and their behavior becomes predictable

along the game, enabling human players to eventually

discover the strategies used by them. This work

proposes a modeling approach for the use of SARSA

reinforcement learning technique applied to combat

situations in RTS games. This technique enables that

computational agents evolve their combat behavior

according to actions of opponents. The performance of

this technique was evaluated using a Starcraft based

simulator. The experiments showed that agents were
able to improve their behavior, developing knowledge

to decide about the best actions during different game

states and using this knowledge in an efficient way to

obtain better results in later battles.

Keywords: combat, reinforcement learning, SARSA,

strategic games

Authors’ contact:
{clauirton,gutenberg}@di.ufpb.br

1. Introduction

Several games, especially Real Time Strategic (RTS)

games, use to apply a simple set of ad hoc rules to

define the behavior of computational agents. Thus,

such agents do not usually present more complex and

unpredictable behaviors, mainly when we consider

such behaviors along the time. Furthermore, a common

strategy to increase the game challenge is to enable that

computational agents have advantages that are not

available to human players [Dimitriadis 2009; Sailer et

al. 2007; Sandberg 2011; Walther 2006]. Common

examples of this strategy are: use of extra resources

such as more combat units and structures, bonus that

turn the actions of computational agents more efficient,

perception of additional information that cannot be

perceived by human players such as to see throughout

fog of war and so on [Micic et al. 2011; Pérez 2011;

Rormark 2009; Walther 2006].

In this context, several recent researches in IA
applied to RTS games are considering machine

learning techniques to increase the intelligence and

adaptability of computational agents considering that

they use the same information than human players.

That means, without additional advantages. Thus,

computational agents should be able to adapt

themselves to opponents’ actions and test new

strategies along the game [Aha et al. 2005; Andersen et

al. 2009; Balla and Fern 2009; Dimitriadis 2009;

Jaidde et al. 2011; Kok 2008; Ponsen 2004; Ponsen

and Spronck 2004; Rormark 2009].

Even considering the importance of combat in

modern RTS games, we see a lack in works that

explore the opportunities of this area [Neto and Siebra

2012]. The majority of the IA researches for RTS

games are focused on more generic techniques or

problems that do not consider conflicting actions, such

as high level planning and resources gathering.

This work analyses the efficiency of applying

reinforcement leaning approaches, in special the

SARSA(State-Action-Reward-State-Action) technique,
in strategic combat situations. In order, combat is an

interesting field for IA research once this situation

presents several complex features such as the need of

interaction and cooperation between joint units and the

presence of opponent units that have conflicting goals.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 802

The remainder of this work is organized as follows:

Section 2 discusses important related works that have

similar aims than our proposal. Section 3 details our

approach, presenting the SARSA technique and how

we have modelled the learning module in accordance

with the RTS combat scenario. Section 4 describes the

experimental scenarios, which have used a Starcraft

based simulator, and the obtained results. Finally,

section 5 concludes this work with the main remarks
and research directions.

2. Related Work

According to [Ponsen 2004; Ponsen and Spronnck

2004] about 80% of commercial RTS games use

deterministic techniques, such as scripts and finite state
machines, which require a manual definition of

behavior aspects of computational agents. In this

scenario, game developers should think about all

situations and possible game states where agents could

act. Based on this limitation, Ponsen and Spronnck

[2004] proposed the use of an offline evolutionary

learning algorithm to evolve the use of dynamic

scripts. In such approach, a new script that control the

behavior of agents is created based on a set of pre-

defined rules. The probability of choosing rules is

based on weight values and such weights are modified
according to the results of their use during the game.

This technique of dynamic scripts was used in several

combat situations in the Wargus environment and it

obtained good results. After that, some of the resultant

behaviors were included in the set of rules, once its

application was offline.

A different approach is presented in Ponsen et al.

[2005]. The authors use the case-based principles to

save past situations of previous games as cases. These

cases contain variables that represent the situation of

each game and such cases are evaluated according to
the scores of players in different moments of the game.

This learning strategy was also evaluated in the

Wargus environment and the results show that the

agents that used this strategy defeated their opponents

in about 80% of the games, even when they play

against distinct opponents. However, the results of this

work are not clear once they do not show the exact

efficiency of agents when several games are

sequentially played against different opponents [Kok

2008].

