
Evolving swarm intelligence for task allocation
in a real time strategy game

Anderson R. Tavares, Hector Azpúrua, Luiz Chaimowicz
Departamento de Ciência da Computação

Universidade Federal de Minas Gerais
Belo Horizonte, Minas Gerais

Abstract

Real time strategy games are complex scenarios where multiple
agents must be coordinated in a dynamic, partially observable en-
vironment. In this work, we model the coordination of these agents
as a task allocation problem, in which specific tasks are given to
the agents that are more suited to execute them. We employ a
task allocation algorithm based on swarm intelligence and adjust
its parameters using a genetic algorithm. To evaluate this approach,
we implement this coordination mechanism in the AI of a popu-
lar video game: StarCraft: BroodWar. Experiment results show
that the genetic algorithm enhances performance of the task allo-
cation algorithm. Besides, performance of the proposed approach
in matches against StarCraft’s native AI is comparable to that of a
tournament-level software-controlled player for StarCraft.

Keywords: Task allocation, Evolutionary algorithms, Real-time
strategy

Author’s Contact:

{anderson,hector.azpurua,chaimo}@dcc.ufmg.br

1 Introduction

Real Time Strategy (RTS) games have become one of the most suc-
cessful genres in the game industry. In these games, players have to
manage a limited set of resources to achieve a particular goal. Nor-
mally, RTS games are played at a extremely fast pace and players
have to deal simultaneously with several different objectives such
as collect resources, construct bases, improve technology and bat-
tle against enemy armies [de Freitas Cunha and Chaimowicz 2010].
Due to their characteristics, RTS games have also become an ex-
cellent testbed for novel research in AI [Buro 2003]. Particularly,
the coordination of multiple agents in RTS games is an interesting
research topic and has several commonalities with other complex
scenarios such as rescue operations in disaster situations [Kitano
2000] or cooperative robotics [Fierro et al. 2002].

Agent coordination in complex scenarios is one of the greatest chal-
lenges in multiagent intelligent systems and normally involves the
optimized use of resources by different agents to accomplish a
global goal. In general, complex scenarios can be considered as
those in which there is a set of agents that must perform multiple
tasks in a dynamic and partially observable environment, where ex-
isting tasks can disappear and new tasks can arrive. Thus, RTS
games have arisen as environments to evaluate multiagent coordi-
nation in complex scenarios [Weber et al. 2011].

In complex scenarios, a natural way to organize the work between
agents is to divide the goal into tasks. Therefore, task allocation
becomes an important part of the coordination problem. In this
work we propose an approach for task allocation in RTS games
that uses a genetic algorithm to adjust the parameters of Swarm-
GAP, a probabilistic, scalable algorithm for task allocation based on
swarm intelligence [Ferreira et al. 2008]. The proposed approach
is implemented on the StarCraft: BroodWar game (StarCraft for
short).

Experiments in matches against StarCraft’s native AI show that the
proposed approach outperforms random task allocation and a con-
figuration of Swarm-GAP parameters adjusted by hand. The perfor-
mance of our approach is similar to that of a tournament-level Star-

Craft bot. The genetic algorithm was useful to refine the parameters
that configure the behavior of the algorithm for task allocation.

The remainder of this paper is organized as follows: Section 2 in-
troduces some basic concepts regarding task allocation, specifically
the Extended Generalized Assignment Problem (E-GAP) and the
algorithm Swarm-GAP. Section 3 discusses some related work both
in the fields of task allocation in complex scenarios and AI for RTS
games. Section 4 discusses the adoption of Swarm-GAP for task
allocation in StarCraft, while Section 5 presents the genetic algo-
rithm used to evolve Swarm-GAP parameters. Experiments with
the proposed approach are presented in Section 6 while Section 7
brings the conclusion and directions for future work.

2 Task allocation

2.1 E-GAP

Task allocation is concerned with the assignment of tasks to agents
in order to maximize a global metric of performance, usually re-
lated to the skills of the agents to perform each task. In dynamic
environments, the task allocation problem can be modeled as an
instance of E-GAP (Extended Generalized Assignment Problem)
[Scerri et al. 2005]. E-GAP is a generalization of the GAP (Gener-
alized Assignment Problem), which is NP-complete [Shmoys and
Tardos 1993].

The E-GAP can be formalized as follows: let J be the set of tasks
and I the set of agents. Each agent i ∈ I has ri resources to
perform tasks. Each task j ∈ J consumes cij resources of agent i,
when it performs the task. Each agent i has a capability kij ∈ [0, 1]
to perform task j. Capability can be regarded as the skill of the
agent to perform the task.

An allocation matrix A|I|×|J | has its elements aij set to 1 if agent
i performs task j, and 0 otherwise. In this model, only one agent
can perform a given task instance.

In E-GAP, the total reward W is calculated as the sum of the re-
wards of the agents along t timesteps. In one timestep, the reward
is calculated considering the capability of the agents to perform the
tasks they were assigned. A delay cost dtj is applied as a penalty
for not allocating task j in timestep t, as Eq. 1a illustrates. The
calculation of rewards along the timesteps captures the dynamics
of the environment. That is, the reward in a given timestep depends
on the tasks and agents that exist in that timestep. Equation 1b de-
termines that agents must allocate tasks within their resource limits
and Eq. 1c determines that a task can be performed by only one
agent. Thus, large tasks must be broken down into smaller tasks
that can be performed by a single agent. E-GAP also considers
task interdependence, but this aspect will not be investigated in this
work.

