
Procedural Level Balancing in Runner Games
Rubem José Vasconcelos de Medeiros

Nars Vera Studio
Tácio Filipe Vasconcelos de Medeiros

Nars Vera Studio

Abstract

Balancing a game is a long process and relies mainly on subjective
feedback from human testers and selective interpretation from game
developers. As a first step for completely automate game balancing,
we propose a methodology to algorithmically choose features and
calibrate their parameters for the procedural level generation of a
simple runner game based on testers feedback. This methodology is
used in a 30 seconds game demo with survey and each playthrough
is recorded and fed to a reinforcement learning algorithm. We show
that the average fun grade steadily grows, proving the effectiveness
of the proposed method. The collected data can be further analysed
for insights on new features and other major changes.

Keywords: Runner, Game Balancing, Game Flow, Machine
Learning

Author’s Contact:

kukamed@gmail.com
taciofvmed@gmail.com

1 Introduction

What makes games fun? The nature of fun experiences in games
has been the topic of both speculation and more systematic inquiry
for some time. There are a number of theories from psychology and
game studies focusing on the experiences of playing a game. One
pioneer work is Csikszentmihalyis concept of flow [Csikszentmiha-
lyi 1991]. When in the state of flow, a human is performing a task
such that he is fully concentrated on the task and loses his sense
of self but has a sense of full control. In order to achieve the flow
experience, the challenge of the task must be balanced accordingly.
Sweetser and Wyeth[Sweetser and Wyeth 2005] adapted Csikszent-
mihalyis concept (originally generalist) to games. They proposed
GameFlow, a measure of entertainment based on eight dimensions:
concentration, challenge, player skills, control, clear goals, feed-
back, immersion and social interaction. For this paper, we created a
basic endless runner game and added features to enhance or hinder
control, challenge or concentration.

Endless runner game is a genre of platform game in which the
player character is continuously moving forward through an endless
procedurally generated world. The simplicity of gameplay makes
it appealing for mobile platforms. Example of this genre are Cana-
balt (2009), Temple Run (2011) and JetPack Joyride (2011). Game
developers tend to balance those kind of game in favor of casual
gameplay. The wide variety of games in this genre have created a
large population of runner gamers (potential testers) and its simplic-
ity makes it easy to create new features, even to indie developers.
But balancing the new features involves playtest.

Game balancing is the adjustment of game rules for a particular
goal, generally either to make the possible choices equally fair,
mostly used in competitive games; to adapt difficulty to player
level and skill, which is known as Dynamic Difficulty Adjustment
(DDA) when the tuning happens automatically during gameplay
[Goetschalckx et al. 2010]; or simply to add, remove and improve
features to calibrate the challenges and rewards for maximum en-
joyment of most players in design time. Our goal is the latter,
although the presented algorithm could be adapted for DDA. Au-
tomation of game balancing is widely used on various game genres
[Marks and Hom 2007] [Yannakakis and Hallam 2009] [Houlette
2003].

Playtesting is meant to provide information about many aspects of a
game, especially how immersive and entertaining it can be, in order
to improve its desirability before official release. Various methods

Figure 1: Level with 5 lanes road

for obtaining consumer feedback have been applied to games with
varying success. Some methods, such as traditional usability test-
ing, can help to identify issues that prevent users from experiencing
the fun of a game. Longer surveys and larger sample population im-
prove the amount of information taken from each playtesting, but
the typically small sample sizes, particularly for indie developers,
prohibit generalization to a wider population.

In this paper, we propose a way to automatically rank all combina-
tions of features according to how fun that level is, and by doing so,
choose the combination of features with the best flow for our runner
game. After each 30 second playthrough, the player is asked to rate
how fun and how difficult was that level on a scale from 1 to 5.

The longer the test goes, the better the ranking of the feature com-
binations gets and after the playtesting is over, the developers just
have to choose the top ones and discard the other level configura-
tions.