The work of Kok [2008] used a BDI architecture to

create intelligent agents. The idea was to use a set of

pre-defined rules, or static scripts, and provide agents

with the ability of selecting the best rules to be applied

in each moment. This selection ability was

implemented via different techniques, such as the

Monte Carlo algorithm. The experiments were

executed in the Bos Wars RTS game and this approach

had good results when used against different agents

controlled by static scripts. However the same good

results were not repeated when opponents were

controlled by dynamic scripts.

Another work that proposes a learning framework

for RTS games was presented in [Andersen et al.

2009]. This framework was specified in multiple

layers, where the first layer accounts for identifying the

opponent profiler, the second layer accounts for high

level strategies, where rewards are received based on
the profile previously identified, and several low level

actions layers. As learning technique, this framework

used the SARSA and Q-Learning algorithms to control

agents against static agents. In the majority of the

experiments, agents implemented according to this

framework had better performances than their static

opponents and Q-Learning obtained better results than

SARSA in such situations.

Laursen and Nielsen [2005] investigated the use of

game trees during RTS combat situations using the

Wargus environment. The proposal aimed at
calculating the possible future alternatives of the game,

considering the current state, future actions of

opponents and future actions of the own agent. Thus,

this agent could decide for the best theoretic action to

perform. This approach is very common in turn-based

games, such as Chess. To be used in real time games,

the tree formation was modified via the insertion of

timestamps that store the number of the game cycle

associated with each state of the tree. Then, the

children of a specific node always have a timestamp

higher than its parent and this timestamp indirectly
represents the time required to complete the action

related to this node. In this way, if the current state has

a timestamp of 100 and its action spends 15 time units,

then its child will have a timestamp of 115. Several

experiments were carried out in the Wargus

environment in different combat situations and also

using different sequence of rules. The results showed

the complexity in creating good strategies to combat

situations using trees. The authors did not find

sequence of rules or strategies that could be optimal in

all situations, once the features of each experiment
(type of opponents, environment, etc.) had a

considerable influence on the results. Despite the

problems, the game tree technique was able to defeat

the embedded IA of Wargus.

Dimitriadis (2009) explored the use of

reinforcement learning in RTS games using the Glest

game as environment. The state representation in this

work was carried out via four discrete variables:

number of units killed by the player, number of units

produced by the player, resources recovered by the

player and a game cycle counter. A reward function
was based on the score of each player. Two techniques

were used during the experiments: SARSA (online)

and LSPI (offline). These techniques were used in two

Glest scenarios: Duel (medium difficulty level) and

Tough Duel (high difficulty level). Both SARSA and

LPSI obtained good results in simple scenarios, but

they were not able to discover the winner strategy in

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 803

more complex scenarios. According to the authors, the

main reasons for this negative result were the

“subversive” advantages given to Glest agents by the

game. Authors also commented that the simple

representation of states may be the reason for the lack

in convergence to a stable policy.

Balla and Fern [2009] proposed an intelligent

planning based approach to control the computational
agents in a RTS game during combat situations. The

proposal is based on concepts of unit groups. For each

decision moment, the game considers the alive units

and an online planning is carried out to define abstract

actions to groups. This planning is executed until the

next decision moment. Two abstract actions were

defined. Join(G), where G represents a set of groups, is

an action that forces the groups G to move to the

groups centroid location. In this way, the idea of this

function is to form a bigger and compact group. The

Attack(f,e) function, where f is an joint group and e is

an opponent group, indicates that f must move against
e to attack it. The authors do not define individual

behavior to each group unit, so that these behaviors are

controlled by the IA of the game. This strategy was

evaluated in the Wargus environment, considering 12

different scenarios. The results were positive and the

planning techniques were able to find winner strategies

in all scenarios.

The work of Sandberg [2011] proposes the use of

Multi-Agent Potential Fields (MAPF) to control the

formation of units during combats in RTS games.
Genetic algorithms were used to select fields’

parameters that ensure the best quality of the results.

Using this strategy, agents are able to observe the

current state and move themselves to a location that

returns the higher positive value for them. The

proposal was validated in the BWAPI-Starcraft

environment. The author used this technique to control

the Terran group, using eight different potential fields

defined via equations whose parameters are defined via

genetic algorithms. The experiments were executed in

diverse combat scenarios and the agents were able to
defeat the embedded IA of Starcraft in both situation:

when the opposite team was composed of same units

and when it was composed of different units.