W =
∑
t

∑
it∈It

∑
jt∈J t

kij × atij −
∑
t

∑
jt∈J t

(1− atij)× dtj (1a)

subject to: ∀t∀it ∈ It,
∑

jt∈J t

ctij × atij ≤ rti (1b)

and: ∀t∀jt ∈ J t,
∑
it∈It

atij ≤ 1 (1c)

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 789

2.2 Swarm-GAP

Swarm-GAP is an approximate algorithm for E-GAP, inspired by
the labor division of social insects. In swarms, or colonies of so-
cial insects, in general there are hundreds or thousands of members
that work without explicit coordination. From the aggregation of
individual actions of colony members, complex behaviors emerge.
One characteristic of swarms is the ability to respond to changes in
the environment by adjusting the numbers of members performing
each task.

Observations about swarm behaviors are the base of the model
presented in [Theraulaz et al. 1998], where tasks have associated
stimulus1 and individuals have response thresholds for each task.
Let sj ∈ [0, 1] be the stimulus associated with task j ∈ J and
θij ∈ [0, 1] be the response threshold of individual (agent) i to task
j. The tendency, or probability, of individual i to engage in task j
is given by Tij ∈ [0, 1], calculated using Eq. 2.

Tij =
s2j

s2j + θ2ij
(2)

In swarms, due to polymorphism, individuals may be more able to
perform certain kinds of tasks. This characteristic is captured in Eq.
3, which determines the response threshold of individual i to task j
according to its capability (kij ∈ [0, 1]) to perform task j.

θij = 1− kij (3)

The goal of Swarm-GAP, according to [Ferreira et al. 2008], is to
allow agents to individually decide which task they will engage in
a simple and efficient way, minimizing computational effort and
communication between agents. With Swarm-GAP, agents com-
municate via a token based protocol. When a given agent perceives
new tasks, it creates a token with these tasks. The agent can receive
tokens from other agents too. Either way, the holder of a token has
the right to decide in which tasks of the token it will engage. The
token with the remaining tasks is passed to a random agent that has
not held the token before. This is formalized in Alg. 1, which is
executed by each agent independently.

Algorithm 1 Swarm-GAP
When tasks are perceived: token← {perceived tasks}
When message is received: token← {received token}
for all task j ∈ token do

if random() < Tij and ri > cij then
Engage in task j
token← token \ {j}
ri ← ri − cij

end if
end for
Send token to random agent that didn’t see the token before

Although the execution of Swarm-GAP is simple, a good perfor-
mance requires a good adjustment of all parameters, i.e., we need to
model the stimuli sj for each task, the resources ri that each agent
has, as well as the capability kij and task cost cij for each agent and
task. Finding a combination of these parameters that yields a good
performance of Swarm-GAP can be very time-consuming specially
in scenarios with several different types of agents and tasks.

3 Related work

3.1 Task allocation in complex scenarios

An approximate and decentralized algorithm for the task allocation
problem in complex scenarios is LA-DCOP [Scerri et al. 2005],
where the modeling of the task allocation problem as E-GAP is

1Stimulus intensity may be associated with pheromone concentration,
the number of encounters with other individuals performing the task or an-
other characteristic that individuals can measure.

introduced. In LA-DCOP, agents communicate and achieve coor-
dination through a token-based protocol. Agents perceive tasks on
the environment and create a token containing the tasks. The token
holder, based in a global threshold, decide which tasks it should en-
gage. The token with the remaining tasks is communicated to other
agents. In LA-DCOP, agents must allocate tasks in order to maxi-
mize the sum of their capabilities, respecting their resource limita-
tions. This can be reduced to the binary knapsack problem (BKP),
which is NP-complete. Therefore, the efficiency and efficacy of
LA-DCOP depend on the method that solves the BKP. Each agent
solves several instances of the BKP during the complete process of
allocation.

Note that LA-DCOP and Swarm-GAP are very similar regarding
the token-based protocol for coordination. The difference in both
algorithms lies in the way the agents allocate tasks. In LA-DCOP,
the process corresponds to solving an instance of the BKP whereas
in Swarm-GAP, agents allocate tasks in a probabilistic fashion in-
spired by the division of labor in social insects.

The task allocation problem can also be modeled through the for-
malism of coalition formation. In this formalism, a coalition struc-
ture2 is determined and coalitions of agents are assigned to tasks.
An approach that uses this formalism is presented in [Khan et al.
2010]. The work presents a methodology to model the coalition
formation problem as a Markov Decision Process (MDP). Initially,
the generated MDP has an intractable state-action space. The au-
thors present a method for parallel partition of the generated MDP.
With this approach, efficient MDP algorithms can be applied. In
fact, authors apply this methodology to problems with hundreds of
agents and tasks. However, in [Khan et al. 2010], experiments are
performed with homogeneous agents and they must deal with a sin-
gle task type, i.e., simulated firefighting.

Branch-and-bound fast-max-sum (BnB FMS) is an anytime algo-
rithm presented in [Macarthur et al. 2011] that advances the state-
of-the-art regarding task allocation in large-scale scenarios. BnB
FMS searches the coalition structure that maximizes a global utility,
that considers the contribution of each agent in its coalition when
it performs a set of tasks. The search space explored by the algo-
rithm is pruned through the reduction of the number of tasks and
coalitions that need to be evaluated. The pruning techniques keep
the correctness and robustness of the algorithm when the environ-
ment is dynamic. Performed experiments showed that BnB FMS
reaches a global utility 23% higher than previous state-of-the-art
algorithms, with 31% less computing time and 25% less messages
than other algorithms.

As mentioned, in this paper we use Swarm-GAP to perform task al-
location, augmenting it with a genetic algorithm to tune its param-
eters. This is a novel approach, specially in a RTS game scenario,
as discussed in the next section.

3.2 Artificial intelligence in RTS games

Developing intelligent systems for RTS games is a complex prob-
lem because in addition to the intrinsic constraints of the game,
such as partial observation, there are two types of decision mak-
ing: micro-management, responsible on single unit behavior, and
macro-management, responsible for sequencing the construction of
structures, resource management and strategy, which involves task
allocation.

