
Coevolutionary Procedural Generation of Battle Formations in
Massively Multiplayer Online Strategy Games

André Siqueira Ruela
Graduate Program in Electrical Engineering

Federal University of Minas Gerais
Av. Antônio Carlos 6627, Belo Horizonte, MG, Brazil

Frederico Gadelha Guimarães
Department of Electrical Engineering
Federal University of Minas Gerais

Av. Antônio Carlos 6627, Belo Horizonte, MG, Brazil

Abstract

This paper presents a coevolutionary genetic algorithm for the de-
velopment of battle formations in Massively Multiplayer Online
Real-Time Strategy games. We consider the context of the game
Call of Roma, where the battles are turn based and two sides fight
each other, each side involving one or more players. The coevo-
lutionary genetic algorithm takes as input a predetermined battle
formation, presented by the defense side, and returns a battle forma-
tion adapted for the Attack side. The algorithm aims to maximize
the battle performance, which is a subjective concept that varies
from player to player. The individual encodes the various char-
acteristics of the fighting heroes. We tested the algorithm over a
cloud-computing platform, considering test cases modeled by sev-
eral active players. The results illustrate that the proposed algorithm
is able to find a victorious solution for the Attack team, even when
it is under unfavorable conditions.

Keywords: Massively Multiplayer Online Real-time Strategy, Co-
evolutionary Algorithm, Procedural Content Generation, Game De-
sign

Author’s Contact:

andre.siqueira.ruela@gmail.com, fredericoguimaraes@ufmg.br

1 Introduction

Massively Multiplayer Online Real-Time Strategy (MMORTS)
games have attracted the attention of millions of users in many
countries around the world. MMORTS is a kind of game that in-
volves real-time strategy (RTS) with a massive number of simul-
taneous players on the Internet. As indicated in a study available
online [Yee 2005] these players spend 21 hours a week on average
in online games. Such amount of time spent in virtual worlds can
lead to different socializing experiences [Canossa et al. 2013]. This
possibility of interacting with such a high number of players is one
of the main factors that might explain the success of these kind of
games. For the companies that maintain MMO games, a massive
number of active players is an important source of income. To give
a perspective, only in the United States, the market of free-to-play
online games category totalled U$2,893 million in sales in 2013, up
from U$1,991 million in 2012 (+45%) [SuperData Research 2014].

In MMORTS, players can either fight each other in PvP (Player
versus Player) battles or engage artificial players, known as NPC
(Non-Player Character), in PvE (Player versus Environment) bat-
tles; they can also take different missions which are integrated to
the story of the game. Since such NPCs have predefined, static
battle strategies, more experienced players find no challenge in en-
gaging in PvEs. After some time, the game becomes tedious for
these experienced players, who can easily defeat NPCs. Because
of this, the evasion of players in the server increases. With few ac-
tive players remaining in the server, the possibility of interactions
reduces, affecting the income of the company that hosts the game.

One idea to overcome this problem is create attractive balanced
content for PvE battles. If NPCs present more dynamic, efficient
and unanticipated battle formations in PvE, players will have to put
more effort in the preparation for the battles, and more experienced
players can still find stimulating battles to fight. Such character-
istics are important to maintain their interest in the game and to
reduce the evasion of players in the server.

Another common source of players’ complaint is the handicraft de-
sign of unbalanced game content. Sometimes the game designers
fail to produce new content for the game and generate bad and un-
balanced content that affects the game play. The use of computa-
tional intelligence algorithms to help in the game design can poten-
tially produce a better content with lower efforts. This has been one
of the central ideas of the Procedural Content Generation (PCG) re-
search [Smith 2014; Shaker et al. 2014]. In recent years, PCG has
been receiving attention from both academic researchers and indus-
trial developers, for its potential to turn computers into creators of
massive, varied worlds for players to explore, at a fraction of the
cost of human authorship [Tozour and Champandard 2012].

It was pointed by [Togelius et al. 2011a; Togelius et al. 2011b] that
PCG differs from the mainstream AI game research. Togelius de-
fined that the development of agent behavior, or the intelligence
behind a robot mind, which is very common in RTS research, is
not PCG. In other words, the agent behavior is not the content in
the scope of the PCG. By this way, this work consists in a search-
based PCG, featuring cooperative coevolution, where the content
is a team of the evolved battle formations. In this case, there is no
agent behavior or robot AI controlling the actions of the NPCs, but
just the generation of content that influences the battle performance.
This content will be better explained in section 3.

In this paper, we employ coevolutionary algorithms to implement
our ideas. In [Togelius et al. 2014], the authors argue that artificial
intelligence and machine learning techniques have the potential to
increase the longevity of electronic games and reduce its produc-
tion costs. Heuristic techniques such as evolutionary techniques
have been recognized as a promising approach to generate strate-
gies for many different games [Benbassat and Sipper 2012; Stanley
et al. 2005; Othman et al. 2012]. The complexity of handcrafting
strategies for artificial players makes the evolutionary process very
appealing, since useful strategies can be generated and discovered
automatically. Strategies generated by evolutionary algorithms can
be competitive to human strategies, see [Avery and Michalewicz
2008; Miles et al. 2004]. In this way, high level NPCs can be gen-
erated by a coevolutionary process as an additional tool to reduce
the evasion of users from the server, giving them motivation to keep
playing and investing in their accounts.

In our previous work [Ruela and Guimarães 2012] a Genetic Algo-
rithm (GA) was proposed for finding a battle formation for a single
hero. That work was taken as a starting point, but it is very out-
dated, due to the changes in the game and in the way we handle the
problem. Since then, many improvements have been achieved, like
the storage of players’ modeled heroes, for being used as a standard
benchmark and the multithreaded implementation allowing a better
use of computational resources from cloud computing web services.
Additionally, this work proposed a new evaluation approach based
on five measurements, considering different perspectives of what is
a good battle performance. This evaluation can be extended to other
games, since it is based only on the number of soldiers in both input
and output. Finally, this work also evolves an entire team, while the
previous one handled just a single hero.

The next section introduces the context of this work, detailing the
battle system of the bench-marked game. Section 3 presents our
proposed approach. It is detailed how to encode the solutions and
the ideas behind the evaluation process. Section 4 shows the base
steps to extend this work to other games. Section 5 shows the results
of our method and discusses about the effect of the design of the
evaluation function. Finally, section 6 presents the conclusions and
points towards some possible interesting future works.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 780

2 Context and Problem Definition

In this work we consider the context of the game Call of Roma 1,
formerly known as Caesary. Call of Roma is based on the history
of the Roman Empire, the post republic phase of the ancient roman
civilization. Players can build an empire, exploit resources, orga-
nize troops and fight enemies. The game was developed by Heroic
Era and is similar to Evony2, Maegica3 and Senatry4. Although
considering a specific context, the model proposed in this paper can
be extended to several MMORTS games, since it shares common
features of the battle system of these games, which are based on ba-
sic principles of role-playing games. It is important to understand
that MMORTS games differs from classic RTS games in various as-
pects, and the use of well-known benchmark and frameworks, like
[Senior 2010], does not apply here.

