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Figure 1: Snapshots of experiments, using the BWAPI for Starcraft Brood War, where behaviors of autonomous agents are 
evolved via Reinforcement Learning techniques. 

 

Abstract 
 

Computational agents of commercial Real Time 

Strategic (RTS) games mostly have their behaviors 

designed via simple ad hoc and static techniques, 
which require manual definition of actions. Thus, such 

agents are not able to adapt themselves to diverse 

situations and their behavior becomes predictable 

along the game, enabling human players to eventually 

discover the strategies used by them. This work 

proposes a modeling approach for the use of SARSA 

reinforcement learning technique applied to combat 

situations in RTS games. This technique enables that 

computational agents evolve their combat behavior 

according to actions of opponents. The performance of 

this technique was evaluated using a Starcraft based 

simulator. The experiments showed that agents were 
able to improve their behavior, developing knowledge 

to decide about the best actions during different game 

states and using this knowledge in an efficient way to 

obtain better results in later battles. 
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1. Introduction 
 
Several games, especially Real Time Strategic (RTS) 

games, use to apply a simple set of ad hoc rules to 

define the behavior of computational agents. Thus, 

such agents do not usually present more complex and 

unpredictable behaviors, mainly when we consider 

such behaviors along the time. Furthermore, a common 

strategy to increase the game challenge is to enable that 

computational agents have advantages that are not 

available to human players [Dimitriadis 2009; Sailer et 

al. 2007; Sandberg 2011; Walther 2006]. Common 

examples of this strategy are: use of extra resources 

such as more combat units and structures, bonus that 

turn the actions of computational agents more efficient, 

perception of additional information that cannot be 

perceived by human players such as to see throughout 

fog of war and so on  [Micic et al. 2011; Pérez 2011; 

Rormark 2009; Walther 2006]. 

 

In this context, several recent researches in IA 
applied to RTS games are considering machine 

learning techniques to increase the intelligence and 

adaptability of computational agents considering that 

they use the same information than human players. 

That means, without additional advantages. Thus, 

computational agents should be able to adapt 

themselves to opponents’ actions and test new 

strategies along the game [Aha et al. 2005; Andersen et 

al. 2009; Balla and Fern 2009; Dimitriadis 2009; 

Jaidde et al. 2011; Kok 2008; Ponsen 2004; Ponsen 

and Spronck 2004; Rormark 2009]. 
 

Even considering the importance of combat in 

modern RTS games, we see a lack in works that 

explore the opportunities of this area [Neto and Siebra 

2012]. The majority of the IA researches for RTS 

games are focused on more generic techniques or 

problems that do not consider conflicting actions, such 

as high level planning and resources gathering.  

 

This work analyses the efficiency of applying 

reinforcement leaning approaches, in special the 

SARSA(State-Action-Reward-State-Action) technique, 
in strategic combat situations. In order, combat is an 

interesting field for IA research once this situation 

presents several complex features such as the need of 

interaction and cooperation between joint units and the 

presence of opponent units that have conflicting goals. 
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The remainder of this work is organized as follows: 

Section 2 discusses important related works that have 

similar aims than our proposal. Section 3 details our 

approach, presenting the SARSA technique and how 

we have modelled the learning module in accordance 

with the RTS combat scenario. Section 4 describes the 

experimental scenarios, which have used a Starcraft 

based simulator, and the obtained results. Finally, 

section 5 concludes this work with the main remarks 
and research directions.  

 

2. Related Work 
 

According to [Ponsen 2004; Ponsen and Spronnck 

2004] about 80% of commercial RTS games use 

deterministic techniques, such as scripts and finite state 
machines, which require a manual definition of 

behavior aspects of computational agents. In this 

scenario, game developers should think about all 

situations and possible game states where agents could 

act. Based on this limitation, Ponsen and Spronnck 

[2004] proposed the use of an offline evolutionary 

learning algorithm to evolve the use of dynamic 

scripts. In such approach, a new script that control the 

behavior of agents is created based on a set of pre-

defined rules. The probability of choosing rules is 

based on weight values and such weights are modified 
according to the results of their use during the game. 

This technique of dynamic scripts was used in several 

combat situations in the Wargus environment and it 

obtained good results. After that, some of the resultant 

behaviors were included in the set of rules, once its 

application was offline. 