Probably these aspects make these type of games less researched as
their turn-based games counterparts [Fernandez-Ares et al. 2011],
despite the great number of know open challenges such as: adver-
sarial real-time planning, decision making under uncertainty of par-
tially observable domains, learning from experience or observation,
opponent modeling, spatial and temporal reasoning, navigation, re-
source management and collaboration [Lara-Cabrera et al. 2013;
Ontanon et al. 2013].

The most common techniques used to tackle these challenges are:

2A coalition structure is a partition of the set of agents. Each subset of
the partition is a coalition.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 790

• Change the current strategy in real time depending on the
game environment [Spronck et al. 2004; Ludwig and Far-
ley 2009]. This technique has the disadvantage that multiple
strategies are commonly hard-coded (scripted) and it’s known
that hard-coded preconditions hardly will cover all possible
events in the game. Another disadvantage of scripted AI sys-
tems are that there is no challenge for human players after the
user has successfully learned how the script works [Falke II
and Ross 2003];

• Use of Bayesian models. There are works implementing
Bayesian models for individual unit control [Synnaeve and
Bessière 2011b]. Their results outperform StarCraft’s native
AI and several other bots on unit micro-management. Authors
also develop other works to predict how to act in the first min-
utes of the game [Synnaeve and Bessière 2011c] and to rec-
ognize plans [Synnaeve and Bessière 2011a] using Bayesian
models;

• Potential fields, developed first as a navigation method to
avoid obstacles in robotics [Khatib 1986], can be seen used
in conjunction with a modified A* algorithm for navigation in
StarCraft game [Sandberg and Togelius 2011]. Their results
have shown improvements over the navigation using only the
A* algorithm. Other works implement potential fields in con-
junction with fuzzy measurements for micro-management in
the game Warcraft III [Ng et al. 2011]. Their results have
shown success on minimizing the score of the opponent on
most cases;

• Evolutionary algorithms. This method is generally used to
fine tune the parameters of other techniques. Works such as
[Lin and Ting 2011] and [Rathe and Svendsen 2012] imple-
ment evolutionary algorithms to improve their performance
but, in these works, the focus is on micro-management of
units. Micro-management in this case consists of unit po-
sitioning, target selection and retreat during battles. In the
present work the focus is on macro-management, which is
related to task allocation (i.e., which tasks should be done),
whereas micro-management is concerned with how the tasks
should be done.

An example of evolutionary algorithm applied to evolve parameters
of a RTS game player can be found in [Fernandez-Ares et al. 2011].
The authors define a rule-based player with adjustable parameters
that are evolved with genetic algorithm. The approach is tested in
a game called Planet Wars. In this game, a match takes place in a
map containing several planets, each one with a number of space
ships in it. The action of a player consists in sending space ships to
other planets in order to conquer them. The player who conquers
all enemy’s planets is the winner. This scenario is simpler than the
one studied here (see Section 4.1). In the scenario studied in the
present work, the number of distincts actions (or tasks) that need to
be performed is substantially higher.

4 Swarm-GAP in StarCraft

4.1 StarCraft game

StarCraft is a RTS game, whose domain presents several challenges
that share similarities with the real world, because of the character-
istics of the environment, enumerated below.

• The environment is continuous in space in time (or at least it
is discretized in a reasonably thin granularity);

• Partial observability: a player can only access information
within the visual range of his units and buildings;

• Dynamicity: due to the actions of several agents, the environ-
ment is always changing, thus demanding quick decisions;

• The decision process is sequential, meaning that actions taken
now affect which actions can be done in the future.

In RTS games, there is a need to perform hundreds of actions per
minute. The actions are divided in several tasks involving resource

gathering, creation of new units, construction of buildings and at-
tacks to the enemy [Weber et al. 2011].

StarCraft has an application programming interface, called
BWAPI [BWAPI 2011], intended for algorithm development, es-
pecially algorithms for agent coordination. BWAPI is capable of
retrieving the same information and sending the same commands a
human player is allowed in StarCraft.

In StarCraft, there are three races with different characteristics, ac-
cording to a community of gamers3: Protoss, characterized by pow-
erful units that demand a higher amount of resources to produce,
Zerg, characterized by attacking with large amounts of cheap units
and Terran, which has units of intermediate power and cost. There
are two types of resources to produce units and buildings: mineral
and gas. To win a game, a player must destroy all the buildings of
his opponent. Figure 1 presents a game screenshot.

Figure 1: StarCraft screenshot of a Terran base. Each unit and
structure has a specific function in the game.

In StarCraft, agents can perform only one task at a time. This elim-
inates the need to model agent resources and task costs (r and c
in Alg. 1, respectively). These are needed to address the situation
where agents can perform multiple tasks simultaneously.

4.2 Running Swarm-GAP in StarCraft

In order to execute Swarm-GAP algorithm in StarCraft, we imple-
mented a software-controlled player (bot), called GASW (abbrevi-
ation of genetic algorithm Swarm-GAP) through BWAPI. In this
bot, task allocation among agents is performed according to Alg. 1.

GASW bot plays with the Terran race, using 7 out of 17 available
Terran buildings and 3 out of 13 Terran units. Although via Swarm-
GAP we obtain which tasks will be performed, we need to hand-
code how these tasks will be performed in the game. This hand-
coded behavior can be complex depending on the unit type. Thus,
due to the complexity of modeling and implementing the task ex-
ecution behavior of every entity inside the game, we model only a
subset containing the basic buildings and units available to GASW
bot.

Terran race was chosen because it is the only among the three races
whose basic combat unit can target ground and air enemies, which
would increase the chances of victory.