Units are divided into frontal and rear units. Frontal units engage in
close combat, while rear units fight at distance. Among the different
unit attributes, in this paper we consider only those that affect the
performance of the soldiers during the battle, since the effects of the
other attributes are beyond the scope of this research. The attributes
considered are: Offense (Off), the capacity of attacking opponents;
Defense (Def), the capacity of defending from the enemies’ attacks;
Damage (Dmg), indicating the damage of an attack performed by
the unit; Life or Hit Points (HP), related to the capacity of absorbing
the damage inflicted by enemies. The damage of the units is uni-
formly distributed within a given interval, introducing some degree
of randomness to the battles.

The 3 frontal units are: Hastatus, consisting in one soldier with
light armor, low lethality, performing close range combat with a
spear; Equites, consisting in a mounted soldier, capable of flanking
and ambushing rear units; Principes, the heavy roman infantry, with
high production cost, but high armor and lethality. The 3 rear units
are: Sagittarius, consisting in an archer with light armor, a bow and
arrows; Ballistae, consisting in medium war machines that throws
darts on the enemies; Onagers, heavy catapults that throws lethal
fireballs over the opponent. When the frontal units are killed, the
rear units become incapable of fighting at distance and they engage
in close combat, with a penalized damage (50% reduction). The
Table 1 shows the base attributes of the evaluated units in this work.
Moreover, all units have special skills, for example the Sagittarius’
Dispersion, that spread arrows over all divisions of the opponent
hero with reduced damage, but for convenience and lack of space,
all units’ details are not described in this paper.

Table 1: Units

Units Attributes
Dmg Off HP Def Sol

Hastatus 3 - 6 8 60 8 1

Equites 20 - 25 16 250 16 3

Principes 40 - 60 19 400 16 6

Sagittarius 3 - 5 9 45 5 1

Ballistae 12 - 15 15 100 12 4

Onager 50 - 50 32 600 13 8

Units are sent to a battle under the leadership of a Hero. Heroes
have 3 traits that influence their performance in a battle: Sway,
Bravery, and Parry. Sway is related to the leadership Faculty of
the hero. The higher this faculty the higher the number of soldiers
that can be allocated to this hero. The column Sol in Table 1 refers
to the number of soldiers occupied by a single unit. Bravery af-
fects the offensive (Off) performance of the units, increasing their
damage (Dmg) in combat. Parry affects the defensive (Def) perfor-
mance of the units, reducing casualties in combat. Units have fixed
values for their attributes but the values for the heroes’ traits can be
chosen by the user according to his/her strategies.

1Call of Roma: http://www.callofroma.com/index.do
2Evony: http://www.evony.com/
3Maegica: http://maegica.browsergamez.com/
4Senatry: http://www.senatrywar.com/

Users can assign integer values to each attribute under the constraint
that the highest value cannot surpass the sum of the other two. Each
hero has a total amount of points to be distributed among the at-
tributes. The leadership faculty of a hero can be assigned by the
formula:

faculty = 30000 + 500× Sway

Thus, a single hero can lead hundreds of thousands of soldiers. Usu-
ally, this number of soldiers (or faculty value) lies between 460,000
and 670,000. In this work, we assume that each hero has 969 Unas-
signed Trait Points (UTPs). In the real game, these point are re-
ceived every time a hero reach a new level, and the number of points
received depends on the hero’s characteristic. Additionally, there is
a random number of base starting points. To avoid this bias, in this
work all heroes are equal, with the same base number of points,
same potential and the same 969 UTPs.

Heroes can be equipped with five different types of basic equip-
ment, which are boots, shield, helmet, armor, weapon; and other
five types of accessories, which are necklace, pendant, belt, ring
and a horse. The five types of accessories have levels that vary from
Lv1 to Lv9 and can be improved by players. Each equipment gives
a special bonus to all soldiers led by the hero. In this paper, we con-
sider seven of the most important basic sets of equipment in Call of
Roma: Saturn, Fearlessness, Hard-Core, Mars, Bright, Green and
White; and the four available accessory sets: Loyal, Holly, Glory
and Green. The Table 2 shows the sum of the bonus values of these
equipment sets. For convenience, only the values of the ninth level
of the accessories are shown.

Equipment can also give extra special skills to an unit, for exam-
ple the Rain of Arrows (RoA). The RoA ability allows the heroes’
Sagittarii to cast Dispersion over the entire battlefield, raising dras-
tically the power of those long ranged units. Players can build any
combination of equipment, but only one per type, i.e., they can have
any mixing of sets, but not two boots or two swords, for example.
It looks simple, but considering the nine levels of each accessory
set, there are more than 1012 (75 × 365) possible different combi-
nations. It is easy to see that there is a clear dominance relationship
between the accessories sets, so that it can be said that the Green set
is better than the Glory set. This behavior is not so clear for the ba-
sic equipment sets. The White set has more damage than the Saturn
set, but the Saturn set has more life. There are fewer exceptions,
like White and Bright that can dominate few others.

Table 2: Sets of equipment considered in the work: basic and ac-
cessory types

Set Attributes Skill
Dmg Off HP Def

Basic Sets
Saturn 25 45 325 11 RoA

Fearlessness 43 78 210 58 Testudo
Hard-Core 60 44 150 74 —

Mars 25 75 225 60 RoA
Bright 50 105 255 70 Roa, Testudo
Green 67 55 247 38 —
White 65 75 235 94 —

Accessory Sets
Loyal 0 30 100 20 —
Holly 0 39 115 39 —
Glory 0 49 135 48 —
Green 0 61 161 65 —

The battle system in Call of Roma tries to simulate the way battles
were fought in the time of Roman civilization. In the battles, only
two sides face each other, the Attack and Defense. Each side take
turns to attack the opponent. The units killed in battle are removed
from the hero’s divisions at the end of each turn. There can be
at most 3 heroes in action simultaneously, assuming the positions
left flank, center and right flank. The first hero sent to the battle
takes the left flank, the second hero, in turn, assumes the center and,
finally, the third hero takes the right flank. If there is a fourth hero,
or even more, these are arranged in a replacement queue outside
the battlefield, in the order they were sent. Queued heroes only
enter into combat by replacing a defeated hero in the next turn,
maintaining the order of placement. Figure 1 illustrates the battle
formation and frontal and rear divisions.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 781

Figure 1: The battle system in Call of Roma

Figure 2: A sample hero

For the allocation of soldiers, there are 6 different divisions placed
side by side, 3 frontal divisions (left d1, center d2 and right d3) and
3 rear divisions (left d4, center d5 and right d6). Players are free to
organize their divisions into formations. Figure 2 illustrates a sam-
ple hero. The dark-red text resumes this section and introduces the
codification of the evolutionary algorithm, which will be explained
in the next section. As can be seen in Figure 2, the frontal divisions
are filled with Hastatus, while only one rear division, d6, is filled
with Sagittarius. The divisions d4 and d5 are empty.