Jaidee, Muñoz-Avila and Aha [2011] proposed the

use of reinforcement learning via the use of case-based

learning to Goal-Driv4en Autonomy (GDA) agents.

The idea of a GDA agent is to execute a specific action

in the environment and calculate the difference

between the real result and the expected result. This

information is stored as cases and the learning

algorithm in GDA must be able to learn the best goals
during the game via the analysis of these cases.

Authors defined five possible goals to be performed by

agents in two different maps against two other agents

that were respectively implemented using the Q-

Learning and the traditional GDA approaches. Positive

results were obtained against the Q-Learning agent.

However, this performance was not repeated against

the GDA agent. However, the authors say that the

performance of their proposal becomes better along the

time when more cycles of the game are carried out.

Micic et al. [2011] analyzed the application of

SARSA reinforcement learning in combat situations in

the Starcraft: Brood War game. Two situations were

considered: Dragoon vs. Zealot and 4 Draggons vs. 4

Zealots. The idea was to verify if the use of

reinforcement learning is able to improve the behavior
of Dragoon units so that they defeat their opponents

(Zealot units). Compared to zealots, dragoon units fire

slower and has an attack optimized against only large-

sized units. Thus, we can consider the Zealot units as

the favorite in such battle. However, the victory of

Dragoon units is possible if they use the kiting strategy.

This means, they must maintain a long distance of their

opponents so that they can attack while avoid counter-

attacks. In this case, the aim of the learning technique

is to learn this strategy. In the single agent experiment,

the rate of victory was 60%. However, in the

multiagent experiment, the rate of victory was only
32%. Table 1 stresses some of the main features of our

analysis.

Table 1. Summary of the comparative analysis among AI

approaches for computational agents control in RTS games.

Ref Learning Validation

in combat

Enviro

nment

Technique

1 Yes, offline Yes Wargus
Evolutionary

algorithms

2 Yes, offline No Wargus
Case based

reasoning

3 Yes, offline No
Bos

War

Monte Carlo

applied to

dynamic scripts

4 Yes, online No
Tank

General

Q-Learning and

SARSA

5

Yes, along

game state

evaluation

Yes Wagus
Game tree with

timestamps

6
Yes, offline
and online

No Glest
LPSI and
SARSA

7 No Yes Wagus Planning

8

Yes, but to

only adjust

field values

Yes BWAPI Potential fields

9 Yes, online Yes Wagus

Case based

learning to

Goal-Driven
autonomy

10 Yes, online Yes BWAPI

SARSA with

variations for
each scenario

 This table shows that several AI techniques have

been applied to provide learning abilities to

computational agents of RTS games. However, few of

them were validated in combat situations. Another

important point is related to the use of SARSA

approach. We have found that three works have used

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 804

this learning technique. In the first work [Andersen et

al. 2009], SARSA was only used in an initial test and,

after that, the authors started to use Q-Learning based

on the better results of this latter approach. In the

second work, the problem modelling was very abstract

so that SARSA did not present good results in several

game situations [Dimitriadis 2009]. The unique work

that evaluated SARSA in specific combat situations

was [Micic et al. 2011]. However, its authors decided
to modify the SARSA modelling to each test scenario,

so that the results cannot be generalized to be used in a

commercial game. Furthermore, only two scenarios

were used during the tests and the technique only

presented good results in the simpler scenario. Based

on the analysis of these works, we argue that SARSA

was not extensively and correctly explored, so that we

focused our approach on this technique.

3. SARSA Based Combat Modelling

Our proposal has five fundamental aspects: the

environment used during the implementation and

validation, the state representation, the possible actions

of agents and the leaning technique. Each of these

aspects is detailed along this section.

3.1 Environment

The environment used in this work was the BWAPI,

which presents several advantages, mainly related to

the support to definition of IA modules that directly

runs inside the Starcraft: Brood War, one of the most

popular RTS game. The validation in this environment

is also interesting because we can test our ideas against

the IA of a real commercial game.

3.2 State Representation

The state representation is fundamental to the success

of any AI modelling, once agents use this

representation as a form to understand its current game

situation and, consequently, select the appropriate

actions at each moment. However, this representation

cannot contain so many details because the search

space tends to exponentially increase, creating

problems to the learning processes.

 The combat situation does not have a pattern to

represent states in RTS games. Thus, we have analyzed
the domain and identified possible situations for

combat units in the environment. The idea was to

select a set of variables that could provide enough

knowledge to agents, at the same time that the use of

these variables in the learning process does not

negatively affect the performance of the agent,

considering the real time feature of the system.