All units and buildings used by Swarm-GAP are shown in Fig. 1.
Their function is described in the list that follows.

• Buildings:

– Command center: receives gathered resources and pro-
duces workers (SCV).

3http://wiki.teamliquid.net/starcraft/Portal:
Beginners

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 791

– Comsat: allows periodic scans in the map, useful for
scouting.

– Supply depot: are required to increase the number of
units that can be created.

– Barracks: produces marines and medics.

– Academy: is required for the production of medics and
allows the research of combat upgrades for marines.

– Refinery: is required to collect gas, which is needed to
train medics and to perform upgrades at the Academy.

– Bunker: defensive building that provides shelter for up
to 4 ground units. Allows marines to attack enemies
with increased range.

• Units:

– SCV: worker unit that gathers resources, constructs and
repairs buildings.

– Marine: ranged combat unit. Can target air and ground
enemies.

– Medic: auxiliary combat unit that heals other units.

In GASW bot, three types of agents allocate tasks according to
Alg. 1: SCV, marine and a commander agent. SCV and marine
have counterparts in the game. Commander is an abstract agent,
responsible for deciding when SCV, marine and medic units should
be produced. The behavior of the medic unit is hand-coded as it is
an auxiliary unit created to keep other units alive for longer periods.

Table 1 presents the tasks that agents must allocate via Swarm-GAP.
Cells are marked where an agent can perform the given task.

Task SCV Marine Commander
Gather minerals

√

Build barracks
√

Build supply depot
√

Build academy
√

Build refinery
√

Build command center
√

Repair building
√

Explore map
√ √

Attack
√ √

Train SCV
√

Train medic
√

Train marine
√

Table 1: Agent-task compatibility for tasks allocated via Swarm-
GAP

For the execution of Swarm-GAP algorithm, stimulus must be mod-
eled for all tasks and agent capabilities must be modeled for every
compatible agent-task combination. Some game-related tasks are
not allocated via Swarm-GAP thus they do not appear in Tab. 1.
These tasks include: build Comsat, Bunker and gather gas. Alloca-
tion and performance of these tasks are hand-coded in the following
way: the Comsat is built after 15 minutes of game, one Bunker is
built near each Command Center and three SCVs are allocated for
gas collection in the Refinery. This configuration was set after pre-
liminary experiments to allow basic scouting (with Comsat), basic
defenses (with Bunker) and a suitable gas collection rate (with three
SCVs at refinery).

The behavior of GASW bot is controlled by 27 parameters: one
stimulus parameter for each task in Tab. 1, in a total of 12, one
capability parameter for each compatible agent-task combination,
in a total of 14 (9 for the SCV, 2 for the marine and 3 for the com-
mander), and one parameter that controls the size of an attacking
group of marines. The last parameter is not related to execution of
Swarm-GAP algorithm, but controls an important aspect of GASW
bot.

5 Optimizing Swarm-GAP parameters

5.1 Genetic algorithm

Finding a good combination of Swarm-GAP parameters may be im-
practical for large scenarios if done manually. To address this issue,
we employ a genetic algorithm to automatically find a combination
of parameters that maximizes a global metric of agent performance.

Briefly, a genetic algorithm (GA) is a metaheuristic that mimics
the process of natural selection. An initial population is generated,
the fitness of its individuals is evaluated, individuals are selected to
produce the population of the next generation, genetic operators are
then applied, and the process is repeated until a stop criteria is satis-
fied. The stop criteria is usually related to the solution convergence
or number of generations. Genetic algorithms are usually applied
to complex optimization problems [Haupt and Haupt 2004].

In our approach, an individual is given by a chromosome rep-
resented by an array of 27 parameters that control the behavior
of GASW bot (see Section 4.2). The domain of the 26 param-
eters related to Swarm-GAP algorithm (stimulus and capabilities
for agent-task combinations) is the set of real values from 0 to 1
spaced by 0.05: {0, 0.05, 0.10, ..., 0.90, 0.95, 1.0}. The set [0, 1]
was discretized in this way in order to reduce the search space
of the genetic algorithm without significant loss in precision for
the control of Swarm-GAP algorithm. The domain of the last
parameter of GASW bot (attacking marine group size) is the set
{6, 8, 10, ..., 20, 22, 24}, i.e., the set of even integers between 6 and
24, inclusive. Odd integers are not considered for search-space re-
duction as well.

5.2 Fitness function

Evaluation of an individual in our approach is based on the perfor-
mance of GASW bot in a StarCraft match. Our bot implements
Swarm-GAP, loading the parameters contained in the chromosome
of the individual to be evaluated in order to perform allocation of
the game-related tasks presented in Tab. 1.

At the end of a StarCraft match, each player has an assigned score
according to its performance in resource gathering, structure con-
struction, army deployment and attacks to enemy forces. The fit-
ness function in our approach is the ratio of the score obtained by
GASW bot and the score obtained by its adversary. GASW bot
wins the game when its fitness is greater than one and it loses when
it is lower.

Fitness evaluation depends on the entire execution of a StarCraft
match. In order to accelerate match execution, StarCraft applica-
tion is executed with minimal graphics and user interactivity. Also,
a match is interrupted when it reaches one hour of in-game time.
With minimal graphics and user interactivity, in-game time is much
faster than real-world time. It takes about 2 real-world minutes to
simulate one-hour of in-game time4. Considering that many indi-
viduals must be evaluated across several generations in a genetic
algorithm, fitness evaluation is a time-consuming task.

5.3 Accelerating the genetic algorithm

As fitness evaluation is a time-consuming task, in this paper we test
the method described in [Salami and Hendtlass 2003] to accelerate
the genetic algorithm.