 

A different approach is presented in Ponsen et al. 

[2005]. The authors use the case-based principles to 

save past situations of previous games as cases. These 

cases contain variables that represent the situation of 

each game and such cases are evaluated according to 
the scores of players in different moments of the game. 

This learning strategy was also evaluated in the 

Wargus environment and the results show that the 

agents that used this strategy defeated their opponents 

in about 80% of the games, even when they play 

against distinct opponents. However, the results of this 

work are not clear once they do not show the exact 

efficiency of agents when several games are 

sequentially played against different opponents [Kok 

2008]. 

 
The work of Kok [2008] used a BDI architecture to 

create intelligent agents. The idea was to use a set of 

pre-defined rules, or static scripts, and provide agents 

with the ability of selecting the best rules to be applied 

in each moment. This selection ability was 

implemented via different techniques, such as the 

Monte Carlo algorithm. The experiments were 

executed in the Bos Wars RTS game and this approach 

had good results when used against different agents 

controlled by static scripts. However the same good 

results were not repeated when opponents were 

controlled by dynamic scripts.  

 

Another work that proposes a learning framework 

for RTS games was presented in [Andersen et al. 

2009]. This framework was specified in multiple 

layers, where the first layer accounts for identifying the 

opponent profiler, the second layer accounts for high 

level strategies, where rewards are received based on 
the profile previously identified, and several low level 

actions layers. As learning technique, this framework 

used the SARSA and Q-Learning algorithms to control 

agents against static agents. In the majority of the 

experiments, agents implemented according to this 

framework had better performances than their static 

opponents and Q-Learning obtained better results than 

SARSA in such situations. 

 

Laursen and Nielsen [2005] investigated the use of 

game trees during RTS combat situations using the 

Wargus environment. The proposal aimed at 
calculating the possible future alternatives of the game, 

considering the current state, future actions of 

opponents and future actions of the own agent. Thus, 

this agent could decide for the best theoretic action to 

perform.  This approach is very common in turn-based 

games, such as Chess. To be used in real time games, 

the tree formation was modified via the insertion of 

timestamps that store the number of the game cycle 

associated with each state of the tree. Then, the 

children of a specific node always have a timestamp 

higher than its parent and this timestamp indirectly 
represents the time required to complete the action 

related to this node. In this way, if the current state has 

a timestamp of 100 and its action spends 15 time units, 

then its child will have a timestamp of 115. Several 

experiments were carried out in the Wargus 

environment in different combat situations and also 

using different sequence of rules. The results showed 

the complexity in creating good strategies to combat 

situations using trees. The authors did not find 

sequence of rules or strategies that could be optimal in 

all situations, once the features of each experiment 
(type of opponents, environment, etc.) had a 

considerable influence on the results. Despite the 

problems, the game tree technique was able to defeat 

the embedded IA of Wargus. 

 

Dimitriadis (2009) explored the use of 

reinforcement learning in RTS games using the Glest 

game as environment. The state representation in this 

work was carried out via four discrete variables: 

number of units killed by the player, number of units 

produced by the player, resources recovered by the 

player and a game cycle counter. A reward function 
was based on the score of each player. Two techniques 

were used during the experiments: SARSA (online) 

and LSPI (offline). These techniques were used in two 

Glest scenarios: Duel (medium difficulty level) and 

Tough Duel (high difficulty level). Both SARSA and 

LPSI obtained good results in simple scenarios, but 

they were not able to discover the winner strategy in 
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more complex scenarios.  According to the authors, the 

main reasons for this negative result were the 

“subversive” advantages given to Glest agents by the 

game. Authors also commented that the simple 

representation of states may be the reason for the lack 

in convergence to a stable policy. 

 

Balla and Fern [2009] proposed an intelligent 

planning based approach to control the computational 
agents in a RTS game during combat situations. The 

proposal is based on concepts of unit groups. For each 

decision moment, the game considers the alive units 

and an online planning is carried out to define abstract 

actions to groups. This planning is executed until the 

next decision moment. Two abstract actions were 

defined. Join(G), where G represents a set of groups, is 

an action that forces the groups G to move to the 

groups centroid location. In this way, the idea of this 

function is to form a bigger and compact group. The 

Attack(f,e) function, where f is an joint group and e is 

an opponent group, indicates that f must move against 
e to attack it. The authors do not define individual 

behavior to each group unit, so that these behaviors are 

controlled by the IA of the game. This strategy was 

evaluated in the Wargus environment, considering 12 

different scenarios. The results were positive and the 

planning techniques were able to find winner strategies 

in all scenarios. 