2 Experiment Game Features Definition

There is a 3 or 5 lanes road and a character riding a tricycle is driv-
ing by. The player can input UP or DOWN commands to move
between the lanes and LEFT or RIGHT to accelerate and deceler-
ate thus moving closer the the left or right edge of the screen.

Several difficulties may happen to make a simple road trip danger-
ous or rewarding. They are features conceived based on GameFlow
dimensions:

1. Dificulty Features

Shooting drone: Comes from the right of the screen, one
per wave

Spikey drone: Comes from the left of the screen

Double of Spikey drone: Two spikey drone per wave

Double of Shooting drone: Two shooting drones per
wave

Half the distance between Spikey Drones: Time be-
tween shooting drones waves is halved

Half the distance between Shooting drones: Time be-
tween spikey drones waves is halved

2. Imersion Features

Darkness: The road is only lit by the vehicles front and
rear lights

Wind: The character is continuously and slowly pulled
to a random direction

3. Control Feature

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 797



Figure 2: Level with many active features: Darkness, Inverted con-
trols, Shooting drone and 5 lanes

Inverted controls: Up is Down and Left is Right, con-
fusing the player

4. Concentration Feature

More lanes: There are 5 instead of 3 lanes

Coins also appear on the road to be collected as reward and lur-
ing the player to a more dangerous path. One game ends after 30
seconds or when the character is knocked out by the drones.The
distance traveled and number of coins picked up are recorded and
the score is calculated based on both.

Score = Distance× (1 + Coins× 0.025)

When the game ends, a small survey form is shown, asking for the
players rate on Difficulty and Fun and a free text comment area.
Players are not interviewed but are asked to fill a form, minimizing
the interviewing effects [Mandryk et al. 2006]. Also, the highscore
is printed.

3 Fast Reinforcement Learning with
Hamming Distance

Reinforcement learning[Sutton and Barto 1998] is an area of ma-
chine learning inspired by behaviorist psychology. It allows ma-
chines and software agents to automatically determine the ideal be-
haviour within a specific context in order to maximize a cumulative
reward. A reinforcement signal is required as feedback for the agent
to learn its behaviour.

In our setup, an agent acts on choosing a combination of features
(state) for a playthrough. A reward is the feedback from the player
at the end of each playthrough (sample). We propose and test two
learning algorithms: a basic algorithm where only probabilities of
each state are updated and a fast learning algorithm where infor-
mation of the reward is propagated based on hamming distance of
features.

3.1 Basic algorithm (experiment A)

Each level generated is a combination of the 10 binary features de-
scribed in section 2. Thus, a total of 1024 different possible levels
exist. Every time someone plays the game, one of those levels is
randomly chosen and in the end, the outcome is recorded to a re-
mote server. The new recorded playthrough will update the odds
of that same level happening again. If the player rated that level as
not fun, it will be randomly selected less often and if it was rated as
very fun, the level will happen more often.

Formally, we have an initial uniform probability distribution of
states. Ci = state i

PT=0(Ci) =
1

210
∀i

A sample PT=t is defined by a pair of components: state and a
rescaled fun rate between -1 and 1 (signal) (Ci, S).

An empirical learning rate α is set to 0.003.

And the learning algorithm is as follows:

PT=t(Ci) =
PT=t−1(Ci)+α×S∑210

i=0
PT=t(Ci)

But doing this way, the learning pace is very slow because only one
state is significantly updated for each sample and a game with only
10 parameters for the level generation would require many thousand
samples and signals to make the distribution converge.

3.2 Fast learning algorithm (experiment B)

Since one state is a combination of features, its easy to measure the
similarity or distance between states. The more features they have
in common, greater is their similarity.

This is the Hamming Distance[Vijay et al. 2012]. A Hamming Dis-
tance of 1 means that only one feature from all 10 have a different
value.

HammDist(Ci, Cj) =Count of (Ci[k] 6= Ci[k]) for every k in
set of features.

With the help of this similarity function, the information gathered
by one sample may be used to update the state actually played and
also other states which share most of the features.