Other factors influence the performance of soldiers in combat. For
instance the level of research in the academy of the city where the
heroes originated from. The effect of these factors were implicitly
taken into account in this work, however they are not included as
variables of the solution. Therefore, in the conception of a battle
formation, a player must consider which equipment are more suit-
able for the units, how the UTPs are going to be distributed among
the attributes of the hero, and the disposition of the units in frontal
and rear divisions.

The goal of this paper is to propose a computational intelligence
algorithm able to generate a winning and efficient battle formation,
considering all the relevant factors. This is a complex combinato-
rial problem, which would require a heuristic approach. Among
heuristic methods, we have selected GAs [Goldberg 1989], which
are methods inspired by the adaptation principle of the Darwinian
Natural Selection Theory [Darwin and Huxley 2003] to evolve can-
didate solutions to the problem.

3 Proposed Approach

GAs belong to a family of methods inspired by nature, based on the
principles of evolution by natural selection. They are very general
and high level heuristics, applicable to a wide range of real-world
problems. Individuals in the population of the GA represent can-
didate solutions that compete for reproduction and survival. In bi-
ology, [Ricklefs 2008] defines Coevolution as a series of reciprocal
responses between populations. In general, two or more species that
have a close ecological relationship evolve together, such that each
species adapts to the evolution of the other. This section describes
our proposed approach, which consists in a Cooperative Coevolu-
tionary Algorithm.

There are N parallel GAs, where N is the number of heroes in the
enemy team. Each GA has its own independent population, mostly
called here as subpopulation, and its own evolutionary cycle. The
parallel GAs run asynchronously until they achieve the cooperation
interval, when they share information and exchange individuals be-
tween each other.

3.1 Codification

In the problem considered in this paper, an individual codes for a
particular battle formation (a single hero) in the game Call of Roma.
In Figure 2 the red text indicates each element present in the cod-
ification. Given the factors that influence the battle, the proposed
codification employs three “chromosomes”, E, A and D. To en-
sure the fully comprehension of the proposed encoding, Table 3
shows the genotype-phenotype mapping adopted in this work. The
union of those three chromosomes, as EAD, forms the complete
individual, which codes a single hero. The three chromosomes can
be described as follows:

(i) Chromosome E codes for the 10 types of equipment used by
the hero. Each gene in this chromosome represents an integer
index to a corresponding equipment. In Table 3, such genes
are described from e1 to e10;

(ii) Chromosome A codes for the distribution of the UTPs among
the attributes of the hero. Each gene in this chromosome is an
integer value directly representing the value of a correspond-
ing hero trait. Once the hero trait is an integer value, there
is no need for genotype-phenotype mapping function for the
chromosome A. In Table 3, such genes are described from a1
to a3;

(iii) Chromosome D codes for the organization of soldiers in the
6 divisions. The values available in the D chromosome were
normalized to an integer percentage scale, since the faculty of
a hero varies with its Sway. Therefore, the sum of the values
of all elements present in theD chromosome should be equiv-
alent to 100 points. In Table 3, such genes are described from
d1 to d6;

The algorithm receives as input a team of N battle formations for
the Defense side. Individuals of the GA represent formations for the
Attack side. To evolve those formations, an N -population coevolu-
tionary GA was used. The number of subpopulations (N) is equal
to the number of enemy heroes present in the input team. Each
subpopulation evolves battle formations for particular placements
in the battlefield. For example, if there are 3 heroes in the defense
side, the algorithm instantiates 3 subpopulations. Heroes that are
placed at the left flank of the battlefield form the first subpopula-
tion, heroes placed at the center form the second subpopulation,
and heroes at the right flank, following the battle system idea ex-
plained in the previous section, form the third subpopulation. Thus,
a complete solution for this problem is obtained by grouping one
individual from each subpopulation, in their respective order, form-
ing a team of heroes for the Attack side.

3.2 Evaluation

The evaluation of an individual is done by using the core of the
Armageddon Battle Simulator (ABS)5, developed by the first author
based on information available at Quest Unlocked6 and the official
Call of Roma website1. It is important to highlight that the ABS
was used in this work just as a tool to simulate battles of Call of
Roma, and it is not essential to the proposed approach, so it can
be easily replaced. Although most of the information needed to
implement a simulator of Call of Roma are available online, some
essential equations for the battle system are not provided. More
specifically, it is not clear how the final damage is calculated. Even
with the analysis of several battle replays, such hidden equations
were not obtained with a good precision.

5Armageddon Battle Simulator: http://
armageddonbattlesimulator.blogspot.com

6Quest Unlocked: http://guides.questunlocked.com/
caesary

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 782

Table 3: A hero encoding

E - Equipment A - Traits D - Divisions

B
oo

ts

Sh
ie

ld

H
el

m
et

A
rm

ou
r

W
ea

po
n

N
ec

kl
ac

e

Pe
nd

an
t

B
el

t

R
in

g

H
or

se

Sw
ay

B
ra

ve
ry

Pa
rr

y

Fr
on

ta
l L

ef
t

Fr
on

ta
lC

en
te

r

Fr
on

ta
l R

ig
ht

R
ea

rL
ef

t

R
ea

r C
en

te
r

R
ea

r R
ig

ht

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 a1 a2 a3 d1 d2 d3 d4 d5 d6

To overcome this problem, an Artificial Neural Network (ANN)
was used to emulate the hidden equations. The neural network
was developed with the support of the Encog7 framework [Heaton
2008] and it was trained over more than one thousand battle re-
plays, obtained directly from the game. There is no secret behind
this particular ANN. It consists in a simple feedforward multilayer
perceptrons, trained by the resilient back-propagation algorithm, in
a supervised training [Igel and Hüsken 2003]. The ANN receives
as input the Offense of the attacking unit, the Bravery of the at-
tacking hero, the Defense of the defending unit and the Parry of the
defending hero. Given these four input values, the ANN returns the
damage inflicted by the attacking unit. Hundreds of active players
have tested the Armageddon Battle Simulator with a high approval
rate. Once the details about the development of the battle simulator
or its neural network are not in the scope of this paper, interested
readers may access 5 for further information.

Designing the evaluation function is not such a trivial task. The
task of the coevolutionary algorithm is to improve the battle perfor-
mance over the generations, finding a better team, if it is possible.
But the ideas over battle performance varies from player to player.
The algorithm attempts to maximize the fitness value of the indi-
vidual. The fitness value represents the in-battle performance of
the whole team (N heroes).