 

The work of Sandberg [2011] proposes the use of 

Multi-Agent Potential Fields (MAPF) to control the 

formation of units during combats in RTS games. 
Genetic algorithms were used to select fields’ 

parameters that ensure the best quality of the results. 

Using this strategy, agents are able to observe the 

current state and move themselves to a location that 

returns the higher positive value for them. The 

proposal was validated in the BWAPI-Starcraft 

environment. The author used this technique to control 

the Terran group, using eight different potential fields 

defined via equations whose parameters are defined via 

genetic algorithms. The experiments were executed in 

diverse combat scenarios and the agents were able to 
defeat the embedded IA of Starcraft in both situation: 

when the opposite team was composed of same units 

and when it was composed of different units. 

 

Jaidee, Muñoz-Avila and Aha [2011] proposed the 

use of reinforcement learning via the use of case-based 

learning to Goal-Driv4en Autonomy (GDA) agents. 

The idea of a GDA agent is to execute a specific action 

in the environment and calculate the difference 

between the real result and the expected result. This 

information is stored as cases and the learning 

algorithm in GDA must be able to learn the best goals 
during the game via the analysis of these cases. 

Authors defined five possible goals to be performed by 

agents in two different maps against two other agents 

that were respectively implemented using the Q-

Learning and the traditional GDA approaches. Positive 

results were obtained against the Q-Learning agent. 

However, this performance was not repeated against 

the GDA agent. However, the authors say that the 

performance of their proposal becomes better along the 

time when more cycles of the game are carried out. 

Micic et al. [2011] analyzed the application of 

SARSA reinforcement learning in combat situations in 

the Starcraft: Brood War game. Two situations were 

considered: Dragoon vs. Zealot and 4 Draggons vs. 4 

Zealots. The idea was to verify if the use of 

reinforcement learning is able to improve the behavior 
of Dragoon units so that they defeat their opponents 

(Zealot units). Compared to zealots, dragoon units fire 

slower and has an attack optimized against only large-

sized units. Thus, we can consider the Zealot units as 

the favorite in such battle. However, the victory of 

Dragoon units is possible if they use the kiting strategy. 

This means, they must maintain a long distance of their 

opponents so that they can attack while avoid counter-

attacks. In this case, the aim of the learning technique 

is to learn this strategy. In the single agent experiment, 

the rate of victory was 60%. However, in the 

multiagent experiment, the rate of victory was only 
32%. Table 1 stresses some of the main features of our 

analysis.  

 
Table 1. Summary of the comparative analysis among AI 

approaches for computational agents control in RTS games. 

  

Ref Learning Validation 

in combat 

Enviro

nment 

Technique 

1 Yes, offline Yes Wargus 
Evolutionary 

algorithms 

2 Yes, offline No Wargus 
Case based 

reasoning 

3 Yes, offline No 
Bos 

War 

Monte Carlo 

applied to 

dynamic scripts 

4 Yes, online No 
Tank 

General 

Q-Learning and 

SARSA 

5 

Yes, along  

game state 

evaluation 

Yes Wagus 
Game tree with 

timestamps 

6 
Yes, offline 
and online 

No Glest 
LPSI and  
SARSA 

7 No Yes Wagus Planning 

8 

Yes, but to 

only adjust 

field values 

Yes BWAPI Potential fields 

9 Yes, online Yes Wagus 

Case based 

learning to 

Goal-Driven 
autonomy 

10 Yes, online Yes BWAPI 

SARSA with 

variations for 
each scenario 

 

 This table shows that several AI techniques have 

been applied to provide learning abilities to 

computational agents of RTS games. However, few of 

them were validated in combat situations. Another 

important point is related to the use of SARSA 

approach. We have found that three works have used 
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this learning technique. In the first work [Andersen et 

al. 2009], SARSA was only used in an initial test and, 

after that, the authors started to use Q-Learning based 

on the better results of this latter approach. In the 

second work, the problem modelling was very abstract 

so that SARSA did not present good results in several 

game situations [Dimitriadis 2009]. The unique work 

that evaluated SARSA in specific combat situations 

was [Micic et al. 2011]. However, its authors decided 
to modify the SARSA modelling to each test scenario, 

so that the results cannot be generalized to be used in a 

commercial game. Furthermore, only two scenarios 

were used during the tests and the technique only 

presented good results in the simpler scenario. Based 

on the analysis of these works, we argue that SARSA 

was not extensively and correctly explored, so that we 

focused our approach on this technique.  