 The representation contains six variables and each

of them has three possible values. Thus, the total

number of states is 729 (36). The variables and their

possible values are:

 Life: represents the current life points of the

agent. Possible values are low (less than 1/3),

medium (between 1/3 and 2/3) and high (more

than 2/3);

 Enemies that can be attacked: represents the

amount of enemies that can be attacked by the
agent from its current position. This means,

the attack does not require additional moving

actions. Possible values are 0, 1 and 2 or

more;

 Enemies that can attack: represents the

amount of close enemies that can attack the

agent in its current position. Possible values

are 0, 1 and 2 or more;

 Enemies attacking: represents the amount of

enemies that are currently attacking the agent.

Possible values are 0, 1 and 2 or more;

 Close joint units: represents the amount of

joint units close to the agent. The close joint

units are those that are in a specific

neighborhood area of the agent. This area is

defined by the game and depends on the

maximum attack distance of each unit

weapon. Possible values are 0, 1 and 2 or

more;

 Medium life of close enemies: represents the

medium life of enemies that are close to the

agent. Possible values are low (less than 1/3),
medium (between 1/3 and 2/3) and high (more

than 2/3).

 We argue that this representation is appropriate

once it enables that an agent has a general sense of the

battle. For example, the agent is able to know if it is

trapped around enemies, if enemies are in good or bad

situations, if there are joint units that could assist it, if

it is in risk to die soon and so on.

3.3 Agents Actions

The amount of possible actions that can be carried out

for an agent also affects its search space. Thus,

similarly to the state representation, we need to abstract

these actions to decrease the amount of possible

actions.

 In RTS, for example, the amount of possible

actions that could be carried for an agent was estimated

in 1500 [Aha et al. 2005]. This estimation considers

actions related to battle, resource gathering and

construction of buildings. However, even considering
just battle actions, this number is still intractable. Just

to set a comparison, a Chess player has about 30

possible actions at each turn.

The approach used in our work was to consider

actions in a high level of abstraction, which define

general behaviors. Thus, low level actions are not

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 805

considered in the learning process. The next actions

were defined to agents, together with the low level

actions that compose them:

 Attack: the agent must engage in an offensive

attitude, looking for the maximum damage to

opponents. To that end, the following

priorities were defined in order of importance:

o Attack closer enemies with less life;

o Attack enemies that are attacking the
agent;

o Attack enemies that are already

being attacked by joint units;

o Attack closer enemies;

o If no enemies are closer to the

current position, the agent tries to

move to some attack position.

 Support: the gent is more worried in assisting

its joint units. To engage in this attitude, the

next priorities are defined:

o Search for closer joint units with less
life. If the agent has some assistive

action (e.g. cure), this action is

executed. Otherwise, the agent attack

the closer enemy that has the joint

unit as target;

o Try to move in formation. This

means, move to the centroid of the

closer joint units to increase the

cohesion;

o If no joint units are close, then try to

move to a position that allows an

attack action;

 Retreat: the agent engages in a retreating

attitude to preserve its survival. To that end, it

leaves the offensive attitude and tries to move

to a secure local. This means, the agent looks

for a position that it can reach inside a specific

time interval and where there are fewer

enemies that could attack it.

 These actions represent just a small percentage of

all possible actions that an agent could execute during

the game. However, when combined, they present a
good variety of behaviors to each agent.

3.4 SARSA Reinforcement Learning

The learning technique used in our implementation was

SARSA, a variation of the Q-Learning reinforcement

learning strategy. As Q-Learning, SARSA ensures the

convergence to an optimal policy. This means, it

always ensures the choice for the best action in each

state. SARSA uses state-action pairs Q(s,a) to

represent the expected result of the action a at the state

s. This set of pairs is updated according to the next
function:

Q(s,a) = Q(s,a) + (r + Q(s’,a’) – Q(s,a))

 In this function, (0 1) represents the

learning rate of the system, (0 1) represents the

discount factor that means the importance given to

future actions, r represents the received reward and s’

represents the new state of the environment when the

action a’ is executed in the next iteration. Thus, the

value Q(s’,a’), related to the next action, is directly

used to update the Q table. The SARSA algorithm is

specified as:

1. Start Q(s,a) = 0 to all state actions pairs (s,a);

2. At the state s0, select a possible action a0;

3. To each t = 0, 1, 2…;

3.1. Execute action at;

3.2. Receive reward r;

3.3. At the state st+1, select a possible action

at+1;

3.4. Update Q(st, at) using the update

function;

Note that the environment of a RTS game is

multiagent. However, this proposal does not consider

the use of multiagent reinforcement learning (MARL).
The reason is the exponential increase of the search

space of MARL in practical applications, according to

the number of agents. In addition, the current MARL

approaches do not ensure the convergence to optimal

policies for joint behaviors. On the other hand, our

approach considers a light notion of cooperation

between agents. In order, this notion of cooperation is

fundamental among agents of a team, once if agents act

completely independent, there is a high chance that

they execute conflicting actions, decreasing the

efficiency of the team.

A strategy to consider the teamwork aspect is via

the reward function. Our proposal implements this

strategy via the specification of the next function:

(iI hi,t - iI hi,t+1)+(100*nt) - [(vt - vt+1)+(100*mt)]

 In this function, I represents the set of close

enemies at the moment t, hi,t+1 represents the life of the

unit i at the moment t+1, hi,t represents the life of the

unit i at the moment t, nt represents the amount of died
enemies between the moments t and t+1, vt+1 represents

the life of the agent at the moment t+1, vt represents

the life of that the agent has at moment t, mt is 1 if the

agent died between the times t and t+1, otherwise mt
is 0. This function considers all the life points that are

lost for all close enemies of the agent, counting the
damage caused by joint units and given bonus for each

died enemy. Thus, if the agent decides for an action

that enables that its joint units can be more effective,

this action will be rewarded. The penalty occurs if the

agent dies after deciding for an action.

 Our work uses the same Q table to all units of the

same type (e.g. Terran Marines or Protoss Zealots).

This is useful because enables that each agent uses the

knowledge acquired by other similar agents,

accelerating the learning process. Another advantage is

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 806

that, as each player normally uses in each attack

several units of different types, the need of memory

will be decreased once we do not need to individually

store a different Q table to each unit during the game.

BWAPI enables the control of the game frame to

frame. The use of just a frame is not enough to

evaluate the result of an action. Thus, our work also

proposes the relation of a time unit t to a pre-defined
amount of frames. This amount must be bigger enough

to enable the evaluation of an agent action, but it

cannot be so longer because the agent will maintain the

execution of the same action and will not be able to

react to new perceptions of the game. The interval of

the time used in our work was 20 frames. Thus, if the

moment t occurs at the frame 80, the moment t+1 will

occur at the frame 100.

 The choice of an action by the agent is given via

-greedy [Watkins 1989], with value equals to 0,1. Our

SARSA version defines the discount factor as 0,9 and

the learning rate as 0,1. Using these values, we tried
a balance between the need of exploring the

environment and taking advantage of the knowledge

acquired from previous executions.

4. Experiments

The experiments were carried out using the Starcraf:

Brood War game, via battles of native AI agents

against agents using the SARSA based proposal. These

battles used different maps, which are specified just to
battle situations. This means, the maps did not contain

buildings and resources to be collected by agents. The

scenarios also presented distinct initial configurations

regarding formation of both teams.

 The main aim of the evaluations was to show that

this proposal is able to evolve the computational agents

behavior, which initially do not have specific

knowledge of the game, during combat situations so

that along the time they can be able to defeat their

opponents in distinct situations. We also tried to use
results of similar evaluations presented in the related

work, so that we could have a basis for comparison. In

all tests, 5 set of 100 battles were carried out. This

means, the agent learning occurred along 100 battles

and, at the end, the knowledge tables and the whole

process were restarted.

4.1 Evaluation 1 - Protoss Dragoon x Protoss
Zealot

This test is similar to the presented in Micic et al.

[2011], where its agent controls a Dragoon unit of the
race Protoss, while the native AI controls the Zealot

unit. The Zealot unit is a stronger unit once it has more

attack capacity than the Dragoon. However, Zealot can

only attack close opponents.

This test requires that the agent learns to execute a

kitting strategy once it is impossible that the Dragoon

wins a “face-to-face” battle. Then, the Dragoon needs

to learn to keep distance and use long distance shots,

avoiding that the Zealot decreases this distance.