Briefly, acceleration is obtained by estimating fitness of some in-
dividuals instead of actually evaluating them. In this approach,
each individual i has associated values of fitness (fi) and reliability
(wi ∈ [0, 1]). A value of 1 for wi means that the actual fitness of
individual i was evaluated. Other values mean that the fitness was
estimated. Let individuals a and b be the parents of c and d. Consid-
ering individual c, its fitness is estimated via Eq. 4 and its reliability
is calculated according to Eq. 5 (calculations for individual d are
analogous).

4Approximate value, estimated using modern PCs.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 792

fc =
fawaρac + fbwbρbc
waρac + wbρbc

(4)

wc =
(waρac)

2 + (wbρbc)
2

waρac + wbρbc
(5)

In Eqs. 4 and 5, ρac ∈ [0, 1] is the similarity between a and c.
Fitness of a child estimated via Eq. 4 is the weighted average of the
parents’ fitness. The weight is the product of parent reliability and
parent-child similarity (w times ρ). Reliability calculated via Eq.
5 is the weighted average of the product between parent reliability
and parent-child similarity (w times ρ). The weight is also w times
ρ. This way, child reliability is closer to that of the most similar
and reliable parent.

To calculate similarity ρac between individuals a and c, letA be the
chromosome of a and C be the chromosome of c. Also, let maxi
and mini be the maximum and minimum value of the domain of
the variable in locus i of the chromosome. The similarity between
a and c is then calculated via Eq. 6.

ρac = 1− 1

|A|

|A|∑
i=1

abs(A[i]− C[i])

maxi −mini
(6)

In Eq. 6, each term of the sum represents the normalized difference
(i.e. between 0 and 1) of values in locus i of the chromosomes.
The average of these normalized differences gives us an index of
divergence between the two chromosomes. The similarity between
the individuals is the complement of the divergence index.

If the estimated fitness of an individual i falls below a given thresh-
old (τ ∈ [0, 1]), the actual fitness is evaluated and assigned to fi.
Also, the reliability wi is set to 1. Note that, when the fitness of an
individual is estimated, its fitness lies between the fitness of the par-
ents and its reliability is lower than the highest reliability of the par-
ents. This is desirable, because with successive estimations across
generations, reliability should drop below the threshold and an ac-
tual evaluation must take place.

A value of reliability threshold (τ) close to 1 results in many actual
fitness evaluations, slowing down the genetic algorithm. On the
other hand, a value of τ close to 0 results in many successive fit-
ness estimations which may yield fitness values that differ too much
from the actual fitness of the individuals. Thus, τ is an important
parameter of this fitness estimation method and should be carefully
adjusted.

In order to ensure that some individuals are evaluated instead of
estimated in every generation, a probability of evaluation (pe ∈
[0, 1]) is employed. Individuals with reliability above the threshold
are evaluated with probability pe. This prevents some generations
from having all individuals with estimated fitness.

For a complete description of the fitness estimation method adopted
in this paper, the reader may refer to [Salami and Hendtlass 2003].

Algorithm 2 formalizes our approach. In this algorithm,
P (n) is the population in generation n, the maximum num-
ber of generations is η and κ is the population size. Method
select parents selects two individuals from the population.
Method crossover and mutation receives two individuals, per-
forms crossover according to a crossover probability, mutates the
individuals according to the mutation probability and returns the
two individuals. Note that selection and crossover methods are not
specified and can be chosen according to the situation. For example,
in this paper we use tournament selection and one-point crossover
(see Section 6).

5.4 Evolving Swarm-GAP in StarCraft

This section describes the architecture used in our approach to im-
plement the genetic algorithm that searches for an array of param-
eters that results in good performance of Swarm-GAP algorithm,
i.e., that leads GASW bot to victories.

Algorithm 2 Genetic algorithm for Swarm-GAP

1: P (0) ← {initial random population}
2: for all p ∈ P (0) do
3: fp ← Evaluate(p)
4: wp ← 1
5: end for
6: for n ∈ [0..η] do
7: P (n+1) ← ∅
8: while |P (n+1)| < κ do
9: (a, b)← select parents(P (n))

10: (c, d) = crossover and mutation(a, b)
11: fc ← fitness estimated via Eq. 4
12: wc ← reliability calculated via Eq. 5
13: if wc < τ or (wc ≥ τ and random() < pe) then
14: fc ← Evaluate(c)
15: wc ← 1
16: end if
17: /* repeat lines 11-15 for individual d */
18: P (n+1) ← P (n+1) ∪ {c, d}
19: end while
20: end for

GASW bot communicates with StarCraft via BWAPI calls. How-
ever, during the execution of the genetic algorithm, GASW bot is
responsible only for the evaluation of an individual, i.e., subrou-
tine Evaluate in Alg. 2. The remainder of Alg. 2 is implemented
in the genetic algorithm controller module (GA controller). This
module places files with the data of the individual to be evaluated
in a specific directory that GASW bot reads. After the evaluation of
an individual, which corresponds to a StarCraft match, GASW bot
writes the match outcomes in the same directory, where the external
module extracts score information and calculates the fitness of the
evaluated individual.

Figure 2 illustrates the implemented architecture. In the beginning
of an experiment, a configuration file with the parameters of the
genetic algorithm (crossover and mutation probabilities, reliability
threshold, etc.) is loaded by the external module.

Figure 2: Architecture of the proposed approach. Solid lines rep-
resent data exchanged via files. Dashed lines represent data ex-
changed via BWAPI calls.

6 Experiments and discussion

In this section we evaluate our approach in two sets of experi-
ments. First, we analyze genetic algorithm behavior in terms of
fitness along generations, comparing performance with fitness esti-
mation and with actual evaluation of all individuals. Second, we an-
alyze the best individual found by the genetic algorithm compared
to other StarCraft bots in matches against StarCraft’s native AI, or
SC bot for short. SC bot is able to play with the three races, using
different strategies and army compositions. SC bot is competitive

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 793

against beginner human players.