 

 

3. SARSA Based Combat Modelling  
 

Our proposal has five fundamental aspects: the 

environment used during the implementation and 

validation, the state representation, the possible actions 

of agents and the leaning technique. Each of these 

aspects is detailed along this section. 

 
3.1 Environment 
 

The environment used in this work was the BWAPI, 

which presents several advantages, mainly related to 

the support to definition of IA modules that directly 

runs inside the Starcraft: Brood War, one of the most 

popular RTS game. The validation in this environment 

is also interesting because we can test our ideas against 

the IA of a real commercial game. 

 

3.2 State Representation 
 
The state representation is fundamental to the success 

of any AI modelling, once agents use this 

representation as a form to understand its current game 

situation and, consequently, select the appropriate 

actions at each moment. However, this representation 

cannot contain so many details because the search 

space tends to exponentially increase, creating 

problems to the learning processes. 

 

  The combat situation does not have a pattern to 

represent states in RTS games. Thus, we have analyzed 
the domain and identified possible situations for 

combat units in the environment. The idea was to 

select a set of variables that could provide enough 

knowledge to agents, at the same time that the use of 

these variables in the learning process does not 

negatively affect the performance of the agent, 

considering the real time feature of the system. 

 

 The representation contains six variables and each 

of them has three possible values. Thus, the total 

number of states is 729 (36). The variables and their 

possible values are: 

 

 Life: represents the current life points of the 

agent. Possible values are low (less than 1/3), 

medium (between 1/3 and 2/3) and high (more 

than 2/3); 

 Enemies that can be attacked: represents the 

amount of enemies that can be attacked by the 
agent from its current position. This means, 

the attack does not require additional moving 

actions. Possible values are 0, 1 and 2 or 

more; 

 Enemies that can attack: represents the 

amount of close enemies that can attack the 

agent in its current position. Possible values 

are 0, 1 and 2 or more; 

 Enemies attacking: represents the amount of 

enemies that are currently attacking the agent. 

Possible values are 0, 1 and 2 or more; 

 Close joint units: represents the amount of 

joint units close to the agent. The close joint 

units are those that are in a specific 

neighborhood area of the agent. This area is 

defined by the game and depends on the 

maximum attack distance of each unit 

weapon. Possible values are 0, 1 and 2 or 

more; 

 Medium life of close enemies: represents the 

medium life of enemies that are close to the 

agent. Possible values are low (less than 1/3), 
medium (between 1/3 and 2/3) and high (more 

than 2/3). 

 

 We argue that this representation is appropriate 

once it enables that an agent has a general sense of the 

battle. For example, the agent is able to know if it is 

trapped around enemies, if enemies are in good or bad 

situations, if there are joint units that could assist it, if 

it is in risk to die soon and so on. 

 

3.3 Agents Actions 
 
The amount of possible actions that can be carried out 

for an agent also affects its search space. Thus, 

similarly to the state representation, we need to abstract 

these actions to decrease the amount of possible 

actions. 

 

 In RTS, for example, the amount of possible 

actions that could be carried for an agent was estimated 

in 1500 [Aha et al. 2005]. This estimation considers 

actions related to battle, resource gathering and 

construction of buildings. However, even considering 
just battle actions, this number is still intractable. Just 

to set a comparison, a Chess player has about 30 

possible actions at each turn.  