But the greater the distance between levels, less informative is the
score. To reflect this intuition, the learning rate α is corrected by
2−HammDist

The new algorithm is as follows:

For j from 1 to 1024: dist = HammDist(Ci, Cj)

PT=t(Cj) =
PT=t−1(Cj)+(α/2dist)×S∑210

i=0
PT=t(Cj)

4 Experimental Setup

4.1 Server/Game

The game is a client / server application. The Client is the actual
game and was developed in Unity3D 4 and all components pro-
grammed in C#

The Server is a web server that listens to HTTP request and an-
swers in JSON format with the requested data. It was developed
with Python 2.6 + Flask and MongoDB for data persistence, and
hosted on Openshift, Red Hats PaaS (Platform as a Service) cloud
environment.

The workflow of one gameplay follows these steps:

1. Player enters game URL on Web Browser and game loads.

2. Client requests level configuration id and experiment tag from
server.

3. Server randomly draws tags A or B for this playthrough (50%
chance for either).

4. Server randomly select one level configuration with odds of
each configuration according to latest probability distribution
update.

5. Server fetches top 20 highscore from all past gameplays.

6. Server responds to Client with those 3 informations.

7. Client receives configuration id and generates level accord-
ingly.

8. Player play the game for 30 seconds or character dies.

9. Survey is rendered on Client, filled by player and submitted
to Server.

10. Server records survey results and other gameplay metrics on
database.

11. Server updates probability distribution using the simple or fast
algorithm depending on which experiment tag was initially
drawn and records new distribution on database.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 798



Figure 3: Survey form

4.2 Gameplay Metrics

Besides the fun rate which is used for the learning algorithm, a
number of other metrics are sent to be recorded on the database for
future analysis.

• Score

• Fun rate (filled by player)

• Difficulty rate (filled by player)

• Free comments (filled by player)

• Commands list: a list of the commands issued by the player
and the moment it was pressed.

• Life change list: a list of the moments when the character lost
life points and the remaining life

4.3 Call for Testing

Once all the system was ready, the only thing missing was human
testers so that the needed data could be gathered. We used so-
cial network websites to promote the experiment mainly on local
gamers group and on indie game developers groups. As a result we
had 417 playthroughs in 30 hours, 218 for experiment A and 199
for experiment B.

5 Results

5.1 Evaluating Learning Algorithms

We compare the performance of two algothim described as exper-
iment A and B. Figure 4 shows the moving average (20 samples
lag) of the fun rate of experiments A and B for every playtrough (x
axis). Figure 4 also shows plot of a linear Function Fit to both data.
Note that Experiment A has ans angular coeficient of the fitted func-
tion negative and Experiment B has a positive one, indicating that
the fast learning algorithm indeed enhances learning of fun games.
As number of playthroughs progress, only fast learning score rises.
Altogh not shown on the graph, tt is expected that even the basic
algorithm with enough samples, would show an increase in average
score.

5.2 Evaluating GameFlow Features

Another result can be seen on figures 5 and 6. From the final proba-
bility distribution of features, we isolated each feature from the oth-
ers, estimating the marginal distribution of features. The result is
that features with low probability of occuring are less fun features.
Note that feature 1 in general, but when combined with feature 2 is
a little fun.

Those results are very informative of what feature works and what
doesn’t. This way, this figures can be directly used by game de-
signers to improve their games. Another informative graph can be
seen on figure 7. The same fast learning algorithm was applied
to the probability distribution, but this time updating the answers
about dificulty. The figure shows that in fact the dificulty features

Figure 4: Evolution of Player Fun Rate on Experiments

Figure 5: GameFlow Dimensions x Stantard Score grouped by
GameFlow Dimensions

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 799





sulted on a faster learning curve and actually improved overall fun
of playtesters on that particularly game. Our model learns combi-
nation of features that enhances fun and is capable of procedural
generating fun levels even if no one played and rated that particular
configuration of level parameters.