To illustrate the different perspectives of a good battle performance,
let’s suppose a hypothetical situation. Imagine a battle of 10 attack-
ing heroes against 3 defending heroes. The defense is outnumbered
and is defeated, but it killed 9 of the attacking heroes. Once the
victory is given to the last standing side, the attacking team is vic-
torious, but it lost 3 times more than the opponents did. There is
no agreement among the players about what is in fact a good battle
performance, and hence it is a subjective concept. Some players
prefer to conquer the victory, no matter the casualties. So, in this
case, if the Attack won, they are better. Others are more interested
in killing the maximum number of opponent’s soldiers, winning or
not. In this case, the Defense are the real killer, and so they are bet-
ter. The proposed fitness evaluation tries to gather in a single func-
tion all the different views of what is a good performance. Thus,
the capacity of the individual to adapt to the environment is directly
related to its performance in the battle simulation against a given
test case.

In our approach, the complete solution is a team of N heroes, and
the fitness of the whole team is the sum of the fitness of each hero.
The fitness value of a single hero is the sum of five different individ-
ual scores. The individual scores are calculated for each particular
hero in such team. In other words, each hero has five different fac-
tors that compounds its internal fitness. The sum of the internal
fitness of every hero present in the evaluated team, results in the ex-
ternal fitness. More details about this internal and external fitness
will be described in subsection 3.3. Following, we introduce the
five scores used to evaluate a single hero.

Victory Point: The first score is the Victory Point, which is 1 if
victory is achieved or 0 otherwise. The idea behind this score is
to push the algorithm towards the victory and also avoid the opti-
mization over defeated individuals. By creating this new level on
the fitness landscape, defeated individuals will have less chance for
survival and reproduction, in comparison with the victorious ones.

7Encog Framework: http://www.heatonresearch.com/
encog

Offensiveness: The second score is called offensiveness and it mea-
sures the lethality of the soldiers. In the simulation, the number
of soldiers killed by each side is counted. The offensiveness of a
given hero is the total number of soldiers killed, Skilled, by this
hero, divided by the initial number of soldiers led by him, which
is his faculty as described in section 2 (so it is Skilled/faculty).
By this way, the offensiveness may vary from 0 to values greater
than 1. In a N ×N battle, scores greater than 2 are a good sign of
victory and it is possible to score values over N .

Defensiveness: The third score is called defensiveness and it is
just the ratio of remaining soldiers after the battle, varying from
0, which means that the hero was killed, to 1, meaning that the hero
returned untouched. There is only one way to have a defensiveness
score higher than 0, which is winning. So, by trying to maximize
defensiveness, the evolutionary algorithm is also trying to win.

Usage: It is possible to win using less heroes than N , for N ≥ 4.
Let us suppose N = 5, so it is a 5 × 5 battle. There are initially
3 heroes in the battlefield and 2 queued. It is possible to the first 3
heroes to defeat the 5 opponents, so the queued heroes will not even
join the battlefield. This is the concept of the fourth measurement,
called usage score. Each unused hero gives and extra 1/N score to
the N heroes, including himself, i.e., 1 point to the team divided
equally between all members. For a particular hero, it does not
matter if it is being used or not. In the previous example, there are
5 total heroes, 3 used and 2 unused heroes, so it is 2/5 for each one.

Before introducing the fifth score, it is important to reinforce the
idea that the concept of a good battle performance depends on the
point of view. There are situations that it seems to be impossible
to find a victorious solution. In this case, the victory, defensiveness
and usage scores are exactly zero. The algorithm then attempts to
maximize the offensiveness by reducing the number of led soldiers,
i.e., reducing the faculty, which means reducing the hero’s Sway.
And reducing the Sway implies increasing the Bravery and/or Parry,
in such a way that the minimum Sway implies the maximum of
both Bravery and Parry, as described in section 2. And so, both
maximized Bravery and Parry mean the best possible offensive and
defensive bonus granted by the hero’s traits, but granted to the as
lower as possible number of soldiers. It looks like the algorithm is
evolving heroes that are avoiding the battle and this can be seen as a
bad behavior, but it is not at all. Remember the 10 versus 3 example
and the different perspectives of good performance.

Participation: Nevertheless, to appease those who see the defeat
always as a bad thing, the fifth score, called participation score,
can replace the offensiveness score. This last score is the ratio of
killed soldiers in all the opposing team, which is the total number
of soldiers killed by this hero, divided by the average number of
initial soldiers in all enemies. By this way, the participation score
may vary from 0 to N . An offensiveness score of 2 means that
each soldier killed, on average, two other soldiers, while a partici-
pation score of 2 means that the considered hero killed, on average,
two other enemies’ heroes. Despite the idea of replacement, in this
work, we consider both measures and so the fitness value of a single
hero is the sum of all five scores.

However, there are N heroes being evolved and the team fitness
(external) value consists in the sum of the individual fitness (inter-
nal) of allN team members. The external fitness is what determines
the survival chances of the candidate solutions.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 783

3.3 Cooperation

In a cooperative coevolutionary algorithm, the individuals from
the subpopulations are taken together to produce solutions for the
global problem. In our case, solutions that encode battle forma-
tions are gathered to form the Attack team. This cooperative time is
called cooperation interval. Each subpopulation evolves its own in-
dividuals in an asynchronous, parallel, and independent way, until
the cooperation interval is achieved. The time of the cooperation in-
terval is determined by the cooperation gap parameter, γ = 5. This
means that in every elapsed γ generations, a subpopulation thread
stops its execution and waits to perform the cooperation with the
others. When the cooperation interval is finished, all threads run
independently for more γ generations.

Inside the subpopulation, each particular individual is evaluated by
placing it in its respective battle position among the other ones.
Each individual is teamed up with the best solution found so far
from the other subpopulations. If an improvement is achieved in the
team fitness, the evaluated individual is stored as the representative
of its corresponding subpopulation. The external fitness assessment
and the update of the best team are done in every cooperation in-
terval. If there are more than one subpopulation presenting a new
improvement, the best representative, considering the team fitness,
is tested first. Then, the second is tested and so on. If a real exter-
nal fitness improvement occurs, the corresponding representative is
updated and the best attack side team is stored. In the next genera-
tion, the best-updated representative hero of a subpopulation is the
corresponding hero present in the best-updated attack side team.

This best first cooperation strategy is not a good approach for the
first generations and may delay the process of coevolution. Once
the first individuals are randomly generated and the fitness assess-
ment is performed considering the best heroes found in the previ-
ous cooperation intervals, the representatives of the first generations
consist in individuals that evolved in combat while forming teams
with random ones. So the information about what is in fact a good
battle formation is vague at this point. To speed-up the coevolu-
tion, a number nα of other cooperations are performed by randomly
picking individuals from the subpopulation to form the attacking
team. It is considered an α factor, 0 ≤ α ≤ 1, as input, which is
the probability of picking the best hero from each subpopulation.
So, α acts as a greedy factor, such that when α = 0 all heroes of
the attack team are randomly chosen from their current subpopula-
tions, when α = 1 all heroes of the attack team correspond to the
current best individual in each subpopulation, and intermediate val-
ues of α promote a balance between random and greedy pickings.
Intermediate values ofαwould be very interesting because a greedy
picking may lead the algorithm to a premature convergence, while a
random picking leads to a very unstable and inefficient coevolution.
The value of nα is defined as:

nα = Max(1, 50− (
gen

2
)),

where gen is the current generation. So The value of nα reduces
over the generations from 50 to 1. The α value starts in 0 and for ev-
ery random picking, it is increased by 1/nα. The idea behind these
formulas is simple. The presence of randomly selected individuals
tends to be more effective in earlier generations, while in the later
stages of the algorithm, this approach tends to yield no gain. Thus,
in earlier generations, more α-based cooperations are performed.