Experiments presented in this paper were executed with selection
by tournament with 2 participants and one-point crossover, where
a crossover point on both parents’ chromosomes is randomly se-
lected. All data beyond that point is swapped between parents to
produce the children. Also, we employ elitism, adding the best in-
dividual from a generation to the next one. Mutation occurs by re-
placing the value in a locus by a randomly selected value from that
locus’ domain. Previous experiments were performed in order to
find a suitable combination of parameters for the genetic algorithm,
which are:

• Crossover probability: 0.9.

• Mutation probability: 0.01 per locus.

• Number of generations: 100.

• Population size: 30 individuals.

6.1 Genetic algorithm behavior

In this section, we analyze the behavior of the genetic algorithm in
terms of the mean fitness of the population. We analyze the per-
formance of the genetic algorithm when fitness of all individuals is
evaluated (τ = 1 for Alg. 2) compared to when fitness estimation
is employed. Fitness estimation is performed with τ = 0.8 and
pe = 0.1. Matches are played against SC bot.

Figure 3 shows fitness along the generations for GASW bot evolved
by the genetic algorithm with fitness estimation (dotted lines) and
without it (solid lines). Each line in Fig. 3 shows the average of
5 genetic algorithm runs. The distance between solid lines (or dot-
ted lines among themselves) shows that GASW bot performs better
against Zerg race controlled by SC bot. Conversely, GASW bot
performs worse against Protoss. A Terran adversary controlled by
SC bot lies between them. In all cases, fitness stabilizes above 1.0
which means that individuals are winning the matches on average.

20 40 60 80 100
Generation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fi
tn

e
ss

 v
a
lu

e

Zerg
Protoss
Terran

Zerg est. fit.
Protoss est. fit.
Terran est. fit.

Figure 3: Genetic algorithm performance. Dotted lines are from
experiments with fitness estimation. Solid lines are from experi-
ments where all individuals are evaluated. Fitness above 1.0 (base-
line) means victory in a match.

The genetic algorithm stabilizes with a higher fitness when esti-
mation occurs, as dotted lines are always above solid lines of the
same color. This could lead to the misleading conclusion that the
genetic algorithm finds better individuals when fitness estimation is
employed, which is not the case.

The genetic algorithm with fitness estimation appears to have su-
perior performance because of the nature of our fitness function,
which is noisy. That is, the same array of parameters can receive
distinct fitness evaluations in different matches. Noise in the fitness
function comes in two ways. First, it depends on the probabilistic
way that agents choose to perform tasks in Swarm-GAP. Second,

StarCraft is an adversarial game. Thus, the score ratio also depends
on the adversary actions, which may be randomized in order to be-
come more difficult to be predictable.

With the noisy fitness function, fitness estimation became mislead-
ing in our experiments. An individual whose observed fitness is
high might in fact have a low actual fitness. With fitness estima-
tion, this individual may propagate itself across generations with-
out being actually evaluated again. This may direct the search of
the genetic algorithm to the neighborhood of that individual, which
may be less promising than other regions where the observed fitness
happened to be lower.

6.2 Comparison with other bots

In this section we employ the best individual found by the ge-
netic algorithm and analyze its performance compared to Random,
ManSW and AIUR bots in matches against SC bot. Random and
ManSW bots have the same limitations of GASW: they play with
Terran race using the same units and buildings. Task execution is
the same of GASW. These bots differ only in the way tasks are
allocated.

Task allocation in Random bot is as follows: for each agent, given
a list of tasks, one is chosen with uniform probability. This way,
tasks are given equal importance during the allocation process.

ManSW bot allocates tasks via Swarm-GAP, similarly to GASW.
The difference is that ManSW bot runs with a hand-configured ar-
ray of parameters whereas GASW runs with parameters configured
via genetic algorithm. We configured the parameters of ManSW
bot with the values that achieved the best performance in a set of
matches against SC bot. The number of matches performed to ad-
just the parameters of ManSW is small compared to that of the ge-
netic algorithm for GASW.

AIUR is a competitive bot that placed 3rd among 8 bots in AIIDE
2013 competition5 and in IEEE CIG 2013 competition6. Among all
competitors, AIUR was the bot with best performance that we were
able to obtain the source code, compile and execute it with suc-
cess in order to compare the performance of our approach. Briefly,
in AIUR, several game-related tasks are divided among many dif-
ferent modules. At the beginning of a game, the bot initializes a
“mood” that influences the adopted strategy (focus on resource col-
lection, early attacks or defense). This bot does not perform reactive
controls (micro-management) [Ontanon et al. 2013].

Figure 4 shows the victory rate of all bots versus Protoss, Terran and
Zerg adversaries controlled by SC bot. Results are based in 150
matches. In this figure, GASW uses the best individual found by
the genetic algorithm without fitness estimation whereas GASW-e
uses the best individual found when fitness estimation is employed
(solid versus dotted lines in Fig. 3).

GASW bot outperforms GASW-e, especially against Protoss and
Terran. This illustrates the fact that the superior fitness values ob-
tained with fitness estimation is misleading. The best individuals
found with fitness estimation perform worse than the ones found
with actual fitness evaluation.

All bots had the best performance against a Zerg adversary con-
trolled by SC bot, followed by Terran and Protoss, against which
the bots had the worst performance. Assuming that races are bal-
anced in StarCraft, this result may suggest that SC bot was devel-
oped to perform better with Protoss race and this made the tested
bots face more difficult matches.