 Table 1 presents the percentage of wins obtained by

the agent after 20, 50 and 100 battles. It shows that in

this simple situation the agent is able to quickly learn
the best strategy to defeat its opponent, even just after

20 disputed battles. In all test sets, the agent showed

that its efficiency is improved along the remainder 100

battles and this result shows that it is in a continuous

process of learning. In all results, the agent also

presented best results than the results of Micic et al.

[2001], where the best result was 72% of victories at

the same situation.

Table 2: Results of evaluation 1

Set Wins after

20 battles

Wins after

50 battles

Wins after

100 battles

1 90% 94% 96%

2 90% 94% 96%

3 85% 94% 97%

4 85% 92% 96%

5 75% 86% 93%

 Figure 2 shows the amount of total wins obtained

by the agents considering the 5 tests sets. This means,
if the agent losses the first battle in all 5 evaluation

sets, the Cartesian value will be (0,1). If the agent wins

three times the first battle in all 5 evaluation sets, then

the Cartesian position will be (3,1). This idea is

repeated to all 100 battles of each evaluation set,

generating the line in the graph below. This graph also

shows a straight line that represents the trend of wins.

Thus, for this scenario, this trend line shows the

improvement of the agent efficiency along the time and

the usefulness of the acquired knowledge.

Figure 2: Graphic representation of wins in the evaluation 1

4.2 Evaluation 2 – 4 Protoss Dragoons x 4
Protoss Zealots

This evaluation was also carried out in [Micic et al.

2011] and it is similar to the previous scenario.

However, the agents now need to consider the need of

cooperation between them, rather than just engaging in

the behavior discussed in the previous scenario (kitting

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 807

strategy). This means each agent of a team needs to

assist their joint units during the battle. Thus, this

multiagent situation is more complex and the aim of

this evaluation is to check if our learning proposal

maintains the efficiency showed in the single agent

scenario. Furthermore, this multiagent scenario is more

common in real game situations.

 Table 3 presents the results obtained in this

scenario. The numbers of this table shows that the
increase of the situation complexity also increases the

difficulty in finding the appropriate strategy to its

behavior. Thus, the learning process is longer and

positive results require more time to appear. Apart this

fact, the agent had a relatively rapid learning, obtained

more than 50% of wins in four evaluation sets after 20

games. In all cases, we had a better efficiency with the

increase of the number of battles and, after 100 battles,

the agent always obtained victories. The agent also

presented better results than the work of Micic et al.

[2011] that modified its modelling to consider this

situation. Ever after this modification, the results
showed only 32% of wins.

Table 3: Results of evaluation 2

Set Wins after

20 battles

Wins after

50 battles

Wins after

100 battles

1 35% 62% 76%

2 90% 92% 93%

3 65% 78% 88%

4 60% 68% 77%

5 60% 74% 84%

 The next graph (Figure 3) also shows that there is a

trend in the number of wins in accordance with the

number of battles, as in the previous case.

Figure 3: Graphic representation of wins in the evaluation 2

4.3 Evaluation 3 - 3 Zerg Hydralisks x 3 Terran
Vultures

This evaluation represents a balanced combat situation.

The Hydralisks from the Zerg race are units very

similar to the Vultures from the race Terran. Both units

are able to long distance attacks and the attack range of

Vultures is a bit longer than the Hydralisks range. Both

units also have the same amount of life points and

similar DPS (damage per second). In order, the

Hydralisk attack causes half of the damage of a Vulture

attack, although the Hydralisk executes the double of

attacks than a Vulture in the same time. To win a

battle, it is necessary to intelligently coordinate the

moving of joint agents and the choice of their targets.

 In this scenario, where agents have very similar

attack conditions, the SARSA agents were able to learn

an appropriate strategy, so that, at the end of 100

battles, they won the majority of these battles against
their opponents in all evaluation sets (Table 4).

Table 4: Results of evaluation 3

Set Wins after

20 battles

Wins after

50 battles

Wins after

100 battles

1 40% 46% 54%

2 50% 68% 71%

3 65% 70% 75%

4 45% 58% 76%

5 30% 40% 56%

 Following the results of the previous experiments,

this scenario also presented a positive learning trend

(Figure 4), so that the number of wins was proportional

to the number of battles. At the end of 100 battles, the

agent obtained a positive average of 66,4% of wins.