3.4 Genetic Operators

The initial subpopulations contain µ = 100 individuals, generated
randomly according to a uniform distribution. Individuals are se-
lected for reproduction by means of a binary tournament. In a bi-
nary tournament, two candidate individuals are randomly selected
from the population. Then, their fitness are compared and the indi-
vidual with the best fitness is selected for mating (or reproduction).
The tournament continues until a total of 100 (µ) parents are se-
lected for matting.

Selected individuals undergo crossover with recombination rate
ρr = 0.9. Recombination takes two parents and produces two off-
spring. Remember that each individual has three chromosomes, E,

A and D. Each chromosome is divided by one randomly selected
cutting point, and the genetic information are permuted only be-
tween chromosomes of the same type. There is no recombination
between chromosomes of different types, like E with D. In the
event of generating an invalid solution by crossover, a simple re-
pair operator fixes the individual, keeping the rules and the proper
encoding described in sections 2 and 3.1.

After recombination, the offspring is subject to the mutation oper-
ators. The idea of the mutation operators is to help the algorithm
to avoid local minima and premature convergence. We employ dif-
ferent mutation operators, suitable for each chromosome. The fol-
lowing mutation rates correspond to the probability of each gene,
in the respective chromosome, being affected. It may seem that the
low mutation rate has no effect on the evolutionary process, but this
thought is wrong. This rate should be lower enough to promote
small perturbations over the individuals, and not a random search.

The chromosome E suffers mutation with rate ρEm = 0.01. Mu-
tation operator ME replaces one element in the chromosome by
another random equipment. Chromosome A has mutation rate
ρAm = 0.02 and a mutation operator is applied randomly. Muta-
tion MA1 performs a simple swap between two genes and Mutation
MA2 adds a random perturbation to the value of one of the genes
subtracting the same value from another gene in A such that the
limit of 969 of total points and the limit of 484 points per trait, are
not violated. The chromosome D has mutation rate ρDm = 0.04
with three mutation operators chosen randomly. Mutation MD1
is a simple swap, like MA1; Mutation MD2 selects two divisions
di 6= dj and randomly allocates some points from di to dj keep-
ing the sum equal to 100; Mutation MD3 removes all points from a
randomly chosen division and add it to the biggest division, concen-
trating soldiers into one division. This operator was modeled based
on the author’s intuition and expertise on this particular game. In
other words, the goal of this operator is to reduce the losses caused
by the Dispersion from opponent Sagittarii. In fact, a reduction
on the number of divisions implies a reduction on the number of
Dispersion’s targets, and this might lead to a better performance.
It can be argued that MD3 is not a “mutation” operator and it is
more likely to operate as a “refinement” operator. But refinement
operators are likely to accept changes only if an improvement is
devised, which is not the case of MD3. We decided to avoid such
discussion. Also, earlier experimental results on our previous work
showed that the MD3 operator brought a significant improvement
to the algorithm.

The offspring replace the current population, characterizing a gen-
erational GA. The algorithm stops after 200 generations or when
there is no improvement in elapsed 50 generations. For more de-
tails about evolutionary algorithms, in general, see [Jansen 2013].

4 Generalization

It can be argued that this approach is very specific or ad hoc. In fact,
it considers the battle system of just one game, called Call of Roma.
But the principles presented here are common to a large number of
games. It consists in a war game, fought by a large number of
units, under the leadership of a small number of heroes. Both units
and heroes have properties or attributes that are elementary to the
most RTS games and also Role Playing Game (RPG) styles, such
as hit-points, armor or defense, damage, attack, etc. In this paper
it was considered the heroes’ traits, but these characteristics are not
specific. Usually, it must be decided how to build this attributes ac-
cording to a strategy or playing style. Sometimes, in more complex
games, this building process is not trivial.

In Call of Roma, there are also a large number of collectable equip-
ment. The capacity of collecting items from the environment and
using it to improve the player performance in battle is another well-
known characteristic from strategy and RPG based games. In gen-
eral, there are a lot of items to collect, and a very large number of
possibilities of how to combine, use or equip these items, according
to the build or the strategy. In our case, even restricting the number
of equipment to seven basic sets, there are more than 75 different
combinations. Obviously, it is not a trivial decision, and again it is
not an ad hoc consideration.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 784

Finally, in most of strategy games, the fights are performed between
two or more sides and these sides follow some implicit or explicit
spatial tactic. One may fast rush toward the first enemy, other may
try to kill the weakest first. This spatial tactic is called here as
battle formation. In other words, the player also has to decide how
to organize his/her troops to achieve his/her goals. Also, there are
a lot of ways of how to organize the units, or the heroes, and this is
not trivial. And finally, spatial tactics are not ad hoc.

It is not hard to understand that a successful build must combine
a good set of decisions that are not easy to conceive. Here, these
decisions are summarized into these three abstract dimensions: at-
tributes (traits), equipment and tactics (formation). But, of course,
there may be many other dimensions not considered here. To trans-
fer this decision making to an algorithmic approach, such attributes
must be represented (or encoded) in some way. In our case, we
try to find these decisions and generate content by coevolutionary
means. To generalize the proposed approach to other games the rep-
resentation must be adapted to fit into a different game content. Of
course, there will be different equipments, units, attributes and for-
mations, requiring that the genotype-phenotype mapping function
must be adjusted.

Call of Roma has some constraints related to the number of UTPs
and restrictions on the distribution of these points. These con-
straints were taken into consideration by the genetic operators, to
avoid the generation of invalid content. It may be expected that dif-
ferent games have different constraints. Related to the adjustment
of the representation, pointed above, the adjustment of these con-
straints must also be considered. And so, the implementation of
proper operators or repair functions may be required.

Also, the generated content of another game must be evaluated ac-
cording to some function. This paper uses five different scores as
a measure of good battle performance. These scores represents de-
sirable properties and not necessarily properties. And it may be
thought that these properties are exclusive to the Call of Roma con-
text, but they are not. They take into consideration just one element:
the number of soldiers. It is measured the killing ratio, the surviving
ratio, the capability of winning, using less resources (i.e. soldiers),
etc. It is all about the number of soldiers on the input, and the
number of soldiers on the output. This consideration is one of the
most common considerations of the RTS game researchers [Syn-
naeve and Bessiere 2012; Ballinger and Louis 2013]. The evalua-
tion function must also be adjusted to fit into another game context.