Random bot had the worst performance among all bots. This is due
to the poor task allocation that emerges from the uniformly ran-
dom selection of tasks performed by agents. GASW outperforms
ManSW against Terran. This means that the genetic algorithm was
able to find a better combination of parameters than the one man-
ually set into ManSW. This validates the use of genetic algorithm

5http://webdocs.cs.ualberta.ca/˜cdavid/
starcraftaicomp/report2013.shtml

6http://ls11-www.cs.uni-dortmund.de/
rts-competition/starcraft-cig2013

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 794

Zerg Terran Protoss0

20

40

60

80

100

Vi
ct

or
y

ra
te

 %

36
30

3

93

58
54

98

75

56

95

74

59

93

62

29

Random
ManSW
AIUR

GASW
GASW-e

Figure 4: Victory rates (%) of the bots in 150 matches against Pro-
toss, Terran and Zerg races controlled by SC bot.

to tune the parameters of Swarm-GAP in the studied scenario. The
weakness of Zerg and the strength of Protoss controlled by SC bot
made ManSW and GASW perform similarly.

GASW and AIUR achieved similar performance against all three
SC-controlled races, which also validates our approach. AIUR is
one of the top-performing StarCraft bots known to date. Therefore,
using scalable task allocation algorithms and tuning them with ge-
netic algorithms is a promising approach for bot development in
RTS games.

7 Conclusion

7.1 Overview

In this work we tackled the problem of task allocation in complex
scenarios by employing a genetic algorithm to adjust the parameters
of Swarm-GAP, a scalable task allocation algorithm. Our approach
is tested in the popular RTS game StarCraft: Brood War.

Results of our experiments show that the proposed approach is
promising. The proposed approach outperforms random task al-
location and manually-configured Swarm-GAP. Moreover, the per-
formance of our approach is at par with AIUR, one of the top-
performing bots for StarCraft. However, performance was mea-
sured as the victory ratio in matches against StarCraft’s native AI
and not in direct matches7.

To deal with slow fitness evaluation, that depends on the execu-
tion of an entire match against StarCraft’s native AI, we tested a
fitness estimation method. Performance achieved by the genetic al-
gorithm with estimated fitness was worse than with actual fitness
evaluation. Performance degradation with fitness estimation is due
to noise in the fitness function, which comes from the probabilistic
nature of Swarm-GAP task allocation and from adversary actions in
StarCraft. Fitness noise may direct the search of the genetic algo-
rithm to regions where observed fitness happened to be higher than
more promising regions.

7.2 Future work

A problem that can be addressed in future work is the fitness noise.
If we assume that the fitness noise is Gaussian, one possible ap-
proach is to evaluate a single individual several times and calculate
the mean of the observed fitness as it converges to the actual fitness
of the individual.

7Unfortunately, direct GASW vs AIUR matches could not be configured
due to different, incompatible versions of BWAPI used by the bots.

However, as pointed in [Fitzpatrick and Grefenstette 1988], increas-
ing population size and decreasing fitness evaluations per individ-
ual may result in better performance, when the overhead imposed
by the genetic operators is negligible compared to fitness evaluation
time.

On the other hand, with increased population, the entire execution
of the genetic algorithm can be very slow. Thus, accelerating the ge-
netic algorithm becomes crucial. Further studies about the fitness
estimation method are needed to address the performance degra-
dation observed in our experiments. The tested fitness estimation
method might perform well with noisy fitness, as estimation is it-
self a form of fitness noise [Salami and Hendtlass 2003]. Future
studies can investigate the conditions that lead to reliable fitness es-
timation. It might be the case that the quality of fitness estimation
could be improved with a larger population.

Our approach use only a small subset of buildings and units pro-
vided by the race it plays in StarCraft. Future work could extend
this by adding the remaining buildings and units. This might in-
crease the competitiveness of our approach as more flexible strate-
gies can be adopted. However, to achieve tournament-winning per-
formance, new aspects should be introduced into our architecture.
This could include a library of game openings, hierarchical deci-
sion making, unit micro-management (reactive control) and terrain
analysis [Ontanon et al. 2013].

Other interesting topics for future work include the use of the ge-
netic algorithm to tune the parameters of different task allocation
algorithms, such as BnB FMS [Macarthur et al. 2011]. The per-
formance of the different task allocation algorithms evolved by the
genetic algorithm can be compared.

At last, this approach could be extended to other domains. Inter-
esting areas outside the game industry are robot soccer and au-
tonomous robot coordination in hostile environments such as rescue
operations in disaster situations. On those scenarios, task allocation
is a vital part of multiagent cooperation.

Acknowledgment

Authors would like to acknowledge the support of CAPES, CNPq
and FAPEMIG in this research. We also would like to thank the
anonymous reviewers for their suggestions of paper improvements.

References

BURO, M. 2003. Real-Time Strategy Games: A New AI Research
Challenge. In Proceedings of the 18th International Joint Con-
ference on Artificial Intelligence, International Joint Conferences
on Artificial Intelligence, 1534–1535.

BWAPI, 2011. An API for interacting with Starcraft: Broodwar.
https://code.google.com/p/bwapi/.

DE FREITAS CUNHA, R. L., AND CHAIMOWICZ, L. 2010. An
Artificial Intelligence System to Help the Player of Real-Time
Strategy Games. In Proceedings of the 2010 Brazilian Sympo-
sium on Games and Digital Entertainment (SBGAMES),, 71 –81.

FALKE II, W. J., AND ROSS, P. 2003. Dynamic strategies in a
real-time strategy game. In Genetic and Evolutionary Computa-
tion—GECCO 2003, Springer, 1920–1921.

FERNANDEZ-ARES, A., MORA, A. M., MERELO, J., GARCÍA-
SÁNCHEZ, P., AND FERNANDES, C. 2011. Optimizing player
behavior in a real-time strategy game using evolutionary al-
gorithms. In Evolutionary Computation (CEC), 2011 IEEE
Congress on, IEEE, 2017–2024.