Figure 4: Graphic representation of wins in the evaluation 3

4.4 Evaluation 4 – 1 Protoss Draggon + 1
Protoss Zealot x 3 Terran Marines + 1 Terran
Medic

This situation places two strong units of the Protoss

race, one Dragoon and one Zealot, against one Medic

and three Marines that are the basic combat units of the

Terran race. The Dragoon and Zealot are able to easily

defeat the three Marines. However, in this situation,

the presence of a Medic requires a change in the

strategy. The reason is the ability of the Medic in

curing its joint units. Thus, the Dragoon and Zealot

must learn that, to have some probability of winning,

they must focus their attack on the Medic unit, rather

than the Marines, ever if they become easy targets
during some time interval. Then, after eliminating the

Medic, they can attack other units (Marines). Table 5

shows that the agents were able to learning this

strategy and improve their performance in this

scenario.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 808

Table 5: Results of evaluation 4

Set Wins after

20 battles

Wins after

50 battles

Wins after

100 battles

1 20% 28% 46%

2 50% 52% 58%

3 35% 58% 60%

4 40% 62% 69%

5 15% 38% 48%

Although the agent finished the 100 battles with a

slight negative retrospect in two evaluation sets, the

average number of wins, considering the five

evaluation sets, was 56,2%. The main reason was the

complexity of this scenario, where the agent required a

higher number of battles to be able to develop a winner

strategy.

Even considering the higher complexity of this

scenario, the agents were able to present a continuous

learning behavior (this means, to attack the Medic unit)

as shows the learning trend line in the graph below

(Figure 5).

Figure 5: Graphic representation of wins in the evaluation 4

4.5 Evaluation 5 – 2 Terran Vultures + 1 Terran
Marine x 2 Zerg Hydralisks + 2 Zerg Zerglings

This evaluation shows that the modelling proposal also

enables the learning in situations with different types

of agents. As discussed during the Evaluation 3, the

Vultures are basically equivalent to the Hydralisks. The

Marine unit is an unit stronger than a Zergling,

however it is considered inferior against two Zerglings.
Thus, the Terran units have an initial disadvantage and,

to win the battle, they must efficiently coordinate their

attacks to overcome the higher offensive power of the

opponents. Note that this case does not present an

obvious strategy to be used. Table 6 shows the results

for this scenario.

Table 6: Results of evaluation 5

Set Wins after

20 battles

Wins after

50 battles

Wins after

100 battles

1 30% 40% 48%

2 35% 42% 48%

3 30% 38% 46%

4 25% 40% 52%

5 25% 36% 45%

 The results of this table show that in fact this is the

most complex learning situation to the agents.

However, we can still note an evolution of the agents

along the ongoing battles. This fact is interesting

because SARSA agents compose the weaker team, but

they are able to acquire almost 50% of the victories

after 100 battles, overpassing this value in one of the

evaluation set. At the end, the agents obtained an

average of 47,8% of victories. However the trend
learning line (Figure 6) shows that this behavior could

be better than 50% if we had more battles in our

experiment.

Figure 6: Graphic representation of wins in the evaluation 5

4.6 Summary

Table 7 presents the summary of the results obtained in

all testes (evaluations 1 to 5), showing the average of

the victories obtained after 20, 50 and 100 battles. This

table shows that, in all tests, the agents were able to

improve their performance along the time, always

obtaining a proportional efficiency to the number of

battles. This result stresses that in fact the agents are in

an ongoing process of learning.

Table 7: Summary of results, considering the evaluation1 to

evaluation 5

Evalua

tion

Average

wins after

20 battles

Average

wins after

50 battles

Average

wins after

100 battles

1 85% 92% 95,6%

2 62% 74,8% 83,6%

3 46% 56,4% 66,4%

4 32% 47,6% 56,2%

5 29% 39,2% 47,8%

5. Conclusion and Future Works

During the evaluations, we tried to represent several

different game situations, where our SARSA modelling
was used to evolve several races of the Starcraft: Brood

War game. These evaluations were important to show

that the SARSA modelling is eventually able to create

agents more efficient than the default Starcraft agents.

However, we cannot generalize this result to all game

situations. Independently of this generalization, the use

of adaptive/learning agents certainly brings an

additional charming to RTS games once they provides

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 809

opponents with some sense of intelligence and,

consequently, more challenging situations to human

players.