In this paper, we perform a simulation-based evaluation [Togelius
et al. 2011b; Shaker et al. 2014]. This means that the generated con-
tent, i.e. the attacking team, is tested by a simulator and the fitness
is assessed based on the values obtained on this simulation. This
simulator is specific to the game Call of Roma. Obviously, con-
sidering a simulation-based evaluation, to evolve content to other
games, based on this proposed approach, new simulators must be
implemented to fit on another battle system. The exchange of the
simulator engine does not change our cooperation techniques or the
measurement of the five scores. The battle simulator is ad hoc, but
our approach is not.

5 Results and Discussion

In order to test the proposed coevolutionary algorithm, it was exe-
cuted over different sizes of N , i.e., it was tested against enemies
of different number of heroes. This number varies from 1 to 9, so
it performs tests of up to 9 × 9 heroes. The benchmark for test-
ing the algorithm used in this paper was developed by the users
of the Armageddon Battle Simulator 5. The users simulate battles
to get information about the performance of their builds against a
specified opponent, to test new ideas or to find something that over-
comes their enemies. Every simulation is stored on the server in
agreement with the user. The simulator’s server application is run-
ning on the Google App Engine8 platform. There are currently 37
thousand simulations stored. Most of them are just irrelevant regis-
ters and should be obviously discarded. Of course it is not possible

8Google Cloud: https://cloud.google.com/products/
app-engine

to run the coevolutionary algorithm over all these test cases, but a
set of 10 interesting simulations for each size considered (from 1 to
9) was carefully taken as input. So the algorithm is tested against a
total of 90 test cases that express what active players and users of
the simulator have in their mind.

Every user modeled hero was carefully inspected to ensure that they
perfectly follow the contents presented in section 2. However, it is
very important to highlight that to add a new level of challenge to
the proposed approach, both Green and White basic sets are forbid-
den to the coevolutionary algorithm and also the Green accessory
set. This means that the solutions found by the algorithm will never
contain any equipment from these mentioned sets. Looking only
to the accessories table (see Table 2), it is easy to see that the evo-
lutionary team is under a disadvantage situation. Additionally, the
hero’s trait points of the users can exceed in up to 10 points every
trait designed by the algorithm, due to the initial base points dif-
ferences. Finally, the randomness provided by the unit’s minimum
and maximum damage differences were removed, in such a way
that the coevolutionary heroes always inflict the minimum damage
while the user’s heroes always inflict the maximum damage.

The algorithm is implemented in Java 1.7 and designed to run on
the Amazon Elastic Compute Cloud9 (EC2). The EC2 is an Ama-
zon’s cloud computing platform that allows users to rent virtual
computers on which to run their own computer applications. The
idea here is to show that the algorithm is able to run as a web ser-
vice that can be explored by the same companies that develop and
host MMORTS games. Once the algorithm was implemented un-
der a multithreaded design, it requires the configuration of just one
parameter, the number of concurrent processes, to adjust its execu-
tion to the corresponding cloud computing machine. It was used
a 64-bit image of the Amazon Linux AMI (Amazon Machine Im-
age) 2014.03 over the M1.xlarge instance type. This instance is
equipped with 8 computing units, 4 virtual CPUs and 15GiB of
memory. For convenience, read the following link10 for further in-
formation about the Amazon Web Services and the EC2’s M1 in-
stance type. It also would be interesting to run tests on different
types of hardware to check the parallel performance and the scal-
ability of the proposed approach, but this kind of research escapes
a little bit of current goals and the scope of this paper. Therefore,
these tasks will be left for future research.

The algorithm was tested 3 times for each test case. Therefore, that
is 30 executions for each battle size and 270 overall executions.
The Table 4 presents the average scores of that 30 executions and
its respective standard deviation (small number at the right of the±
symbol), for each N ×N size.

It is not hard to see that the greater is the size N , the higher is the
expected fitness. Considering the performance of the whole team,
the participation score varies from 0 to N and, when the victory is
achieved, this score is necessarily equal toN . In addition, if victory
is achieved, each hero receives a +1 from the victory score, so the
team receives additional N score. In addition, the usage bonus is
available only for N ≥ 4.

In the other hand, the greater the value ofN , the harder the problem
due to its increasing complexity. The effects of the high complexity
level are visible for the scores of the 9 × 9 solutions. The worst
values in victory rate are in this size. In addition, the offensiveness
is lower than the scores of 7× 7 and both defensiveness and usage
scores are both poor.

Achieving the victory is a good way to increase the fitness value.
The victory score was designed to add a new level to the fitness
landscape. The idea is exactly to force the algorithm to “forget”
defeated solutions, preventing the “avoiding battle behavior” de-
scribed in section 3.2, while improving the victorious ones, by max-
imizing the defensiveness and the usage scores. Note that the de-
fensiveness score will only be greater than 0 if a hero survives, i.e.,
if there are remaining troops after the battle, which implies victory.
The same is truth for the usage score.

9Amazon Web Services: https://aws.amazon.com
10http://aws.amazon.com/ec2/instance-types/

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 785

Table 4: Average Scores

Size Victory Rate Fitness Participation Offensiveness Defensiveness Usage
1x1 100% 5.143±1.554 1±0 2.611±1.667 0.532±0.194 0±0

2x2 90% 7.874±2.367 1.918±0.249 3.102±1.902 1.053±0.477 0±0

3x3 100% 14.759±5.28 3±0 6.983±5.639 1.777±0.633 0±0

4x4 100% 20.795±2.886 4±0 10.871±3.522 1.491±0.726 0.867±1.008

5x5 96.667% 22.5±4.606 4.983±0.093 10.587±3.289 1.564±0.955 1.067±1.639

6x6 96.667% 28.104±4.46 5.971±0.161 13.762±4.12 1.805±1.101 1.533±2.08

7x7 90% 29.716±5.821 6.793±0.657 14.193±4.455 1.664±1.315 1.533±2.08

8x8 76.667% 30.134±7.391 7.446±1.167 15.455±4.774 0.966±0.802 0.267±0.868

9x9 60% 28.658±8.912 8.066±1.376 13.925±2.869 0.967±1.136 0.6±1.589

Figure 3: The evolution of the five scores for the 3× 3 instances

Figure 4: The evolution of the five scores for the 5× 5 instances

To illustrate the differences between the scores or the fitness mea-
surements, the figures 3, 4 and 5 show the average values of the
five scores over the generations for three different sizes. It is easy
to see what was just being described before. The scores of the par-
ticipation, offensiveness and victory are high scores in comparison
with the other ones, following the value ofN . Maybe a new adjust-
ment over the defensiveness and usage scores, or even some kind
of normalization of these measurements can be tested to check if a
better performance is obtained. Despite the initial idea of replacing
the offensiveness by the participation score, it was not tested yet.
The correct adjustments of the fitness function is directly related to
the algorithm’s capability of finding better solutions. But, just to
reinforce, the offensiveness measurement cannot be taken as a bad
measurement. For a large number of players, this ratio of killed
soldiers (instead of killed heroes) is all that matters.