FERREIRA, JR., P. R., BOFFO, F., AND BAZZAN, A. L. C. 2008.
Using Swarm-GAP for distributed task allocation in complex
scenarios. In Massively Multiagent Systems, N. Jamali, P. Scerri,
and T. Sugawara, Eds., no. 5043 in Lecture Notes in Artificial
Intelligence. Springer, Berlin, 107–121.

FIERRO, R., DAS, A., SPLETZER, J., ESPOSITO, J., KUMAR,
V., OSTROWSKI, J. P., PAPPAS, G., TAYLOR, C. J., HUR, Y.,

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 795

ALUR, R., LEE, I., GRUDIC, G., AND SOUTHALL, B. 2002.
A framework and architecture for multi-robot coordination. The
International Journal of Robotics Research 21, 10-11, 977–995.

FITZPATRICK, J. M., AND GREFENSTETTE, J. J. 1988. Ge-
netic algorithms in noisy environments. Machine learning 3,
2-3, 101–120.

HAUPT, R. L., AND HAUPT, S. E. 2004. Practical genetic algo-
rithms. John Wiley & Sons.

KHAN, M. A., TURGUT, D., AND BÖLÖNI, L. 2010. Optimiz-
ing coalition formation for tasks with dynamically evolving re-
wards and nondeterministic action effects. Autonomous Agents
and Multi-Agent Systems 22, 3 (May), 415–438.

KHATIB, O. 1986. Real-time obstacle avoidance for manipulators
and mobile robots. The international journal of robotics research
5, 1, 90–98.

KITANO, H. 2000. Robocup rescue: A grand challenge for multi-
agent systems. In Proc. of the 4th International Conference
on MultiAgent Systems, Los Alamitos, IEEE Computer Society,
Boston, USA, 5–12.

LARA-CABRERA, R., COTTA, C., AND FERNÁNDEZ-LEIVA,
A. J. 2013. A review of computational intelligence in RTS
games. In Foundations of Computational Intelligence (FOCI),
2013 IEEE Symposium on, IEEE, 114–121.

LIN, C., AND TING, C. 2011. Emergent tactical formation using
genetic algorithm in real-time strategy games. In Technologies
and Applications of Artificial Intelligence (TAAI), 2011 Interna-
tional Conference on, 325–330.

LUDWIG, J., AND FARLEY, A. 2009. Examining Extended Dy-
namic Scripting in a Tactical Game Framework. In Artificial
Intelligence and Interactive Digital Entertainment.

MACARTHUR, K. S., STRANDERS, R., RAMCHURN, S. D., AND
JENNINGS, N. R. 2011. A Distributed Anytime Algorithm for
Dynamic Task Allocation in Multi-Agent Systems. In Proc. of
the 25th AAAI Conference on Artificial Intelligence, 701–706.

NG, P. H., LI, Y., AND SHIU, S. C. 2011. Unit formation planning
in RTS game by using potential field and fuzzy integral. In Fuzzy
Systems (FUZZ), 2011 IEEE International Conference on, IEEE,
178–184.

ONTANON, S., SYNNAEVE, G., URIARTE, A., RICHOUX, F.,
CHURCHILL, D., AND PREUSS, M. 2013. A Survey of Real-
Time Strategy Game AI Research and Competition in StarCraft.
Computational Intelligence and AI in Games, IEEE Transactions
on 5, 4 (Dec), 293–311.

RATHE, E. A., AND SVENDSEN, J. B. 2012. Micromanagement
in Starcraft using potential fields tuned with a multi-objective
genetic algorithm.

SALAMI, M., AND HENDTLASS, T. 2003. A fast evaluation strat-
egy for evolutionary algorithms. Applied Soft Computing 2, 3,
156–173.

SANDBERG, T. W., AND TOGELIUS, J. 2011. Evolutionary Multi-
Agent potential field based AI approach for SSC scenarios in
RTS games. PhD thesis, Master’s thesis, IT University Copen-
hagen.

SCERRI, P., FARINELLI, A., OKAMOTO, S., AND TAMBE,
M. 2005. Allocating tasks in extreme teams. In Proc.
of the Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, ACM Press, New York, USA,
F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P. Singh, and
M. Wooldridge, Eds., 727–734.

SHMOYS, D. B., AND TARDOS, V. 1993. An approximation al-
gorithm for the generalized assignment problem. Mathematical
Programming 62, 3, 461–474.

SPRONCK, P., SPRINKHUIZEN-KUYPER, I., AND POSTMA, E.
2004. On-line adaptation of game opponent AI with dynamic

scripting. International Journal of Intelligent Games & Simula-
tion 3, 1.

SYNNAEVE, G., AND BESSIÈRE, P. 2011. A Bayesian Model
for Plan Recognition in RTS Games Applied to StarCraft. In
Artificial Intelligence and Interactive Digital Entertainment.

SYNNAEVE, G., AND BESSIÈRE, P. 2011. A Bayesian model
for RTS units control applied to StarCraft. In Computational
Intelligence and Games (CIG), 2011 IEEE Conference on, IEEE,
190–196.

SYNNAEVE, G., AND BESSIÈRE, P. 2011. A Bayesian model
for opening prediction in RTS games with application to Star-
craft. In Computational Intelligence and Games (CIG), 2011
IEEE Conference on, IEEE, 281–288.

THERAULAZ, G., BONABEAU, E., AND DENEUBOURG, J. 1998.
Response Threshold Reinforcement and Division of Labour in
Insect Societies. In Royal Society of London Series B - Biological
Sciences, vol. 265, 327–332.

WEBER, B. G., MATEAS, M., AND JHALA, A. 2011. Building
human-level AI for real-time strategy games. In Proceedings
of the AAAI Fall Symposium on Advances in Cognitive Systems,
329–336.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 796