 

The approach used in our work was to consider 

actions in a high level of abstraction, which define 

general behaviors. Thus, low level actions are not 
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considered in the learning process. The next actions 

were defined to agents, together with the low level 

actions that compose them: 

 Attack: the agent must engage in an offensive 

attitude, looking for the maximum damage to 

opponents. To that end, the following 

priorities were defined in order of importance: 

o Attack closer enemies with less life; 

o Attack enemies that are attacking the 
agent; 

o Attack enemies that are already 

being attacked by joint units; 

o Attack closer enemies; 

o If no enemies are closer to the 

current position, the agent tries to 

move to some attack position.  

 Support: the gent is more worried in assisting 

its joint units. To engage in this attitude, the 

next priorities are defined: 

o Search for closer joint units with less 
life. If the agent has some assistive 

action (e.g. cure), this action is 

executed. Otherwise, the agent attack 

the closer enemy  that has the joint 

unit as target; 

o Try to move in formation. This 

means, move to the centroid of the 

closer joint units to increase the 

cohesion; 

o If no joint units are close, then try to 

move to a position that allows an 

attack action;  

 Retreat: the agent engages in a retreating 

attitude to preserve its survival. To that end, it 

leaves the offensive attitude and tries to move 

to a secure local. This means, the agent looks 

for a position that it can reach inside a specific 

time interval and where there are fewer 

enemies that could attack it.   

 

 These actions represent just a small percentage of 

all possible actions that an agent could execute during 

the game. However, when combined, they present a 
good variety of behaviors to each agent.  

 

3.4 SARSA Reinforcement Learning 
 

The learning technique used in our implementation was 

SARSA, a variation of the Q-Learning reinforcement 

learning strategy. As Q-Learning, SARSA ensures the 

convergence to an optimal policy. This means, it 

always ensures the choice for the best action in each 

state. SARSA uses state-action pairs Q(s,a) to 

represent the expected result of the action a at the state 

s. This set of pairs is updated according to the next 
function: 

 

Q(s,a) = Q(s,a) + (r + Q(s’,a’) – Q(s,a)) 
 

 In this function,  (0    1) represents the 

learning rate of the system,  (0    1) represents the 

discount factor that means the importance given to 

future actions, r represents the received reward and s’ 

represents the new state of the environment when the 

action a’ is executed in the next iteration. Thus, the 

value Q(s’,a’), related to the next action, is directly 

used to update the Q table. The SARSA algorithm is 

specified as:  

 

1. Start Q(s,a) = 0 to all state actions pairs (s,a); 

2. At the state s0, select a possible action a0; 

3. To each t = 0, 1, 2…; 

3.1. Execute action at; 

3.2. Receive reward r; 

3.3. At the state st+1, select a possible action 

at+1; 

3.4. Update Q(st, at) using the update 

function; 

 

Note that the environment of a RTS game is 

multiagent. However, this proposal does not consider 

the use of multiagent reinforcement learning (MARL). 
The reason is the exponential increase of the search 

space of MARL in practical applications, according to 

the number of agents. In addition, the current MARL 

approaches do not ensure the convergence to optimal 

policies for joint behaviors. On the other hand, our 

approach considers a light notion of cooperation 

between agents. In order, this notion of cooperation is 

fundamental among agents of a team, once if agents act 

completely independent, there is a high chance that 

they execute conflicting actions, decreasing the 

efficiency of the team. 
 

A strategy to consider the teamwork aspect is via 

the reward function. Our proposal implements this 

strategy via the specification of the next function: 

 

(iI hi,t -  iI hi,t+1)+(100*nt) - [(vt - vt+1)+(100*mt)]     
 

 In this function, I represents the set of close 

enemies at the moment t, hi,t+1 represents the life of the 

unit i at the moment t+1, hi,t represents the life of the 

unit i at the moment t, nt represents the amount of died 
enemies between the moments t and t+1, vt+1 represents 

the life of the agent at the moment t+1, vt  represents 

the life of that the agent has at moment t, mt is 1 if the 

agent died between the times t and t+1, otherwise mt 
is 0. This function considers all the life points that are 

lost for all close enemies of the agent, counting the 
damage caused by joint units and given bonus for each 

died enemy. Thus, if the agent decides for an action 

that enables that its joint units can be more effective, 

this action will be rewarded. The penalty occurs if the 

agent dies after deciding for an action.  

 

 Our work uses the same Q table to all units of the 

same type (e.g. Terran Marines or Protoss Zealots). 