 To be in fact used in commercial games, this

learning approach should be evaluated in more

complex situations, which may require modifications

in the modelling. Thus, for future works, a proposal is

to extend the approach to other RTS game situations,
which are naturally different from the combat scenarios

discussed in this work. In this way, the agents could

play a complete game against human players and adapt

their actions regarding other situations such as

resources gathering, technological research, general

strategies and so on. This research direction presents a

huge challenge in terms of game modelling, so that this

modelling must enable that agents understand their

environment and take intelligent decisions at the same

time that the search space be maintained in a tractable

size and still supports the learning process.

Acknowledgements

The authors would like to thank the National Counsel

of Technological and Scientific Development for the

financial support to this project.

References

AHA, D. AND MOLINEAUX, M. 2004. Integrating

Learning in Interactive Gaming Simulators”. Challenges
in Game AI:: Papers of the AAAI’04 Workshop
(Technical Report WS-04-04), 2004.

MICIC, A., ARNARSSON, D. AND JÓNSSON, V. 2011.

Developing Game AI for the Real-Time Strategy Game

Starcraft. Technical Report, Reykjavik University.

ANDERSEN, K., ZENG, Y., CHRISTENSEN, D. AND

TRAN, D. 2009. Experiments with Online
Reinforcement Learning in Real-Time Strategy Games.
Applied Artificial Intelligence, Vol. 23, pp. 855-871.

BALLA, R. AND FERN, A. 2009. UCT for Tactical Assault

Planning in Real-Time Strategy Games. Proceedings of

the International Joint Conference on Artificial
Intelligence, pp. 40-45.

DIMITRIADIS, V. 2009. Reinforcement Learning in Real

Time Strategy Games Case Study on the Free Software
Game Glest. Technical University of Crete, Greece,
2009.

JAIDEE, U., MUÑOZ-AVILA, H. AND AHA, D. 2011.
Case-Based Learning in Goal-Driven Autonomy Agents
for Real-Time Strategy Combat Tasks”. ICCBR
Workshop on Case-Based Reasoning in Computer
Games.

KOK, E. 2008. Adaptive Reinforcement Learning Agents in

RTS Games. M.Sc. Dissertation. University Utrecht,

Netherlands.

LAURSEN, R., AND NIELSEN, D. 2005. Investigating

Small Scale Combat Situations in Real Time Strategy

Computer Games. M.Sc. Dissertation. University of
Aarhus, Denmark.

MICIC, A., ARNARSSON, D. AND JÓNSSON, V. 2011.
Developing Game AI for the Real-Time Strategy Game
Starcraft. Technical Report, Reykjavik University.

NETO, G. AND SIEBRA, C. 2012. Uma Proposta de

Modelagem para uso do Aprendizado por Reforço na
Definição de Táticas de Combate em Jogos de Estratégia
em Tempo Real. Proceedings of SBGames 2012,

Brasilia, Brazil.

PÉREZ, A. 2011. Multi-Reactive Planning for Real-Time

Strategy Games. M.Sc. Report. Universit Autònoma de
Barcelona, Spain.

PONSEN, M. 2004. Improving Adaptive Game AI with

Evolutionary Learning”. M.Sc. Dissertation. Delft

University of Technology, Netherlands.

PONSEN, M., SPRONCK, P. 2004. Improving Adaptive

Game AI with Evolutionary Learning. Computer Games:
Artificial Intelligence, Design and Education, pp. 389-
396.

PONSEN, M., URBAN-LEE, S., MUÑOZ-AVILA, H.,

AHA, D. AND MOLINEAUX, M. 2005 Stratagus: An
Open-Source Game Engine for Research in Real-Time
Strategy Games. IJCAI Workshop on Reasoning
Representation and Learning in Computer Games.

RORMARK, R. 2009. Thanatos – A Learning Game AI”.

M.Sc. Dissertation. University of Oslo, Norway.

SAILER, F., BURO, M., AND LANCTOT, M. 2007.

Adversarial Planning Through Strategy Simulation. IEEE
Symposium on Computational Intelligence and Games,
pp. 80-87.

SANDBERG, T. 2011. Evolutionary Multi-Agent Potential

Field Based AI Approach for SSC Scenarios in RTS
Games. M.Sc. Dissertation. IT University, Denmark.

WALTHER, A. 2006. AI for Real-Time Strategy Games.
M.Sc. Dissertation. IT-University of Copenhagen,
Denmark.

WATKINS, C. 1989. Learning from Delayed Rewards. PhD

Thesis, University of Cambridge, Cambridge United
Kingdom.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 810