Although previous studies [Yannakakis and Hallam 2006] [Yan-
nakakis and Hallam 2007] have shown that feature selection com-
bined with preference learning contributes to the generation of
more effective fun models for the player, our model selects spe-
cific boolean game design features that game designer wants to be
tested. For a better presentation of experimental data, we have also
introduced an analysis framework to help game developers better
understand data collected in play testing and make better decisions
on improvements as features to focus on and features to remove.

It is important to note the drawbacks of the model, the framework
and the proof of concept. The effects on the learning pace by vary-
ing learning factor α, maximum Hamming Distance cut-off should
be futher investigated. Also, the algorithms are designed to cope
boolean features. Extensions are possible to cope with integer or
real numbers. This is an open possibility for futher work. Another
drawback fo the research was the limited dataset of the experiment.
Futher analysis is needed with a greater number of playtesters and
with various genres of game. The improvement of fun by the pro-
posed model showed on the results may work diferently on diferrent
genres of game. Naturally, a commercial released game have many
more features and much more complex mechanics, nonetheless the
same tools here proposed might be used, once perfected. Much can
still be done. We have only scratched the surface on this subject.

Futher work will be the main objective of the reserch: to completely
automate level generation calibration. For a completly automated
system, the the survey step must be replaced with gameplay metrics.
Game analytics of some combination of gameplay metrics would be
translated to the normalized signal used in the learning algorithm,
similarly to what was accomplished by [Pedersen et al. 2009]. This
way, a number of other analysis can still be done with the gathered
data and possibly added to the learning algorithm or affect game
design in other ways.

References

CSIKSZENTMIHALYI, M. 1991. Flow: The Psychology of Optimal
Experience. Harper Perennial, New York, NY, March.

GOETSCHALCKX, R., MISSURA, O., HOEY, J., AND GAERT-
NER, T., 2010. Games with dynamic difficulty adjustment using
pomdps.

HOULETTE, R. 2003. Player Modeling for Adaptive Games.
Charles River Media, Dec.

MANDRYK, R., INKPEN, K., AND CALVERT, T. 2006. Using
psychophysiological techniques to measure user experience with
entertainment technologies. 141–158.

MARKS, J., AND HOM, V. 2007. Automatic design of bal-
anced board games. In Proceedings of the Third Artificial Intel-
ligence and Interactive Digital Entertainment Conference, June
6-8, 2007, Stanford, California, USA, The AAAI Press, J. Scha-
effer and M. Mateas, Eds., 25–30.

PEDERSEN, C., TOGELIUS, J., AND YANNAKAKIS, G. N. 2009.
Modeling player experience in super mario bros. In Proceedings
of the 5th International Conference on Computational Intelli-
gence and Games, IEEE Press, Piscataway, NJ, USA, CIG’09,
132–139.

SUTTON, R., AND BARTO, A. 1998. Reinforcement learning: An
introduction, vol. 116. Cambridge Univ Press.

SWEETSER, P., AND WYETH, P. 2005. Gameflow: A model for
evaluating player enjoyment in games. Comput. Entertain. 3, 3
(July), 3–3.

VIJAY, R., MAHAJAN, P., AND KANDWAL, R. 2012. Hamming
distance based clustering algorithm. IJIRR 2, 1, 11–20.

YANNAKAKIS, G. N., AND HALLAM, J. 2006. Towards capturing
and enhancing entertainment in computer games. In Proceedings
of the Hellenic Conference on Artificial Intelligence, 432–442.

YANNAKAKIS, G. N., AND HALLAM, J. 2007. Feature Selection
for Capturing the Experience of Fun. In AIIDE’07 Workshop on
Optimizing Player Satisfaction, AAAI Press.

YANNAKAKIS, G. N., AND HALLAM, J. 2009. Real-time game
adaptation for optimizing player satisfaction. IEEE Trans. Com-
put. Intellig. and AI in Games 1, 2, 121–133.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 801