This is useful because enables that each agent uses the 

knowledge acquired by other similar agents, 

accelerating the learning process. Another advantage is 
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that, as each player normally uses in each attack 

several units of different types, the need of memory 

will be decreased once we do not need to individually 

store a different Q table to each unit during the game.  

  

BWAPI enables the control of the game frame to 

frame. The use of just a frame is not enough to 

evaluate the result of an action. Thus, our work also 

proposes the relation of a time unit t to a pre-defined 
amount of frames. This amount must be bigger enough 

to enable the evaluation of an agent action, but it 

cannot be so longer because the agent will maintain the 

execution of the same action and will not be able to 

react to new perceptions of the game. The interval of 

the time used in our work was 20 frames. Thus, if the 

moment t occurs at the frame 80, the moment t+1 will 

occur at the frame 100. 

 

 The choice of an action by the agent is given via        

-greedy [Watkins 1989], with value equals to 0,1. Our 

SARSA version defines the discount factor  as 0,9 and 

the learning rate  as 0,1.  Using these values, we tried 
a balance between the need of exploring the 

environment and taking advantage of the knowledge 

acquired from previous executions. 
 

4. Experiments 
 

The experiments were carried out using the Starcraf: 

Brood War game, via battles of native AI agents 

against agents using the SARSA based proposal. These 

battles used different maps, which are specified just to 
battle situations. This means, the maps did not contain 

buildings and resources to be collected by agents. The 

scenarios also presented distinct initial configurations 

regarding formation of both teams. 

 

 The main aim of the evaluations was to show that 

this proposal is able to evolve the computational agents 

behavior, which initially do not have specific 

knowledge of the game, during combat situations so 

that along the time they can be able to defeat their 

opponents in distinct situations. We also tried to use 
results of similar evaluations presented in the related 

work, so that we could have a basis for comparison. In 

all tests, 5 set of 100 battles were carried out. This 

means, the agent learning occurred along 100 battles 

and, at the end, the knowledge tables and the whole 

process were restarted. 

 

4.1 Evaluation 1 - Protoss Dragoon x Protoss 
Zealot 
 

This test is similar to the presented in Micic et al. 

[2011], where its agent controls a Dragoon unit of the 
race Protoss, while the native AI controls the Zealot 

unit. The Zealot unit is a stronger unit once it has more 

attack capacity than the Dragoon. However, Zealot can 

only attack close opponents.  

 

This test requires that the agent learns to execute a 

kitting strategy once it is impossible that the Dragoon 

wins a “face-to-face” battle. Then, the Dragoon needs 

to learn to keep distance and use long distance shots, 

avoiding that the Zealot decreases this distance.  

 

 Table 1 presents the percentage of wins obtained by 

the agent after 20, 50 and 100 battles. It shows that in 

this simple situation the agent is able to quickly learn 
the best strategy to defeat its opponent, even just after 

20 disputed battles. In all test sets, the agent showed 

that its efficiency is improved along the remainder 100 

battles and this result shows that it is in a continuous 

process of learning. In all results, the agent also 

presented best results than the results of Micic et al. 

[2001], where the best result was 72% of victories at 

the same situation. 

 
Table 2: Results of evaluation 1 

 

Set Wins after 

20 battles 

Wins after 

50 battles 

Wins after 

100 battles 

1 90% 94% 96% 

2 90% 94% 96% 

3 85% 94% 97% 

4 85% 92% 96% 

5 75% 86% 93% 

 

 Figure 2 shows the amount of total wins obtained 

by the agents considering the 5 tests sets. This means, 
if the agent losses the first battle in all 5 evaluation 

sets, the Cartesian value will be (0,1). If the agent wins 

three times the first battle in all 5 evaluation sets, then 

the Cartesian position will be (3,1). This idea is 

repeated to all 100 battles of each evaluation set, 

generating the line in the graph below. This graph also 

shows a straight line that represents the trend of wins. 

Thus, for this scenario, this trend line shows the 

improvement of the agent efficiency along the time and 

the usefulness of the acquired knowledge. 

 

 
 

Figure 2: Graphic representation of wins in the evaluation 1 

 

4.2 Evaluation 2 – 4 Protoss Dragoons x 4 
Protoss Zealots 
 

This evaluation was also carried out in [Micic et al. 