Also discussing about offensiveness, it is possible to see that, on
average, for all battle sizes, the offensiveness value is higher than
N . In other words, on average, there is always a good battle per-
formance being achieved, in some sense. In fact, if offensiveness is
higher than N , it can be said that the evolved units killed more than
one of the opponent’s units, on average. And again, some players
consider this ratio as the most important measure. So, it can be
argued that, even losing on 40% of executions for the 9× 9, the al-
gorithm still able to find good battle performances. In other words,
the algorithm ensures an economical compensation, considering the
cost of the losses, even in a defeat situation.

Figure 5: The evolution of the five scores for the 7× 7 instances

Figure 6: Average fitness over generations

There are additional parameters that must be considered, which are
the stopping criteria variables. Once the complexity increases, it
may be necessary to take more generations to converge into a proper
winning solution. Moreover, the stopping criteria are the same for
all executions. The Figure 6 shows the average fitness of the best at-
tacking team over the generations, for each size. As can be seen, the
fitness improvements are higher at the first generations and as the
generation is approaching the end, the fitness curves are smoothed.
At this scale, it is not clear but the fitness values keep growing
slowly until the last generation. Most of the best solutions were
found at the last cooperation interval. This means that it is possible
to keep evolving and improving the solutions until a later moment.

Figure 7 illustrates a sample first round scenario of an evolved hero,
called BH-I-C , which consists in one of the most common tactics
applied by the coevolutionary heroes. Figure 7(a) shows the initial
state, before the battle begins. Figure 7(b) shows the effect of the
Rain of Arrows skill, provided by left-flank’s Bright Helmet, that
helps center hero to kill its opponent hero, called CT-I-C , eliminat-
ing the enemy’s d3, d4 and d5 before center hero starts the fight.
Figures 7(c) and 7(d) shows the first actions of the evolved hero,
applying Dispersion over all remaining units, that kills the oppo-
nent’s d1 division. At this moment, applying Dispersion is no more
advantageous for him, so its d6 division performs a Distal Assault,
as shown in figure 7(e). Finally, in figure 7(f), there is only the main
frontal division remaining, which is the single target of all frontal
units.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 786

(a) Start Position (b) Left Flank’s RoA

(c) d4’s Dispersion (d) d5’s Dispersion

(e) d6’s Distal Assault (f) Frontal Assaults

Figure 7: BH-I-C vs. TC-I-C: Round 1 illustration.

On the other side, all enemy’s Sagittarii cannot eliminate hero d2
division, because this hero has a higher Def value and a high Parry.
Therefore, there is no alternative to the enemy’s main frontal di-
vision, but attacking the weak hero’s d2 division, thus wasting a
good offense. Notice that it would be more advantageous for the
enemy if their main division attack fell on a stronger division of our
evolved hero. At the end of the first round, while four divisions of
the enemy are dead and the two remaining divisions are seriously
damaged, only one weak division of our hero was eliminated and
the main divisions were little affected. This good performance can
be observed in most of the winning evolved heroes.

It can be argued that nine heroes are not enough to handle the re-
ality of PVP battles in MMORTS, where hundreds of players can
join a single battle. It is true, but remember that the goal here is not
designing teams for human players or for PvP battles, but to proce-
durally generate content for PvE battles. In Call of Roma the most
common PvE size is 3× 3 and there is no environmental character
with a number of heroes higher than 6. In fact, in PvE battles, the
quality of the heroes usually is more important than the quantity.
And this is truth for most MMORTS games, like Senatry, for exam-
ple. In the most important NPCs there is a size limit, restricting the
number of heroes of the human players, usually three or six. For the
considered context, the performance of the algorithm is satisfactory.

Finally, it is common to the developers to design overpowered and
unfair NPCs to add a new level of challenge for the most experi-
enced players. For example, adding a number of troops that exceeds
the heroes’ faculty or giving some attributes boost that is impossi-
ble to players in game. This practice works, of course, because it
is hard to beat the overpowered NPC. But once the player is aware
of that difficulty is due to an unfair factor, he feels disappointed
with the game. Nobody likes to play with a cheater. The use of
the approach presented on this paper can solve this problem. It has
been proved that it is possible to procedurally generate victorious
solutions, based on builds designed by the players. This victory
is achieved by the evolved heroes under unfavorable conditions, as
described before, proving that it is possible to be competitive with
human players with balanced and fair game content. Due to the
game complexity, there is no overall winner, i.e. every strong hero
has a weak point and is likely to be defeated in some way.

It is important to highlight that all the input, output and any other
files used in this work are being shared in this online repository11,
so that further researchers interested in this work can use the same
benchmark to compare and share their results. Once the files pro-
vided by the coevolutionary algorithm are compatible with the
ABS, players may also be interested in new ideas for developing
their builds. But, for future researchers, it is important to keep in
mind that the game is always changing and so the ABS is changing
too, according to the game. Thus, the forthcoming research might
get different results from the simulator and direct comparison may
not be proper. Also, it was argued in section 4 that the ABS is spe-
cific to the Call of Roma battle system, but it can be easily replaced
by any other simulation tool, tailored to other researchers purposes.

In general, the coevolutionary algorithm has a good evolution,
avoiding premature convergence, but it takes several minutes in
only one complete execution (e.g. 25min for a 9 × 9 run). That
occurs because each battle simulation must take into consideration
the actions of all units of all divisions of heroes in the test case,
for each subpopulation. Timing performance was not detailed here
because it may vary a lot, depending on several other configura-
tions. On the other hand, if the time is short and the results should
be returned as soon as possible, winning solutions may be returned
as soon as they are found. Looking at the victory score curve, in
figures 3, 4 and 5, it can be seen that victory is achieved in most
executions at an earlier or middle stage. As well as the algorithm’s
scalability and other parallel characteristics, this study is left for fu-
ture research. Although, interested readers may check the output
files for detailed information.

6 Conclusion and Future work

This paper presented a coevolutionary approach for the automatic
discovery of battle formations for a MMORTS game. Currently, the
NPC developed for these games present predefined and static strate-
gies. This work follows the assumption that the procedural genera-
tion of content for the NPCs, that are adapting to human strategies,
can contribute to making these games more attractive and challeng-
ing to human players. To illustrate the proposed approach, we con-
sidered the game Call of Roma, for which we developed a simple
representation for the candidate solutions and suitable genetic op-
erators. This paper takes the previous work [Ruela and Guimarães
2012] as a starting point, but the current proposal is largely differ-
ent and expanded from how it was at the referred beginning. There
are several changes, specially the new evaluation function and the
cooperation method.

The coevolutionary GA is able to find a victorious and efficient so-
lution for overcoming formations developed by players of Call of
Roma. In all cases, the algorithm presents a convincing victory rate,
but it shows its limitations for instances of higher number of heroes.
Moreover, the GA was tested against different scenarios, that con-
sist in teams formed by heroes modeled by active players and users
of the simulator. Despite the disadvantages imposed by the battle
simulator implemented, the GA was able to keep a positive balance,
finding honorable victories.

