
Parallelizing Broad Phase Collision Detection for Animation in
Games: A Performance Comparison of CPU and GPU Algorithms

Ygor R. Serpa1 Maria Andréia F. Rodrigues2

1Universidade de Fortaleza (UNIFOR)

Centro de Ciências Tecnológicas (CCT)
Av. Washington Soares 1321, Bloco J

 60811-905 Fortaleza-CE Brasil

2Universidade de Fortaleza (UNIFOR)
Programa de Pós-Graduação em Informática Aplicada (PPGIA)

Av. Washington Soares 1321, J(30)
 60811-905 Fortaleza-CE Brasil

Abstract

Games, computer animations and three-dimensional
interactive simulations have required the use of
realistic and faster than ever before broad phase
collision detection algorithms. In this work, we
compare the performance of four broad phase
algorithms implemented on CPU and GPU, using four
different test scenarios. More specifically, one of them
is a new GPU-based algorithm that we have developed
in the Bullet library using CUDA, and the other three
remaining implementations are CPU-based algorithms
available in the same library. The experimental results
show that the heterogeneous algorithm is competitive
when compared to some robust methods available in
Bullet, particularly in scenes with a large number of
objects whose movements are complex and
unpredictable. We believe that initiatives like this,
which explore solutions for new implementations of
collision algorithms running on GPU and operating
asynchronously with the CPU, are extremely important
and useful for game designers, especially in the area of
digital games based on Physics, considering there are
other elements of the animation, e.g., sound and
artificial intelligence, which can thus be executed
during the broad phase calculation.

Keywords: performance analysis, broad phase
collision detection, CPU, GPU, Bullet

Authors’ contact:
{ygor.reboucas,andreia.formico}@gmail.com

1. Introduction

Increasingly realistic interactive graphics applications,
either visually or physically, have been developed.
Among the factors that have enabled this increasing
level of realism are the algorithms for 3D collision
detection [Coutinho 2001]. Basically, collision
detection systems ensure that animations generated at
runtime are consistent with the major laws of Physics,

by generating plausible responses to contacts and
avoiding object interpenetration.

 In digital games, particularly those based on
Physics, the collision detection algorithms are essential
to the gameplay. Some examples of popular games in
this category are AngryBirds [Rovio 2009], World of
Goo [2D Boy 2008], Crayon Physics [Kloonigames
2009], Armadillo Run [Stock 2006], etc. Generally, the
collision detection system is triggered after the
execution of the dynamic system, which is responsible
for moving objects based on the values of their
velocities. The collision detection is then performed in
two steps: (1) finding the intersections between objects
in the scene; and (2) responding to the detected
collisions [Moore and Wilhelms 1988]. In the first
stage, by applying a discrete method, the objects can be
evaluated from time to time to find any collisions, or
using a continuous method, through parameterization
techniques of their positions over time. In the second,
physical models are used to simulate the action-
reaction forces that occur between colliding bodies.

Usually, different levels of detail of 3D

environments are used in such a way as to ensure the
operations of collision detection occur as planned. For
example, medical applications or 3D realistic
simulations require more precise information about the
collisions, particularly on the geometry of the
intersection and applied forces. On the other hand, 3D
real-time gaming and interactive graphics applications
require that the relevant information about the
collisions are calculated and extracted quickly, which
often simplifies the whole process because it considers
a minimum number of contact points between objects,
instead of using the full geometry of the intersection
[Bergen 2004].

 One of the most frequent ways to implement a
system of collision is dividing the process into two or
even three phases [Hubbard 1995] and [Mirtich 1997].
The first one is called broad phase and aims to analyze
all objects in the scene, and then select which pairs are

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 770

possibly colliding (the others are discarded). This
phase uses simplification techniques to improve the
overall performance of the application that is essential
to speed up the process as a whole, especially when
there are a large number of objects in the scene [Rocha
et al. 2006]. The second phase, known as narrow
phase, aims to test pairs of objects found in the
previous phase, by applying more robust and accurate
methods. The third (which is optional), is the exact
phase, in which the calculations are performed at the
level of vertices, in order to obtain greater accuracy.

 There are many algorithms devoted to each of these
phases. Many of them are recommended only for
specific scenes, hindering fair comparisons of
performance between them. Thus, it is crucial to
choose efficient and specific algorithms for scenarios
where they will be executed. This type of problem is
accentuated in multimedia applications such as digital
games and interactive simulations, because more than
one execution scenario may exist, besides the
management of CPU threads and memory resources.

At the same time, only recently there was a high

diffusion of graphics cards in personal computers
(although these resources exist for several years), as
well as in the number of real-world applications
implemented using computing platforms on GPU, such
as Nvidia CUDA [Nvidia 2014a]. Modern GPUs are
extremelly efficient at manipulating computer graphics
and their highly parallel structure makes them more
effective than general-purpose CPUs.

 Currently, there are three physics libraries that
stand out due to their complete system of collision
detection: Bullet [Coumans 2014a], PhysX [NVIDIA
2014b], and Havok [Havok 2014]. Definitely, these
highly optimized collision detection libraries allow for
more realistic virtual worlds in games. Bullet is open
source (whereas Havok and PhysX are not) and fully
implemented at the CPU level. Only PhysX has an
implementation at the GPU level, however, limited to
the video cards from Nvidia.