2011] and it is similar to the previous scenario. 

However, the agents now need to consider the need of 

cooperation between them, rather than just engaging in 

the behavior discussed in the previous scenario (kitting 
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strategy). This means each agent of a team needs to 

assist their joint units during the battle. Thus, this 

multiagent situation is more complex and the aim of 

this evaluation is to check if our learning proposal 

maintains the efficiency showed in the single agent 

scenario. Furthermore, this multiagent scenario is more 

common in real game situations. 

 Table 3 presents the results obtained in this 

scenario. The numbers of this table shows that the 
increase of the situation complexity also increases the 

difficulty in finding the appropriate strategy to its 

behavior. Thus, the learning process is longer and 

positive results require more time to appear. Apart this 

fact, the agent had a relatively rapid learning, obtained 

more than 50% of wins in four evaluation sets after 20 

games. In all cases, we had a better efficiency with the 

increase of the number of battles and, after 100 battles, 

the agent always obtained victories. The agent also 

presented better results than the work of Micic et al. 

[2011] that modified its modelling to consider this 

situation. Ever after this modification, the results 
showed only 32% of wins. 

 
Table 3: Results of evaluation 2 

 

Set Wins after 

20 battles 

Wins after 

50 battles 

Wins after 

100 battles 

1 35% 62% 76% 

2 90% 92% 93% 

3 65% 78% 88% 

4 60% 68% 77% 

5 60% 74% 84% 

 

 The next graph (Figure 3) also shows that there is a 

trend in the number of wins in accordance with the 

number of battles, as in the previous case. 

 

 
 
Figure 3: Graphic representation of wins in the evaluation 2 
  

4.3 Evaluation 3 - 3 Zerg Hydralisks x 3 Terran 
Vultures 
 

This evaluation represents a balanced combat situation. 

The Hydralisks from the Zerg race are units very 

similar to the Vultures from the race Terran. Both units 

are able to long distance attacks and the attack range of 

Vultures is a bit longer than the Hydralisks range. Both 

units also have the same amount of life points and 

similar DPS (damage per second). In order, the 

Hydralisk attack causes half of the damage of a Vulture 

attack, although the Hydralisk executes the double of 

attacks than a Vulture in the same time. To win a 

battle, it is necessary to intelligently coordinate the 

moving of joint agents and the choice of their targets. 

 

 In this scenario, where agents have very similar 

attack conditions, the SARSA agents were able to learn 

an appropriate strategy, so that, at the end of 100 

battles, they won the majority of these battles against 
their opponents in all evaluation sets (Table 4).  

 
Table 4: Results of evaluation 3 

 

Set Wins after 

20 battles 

Wins after 

50 battles 

Wins after 

100 battles 

1 40% 46% 54% 

2 50% 68% 71% 

3 65% 70% 75% 

4 45% 58% 76% 

5 30% 40% 56% 

 

 Following the results of the previous experiments, 

this scenario also presented a positive learning trend 

(Figure 4), so that the number of wins was proportional 

to the number of battles. At the end of 100 battles, the 

agent obtained a positive average of 66,4% of wins. 

 

 
 

Figure 4: Graphic representation of wins in the evaluation 3 
  

4.4 Evaluation 4 – 1 Protoss Draggon + 1 
Protoss Zealot x 3 Terran Marines + 1 Terran 
Medic 
 
This situation places two strong units of the Protoss 

race, one Dragoon and one Zealot, against one Medic 

and three Marines that are the basic combat units of the 

Terran race. The Dragoon and Zealot are able to easily 

defeat the three Marines. However, in this situation, 

the presence of a Medic requires a change in the 

strategy. The reason is the ability of the Medic in 

curing its joint units. Thus, the Dragoon and Zealot 

must learn that, to have some probability of winning, 

they must focus their attack on the Medic unit, rather 

than the Marines, ever if they become easy targets 
during some time interval. Then, after eliminating the 

Medic, they can attack other units (Marines). Table 5 

shows that the agents were able to learning this 

strategy and improve their performance in this 

scenario.  
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Table 5: Results of evaluation 4 

 

Set Wins after 

20 battles 

Wins after 

50 battles 

Wins after 

100 battles 

1 20% 28% 46% 

2 50% 52% 58% 

3 35% 58% 60% 

4 40% 62% 69% 

5 15% 38% 48% 

 

Although the agent finished the 100 battles with a 

slight negative retrospect in two evaluation sets, the 

average number of wins, considering the five 

evaluation sets, was 56,2%. The main reason was the 

complexity of this scenario, where the agent required a 

higher number of battles to be able to develop a winner 

strategy. 