11https://www.dropbox.com/s/fr2fed7yvmxieyh/
ArmageddonEvolution.rar

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 787

Cooperative coevolution of several subpopulations is not such triv-
ial task. Sometimes the best solution ‘a’ for the subpopulation A
might not be the best solution ‘a’ for the subpopulation B, and in
addition both A and B might not agree with the rest of the team
about what would be better for all. So an α based method was
used to choose between random or greedy cooperation. The fitness
function was carefully designed to attend our goals and to cover
different perspectives of a good battle performance, pushing the al-
gorithm forward to victory, in most of cases. Our simulation based
evaluation was able to assess an individual fitness for the candidate
solutions and an external fitness for the whole team, based only on
the number of soldiers.

As reported in section 3.2, there are different concepts of what
would be a good battle performance. In future work, new visions of
this subjective measurement may be studied, e.g., the cost behind
each equipment, which is not considered in this work. The insertion
of the building cost would result in complete different solutions and
may lead the algorithm to a Multi-Objective approach. More coop-
eration methods can be explored to find better ways of producing a
good Attack team.

The population of the GA is evaluated using only one test case per
time, which results in a very specific battle strategy. The applica-
tion of multiple test cases, such as the approach adopted in CIGAR
[Louis and Miles 2005], would allow the generation of more gen-
eral and robust strategies, able to beat not only one but also a set
of test cases. Each subpopulation runs in a single thread but no re-
search has been done about the algorithm’s parallelism or the scala-
bility. The number of concurrent process was controlled by a single
parameter to correspond to the considered hardware. Therefore, the
parallelism can be studied at a deeper level, trying to reduce the
execution time.

Finally, the authors intend to use the coevolutionary algorithm in a
parallel project for developing new balanced resources, such as new
units, equipment and skills, for example, by the means of search-
based Procedural Content Generation [Shaker et al. 2014], in an
attempt to convince the game developers that there are new promis-
ing alternative ways for game design.

Acknowledgment

The authors would like to thank to: State of Minas Gerais Re-
search Foundation - FAPEMIG; Coordination for the Improvement
of Higher Level Personnel - CAPES; National Council of Scien-
tific and Technological Development - CNPq (Grants 30506/2010-
2, 312276/2013-3).

References

AVERY, P., AND MICHALEWICZ, Z. 2008. Adapting to human
game play. In Proceedings of the IEEE Symposium on Compu-
tational Intelligence and Games.

BALLINGER, C., AND LOUIS, S. 2013. Robustness of coevolved
strategies in a real-time strategy game. In Evolutionary Compu-
tation (CEC), 2013 IEEE Congress on, 1379–1386.

BENBASSAT, A., AND SIPPER, M. 2012. Evolving both search
and strategy for reversi players using genetic programming. In
Computational Intelligence and Games (CIG), 2012 IEEE Con-
ference on, 47–54.

CANOSSA, A., MARTINEZ, J., AND TOGELIUS, J. 2013. Give
me a reason to dig: Minecraft and psychology of motivation. In
Computational Intelligence in Games (CIG), 2013 IEEE Confer-
ence on, 1–8.

DARWIN, C., AND HUXLEY, J. 2003. The Origin Of Species:
150th Anniversary Edition. Signet Classics.

GOLDBERG, D. E. 1989. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wesley Professional.

HEATON, J. 2008. Introduction to neural networks with Java.
Heaton Research, Inc.

IGEL, C., AND HÜSKEN, M. 2003. Empirical evaluation of the im-
proved rprop learning algorithm. Neurocomputing 50(C), 105–
123.

JANSEN, T. 2013. Analyzing Evolutionary Algorithms: The Com-
puter Science Perspective. Natural Computing Series. Springer
Berlin Heidelberg.

LOUIS, S. J., AND MILES, C. 2005. Combining case-based mem-
ory with genetic algorithm search for competent game ai. In
ICCBR Workshops, 193–205.

MILES, C., LOUIS, S., COLE, N., AND MCDONNELL, J. 2004.
Learning to play like a human: case injected genetic algorithms
for strategic computer gaming. In Congress on Evolutionary
Computation, vol. 2, 1441–1448.

OTHMAN, N., DECRAENE, J., CAI, W., HU, N., LOW, M., AND
GOUAILLARD, A. 2012. Simulation-based optimization of star-
craft tactical ai through evolutionary computation. In Computa-
tional Intelligence and Games (CIG), 2012 IEEE Conference on,
394–401.

RICKLEFS, R. E. 2008. The economy of nature. Macmillan.

RUELA, A. S., AND GUIMARÃES, F. G. 2012. Evolving battle
formations in massively multiplayer online strategy games. In
SBC - Proc. of the Brazilian Symposium on Games and Digital
Entertainment - SBGames 2012, 49 – 55.

SENIOR, T., 2010. Computer program finds devastating starcraft 2
build orders, November.

SHAKER, N., TOGELIUS, J., AND NELSON, M. J. 2014. Procedu-
ral Content Generation in Games: A Textbook and an Overview
of Current Research. Springer.

SMITH, G. 2014. Understanding procedural content generation: A
design-centric analysis of the role of pcg in games. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing
Systems, ACM, New York, NY, USA, CHI ’14, 917–926.

STANLEY, K. O., BRYANT, B. D., AND MIIKKULAINEN, R.
2005. Evolving neural network agents in the NERO video game.
In Proceedings of the IEEE Symposium on Computational Intel-
ligence and Games, 182–189.

SUPERDATA RESEARCH, I., 2014. US digital games market up-
date: December 2013, January.

SYNNAEVE, G., AND BESSIERE, P. 2012. Special tactics: A
bayesian approach to tactical decision-making. In Computa-
tional Intelligence and Games (CIG), 2012 IEEE Conference on,
409–416.

TOGELIUS, J., KASTBJERG, E., SCHEDL, D., AND YAN-
NAKAKIS, G. N. 2011. What is procedural content generation?:
Mario on the borderline. In Proceedings of the 2nd International
Workshop on Procedural Content Generation in Games, ACM,
New York, NY, USA, PCGames ’11, 3:1–3:6.

TOGELIUS, J., YANNAKAKIS, G. N., STANLEY, K. O., AND
BROWNE, C. 2011. Search-based procedural content genera-
tion: A taxonomy and survey. Computational Intelligence and
AI in Games, IEEE Transactions on 3, 3, 172–186.

TOGELIUS, J., SHAKER, N., AND NELSON, M. J. 2014. Introduc-
tion. In Procedural Content Generation in Games: A Textbook
and an Overview of Current Research, N. Shaker, J. Togelius,
and M. J. Nelson, Eds. Springer.

TOZOUR, P., AND CHAMPANDARD, A. J., 2012. Making design-
ers obsolete? evolution in game design. Open Interview.

YEE, N., 2005. MMORPG hours vs. TV hours, January.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 788