 
Even considering the higher complexity of this 

scenario, the agents were able to present a continuous 

learning behavior (this means, to attack the Medic unit) 

as shows the learning trend line in the graph below 

(Figure 5). 

 

 
 
Figure 5: Graphic representation of wins in the evaluation 4 
  

4.5 Evaluation 5 – 2 Terran Vultures + 1 Terran 
Marine x 2 Zerg Hydralisks + 2 Zerg Zerglings 
 

This evaluation shows that the modelling proposal also 

enables the learning in situations with different types 

of agents. As discussed during the Evaluation 3, the 

Vultures are basically equivalent to the Hydralisks. The 

Marine unit is an unit stronger than a Zergling, 

however it is considered inferior against two Zerglings. 
Thus, the Terran units have an initial disadvantage and, 

to win the battle, they must efficiently coordinate their 

attacks to overcome the higher offensive power of the 

opponents. Note that this case does not present an 

obvious strategy to be used. Table 6 shows the results 

for this scenario. 

  
Table 6: Results of evaluation 5 

 

Set Wins after 

20 battles 

Wins after 

50 battles 

Wins after 

100 battles 

1 30% 40% 48% 

2 35% 42% 48% 

3 30% 38% 46% 

4 25% 40% 52% 

5 25% 36% 45% 

 The results of this table show that in fact this is the 

most complex learning situation to the agents. 

However, we can still note an evolution of the agents 

along the ongoing battles. This fact is interesting 

because SARSA agents compose the weaker team, but 

they are able to acquire almost 50% of the victories 

after 100 battles, overpassing this value in one of the 

evaluation set. At the end, the agents obtained an 

average of 47,8% of victories. However the trend 
learning line (Figure 6) shows that this behavior could 

be better than 50% if we had more battles in our 

experiment.  

 

 
 
Figure 6: Graphic representation of wins in the evaluation 5 
 

4.6 Summary 

 

Table 7 presents the summary of the results obtained in 

all testes (evaluations 1 to 5), showing the average of 

the victories obtained after 20, 50 and 100 battles. This 

table shows that, in all tests, the agents were able to 

improve their performance along the time, always 

obtaining a proportional efficiency to the number of 

battles. This result stresses that in fact the agents are in 

an ongoing process of learning.  
 
Table 7: Summary of results, considering the evaluation1 to 

evaluation 5 

 

Evalua

tion 

Average 

wins after 

20 battles 

Average 

wins after 

50 battles 

Average 

wins after 

100 battles 

1 85% 92% 95,6% 

2 62% 74,8% 83,6% 

3 46% 56,4% 66,4% 

4 32% 47,6% 56,2% 

5 29% 39,2% 47,8% 

 

 

5. Conclusion and Future Works 
 

During the evaluations, we tried to represent several 

different game situations, where our SARSA modelling 
was used to evolve several races of the Starcraft: Brood 

War game. These evaluations were important to show 

that the SARSA modelling is eventually able to create 

agents more efficient than the default Starcraft agents. 

However, we cannot generalize this result to all game 

situations. Independently of this generalization, the use 

of adaptive/learning agents certainly brings an 

additional charming to RTS games once they provides 
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opponents with some sense of intelligence and, 

consequently,  more challenging situations to human 

players. 

 

 To be in fact used in commercial games, this 

learning approach should be evaluated in more 

complex situations, which may require modifications 

in the modelling. Thus, for future works, a proposal is 

to extend the approach to other RTS game situations, 
which are naturally different from the combat scenarios 

discussed in this work. In this way, the agents could 

play a complete game against human players and adapt 

their actions regarding other situations such as 

resources gathering, technological research, general 

strategies and so on. This research direction presents a 

huge challenge in terms of game modelling, so that this 

modelling must enable that agents understand their 

environment and take intelligent decisions at the same 

time that the search space be maintained in a tractable 

size and still supports the learning process. 
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