 In this work, using four different test scenarios, we
present a comparative performance analysis of four
broad phase collision detection algorithms. One of
them is a new GPU-based algorithm that we have
developed in the Bullet library using CUDA, and the
other three remaining implementations are CPU-based
algorithms available in the same library. We believe
that initiatives like this are extremely important and
useful for game designers, especially in the area of
digital games based on Physics.

2. Related Work

Currently, there are few works on broad phase collision
detection using GPU devices [Grand 2007; Liu, et al.
2010; Lo, et al. 2013]. Additionally, even fewer studies

simultaneously address this issue and use the Bullet
physics library. Many of them, which combine
parallelism with broad phase collision detection
algorithms, basically focus on adapting some existing
methods to multi-core architectures [Avril 2010].

For example, the work of Grand [Grand 2007]

pioneered the use of GPUs for processing broad phase
collision detection. The author presents a GPU-based
implementation of a regular grid to exploit the spatial
coherence of the scene [Bergen 2004], which states
that objects positioned far apart do not intersect. The
whole process of construction and use of the grid is
done at the level of the graphics card.

A hybrid algorithm using Sweep and Prune &

regular grids is described in [Liu et al. 2010]. It is
implemented entirely on the GPU. Although the
authors report that their algorithm achieves excellent
results, such as simulating up to one million of objects
in a scene, there is a lack of using a direct equivalent
method implemented on CPU, for conducting a fair
performance comparison.

 Other authors have been working on adapting
existing methods to multi-core architectures [Avril
2010], which are currently available in the modern
processors and have a robust model of parallelization.
However, few threads are actually executed in parallel.
Algorithms developed for these architectures can be
easier adapted to many-core architectures than
algorithms designed to single-threaded systems.
Besides, this approach is undoubtedly important to the
state-of-the-art in general, but is not ideal for games
and other media intensive applications that have highly
complex threading models to handle a multithreaded
game-loop structure.

Recently, Bullet's developers announced that the

next version of the library will contain a fully GPU-
based pipeline for collision detection and physics
[Coumans 2014b]. However, so far the library has
made available only one experimental implementation
of a regular grid, very similar to the approach proposed
by Grand [Grand, 2007].

3. Bullet Broad Phase Collision
Detection

The Bullet physics library contains an interface for
defining broad phase collision algorithms that enables
integration of new algorithms together with other
modules that comprise the collision detection pipeline.
This interface receives from the detection pipeline all
the colliding objects in the form of Axis-Aligned
Bounding Boxes (AABBs), and returns to the pipeline
the broad phase results, as a structure called of
colliding pairs cache.

 Two considerations are relevant on the input and
output data of the broad phase algorithms in the Bullet

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 771

library: (1) every frame, all the objects have their new
AABBs calculated and passed to the algorithm in order
to update them; and (2) the colliding pairs cache is a
persistent structure, i.e., the objects that remained in
collision during multiple frames should remain in the
same position in the cache. Therefore, we cannot
empty the cache every frame in order to facilitate the
management of colliding pairs of objects. More
specifically, there are three algorithms that implement
this interface in the Bullet library: Brute Force (BF),
Sweep & Prune (SAP) and Bounding Volume
Hierarchy (BVH). All those algorithms run on CPU
and are single-threaded.

3.1 Brute Force (BF)

In the BF algorithm, every object in the scene is tested
against every other object. For each test, if the objects
are in collision, it is checked if this colliding pair is
already in the cache. If it is not, it will be added;
otherwise, it will be removed. Although it is generally
slower than the other algorithms that exist in the Bullet,
for scenes containing few objects it can be more
efficient, since it has no updating overhead of its data
structures. However, it is too inefficient to be used
when the number of objects is large. On the other hand,
its performance depends solely on the number of
objects, thus being independent of the movements and
physical characteristics of the objects. This is due to
the fact that it always performs the same number of
operations, regardless of these factors. However, it also
presents some limitations, e.g., if the pair of objects is
(or is not) in the colliding pairs cache, the algorithm
does not interfere in the process, being necessary to
consult the structure for obtaining such information.

3.2 Sweep & Prune (SAP)

The traditional SAP algorithm reduces the 3D
dimension of calculating the broad phase to three 1D
related problems. Basically, the strategy consists of
designing all objects in the scene in the coordinate axes
x, y and z and inserting these projections into three
lists, one for each axis. These lists are sorted according
to the minimum point of the projection. Finally, each
list is traversed to find intersections between the
projections of objects on each axis. Pairs that intersect
in the three lists are then sent to the next stage of the
collision process, i.e., the narrow phase.

 The big difference between this method and the BF
is that there is no need to traverse the entire list for
each projection. Since this list is ordered, if the
minimum point of a projection is higher than the
maximum one of the current projection, this means that
no other projection from this one will intercept the
current projection.

 In particular, in the Bullet, a variation of the
traditional SAP algorithm is implemented. More
specifically, the ordered lists are maintained between
frames of the simulation. During the sorting process,

each object whose AABB was updated has its
projections updated, moving the projection through the
list, until its new position is found. When a projection
is moved, it fails to intercept some projections but
intercepts others. However, it is possible to infer, using
the direction of the projection motion if it is ceasing to
intercept (or intercepting) an object, in such a way as to
make the necessary changes in the cache.

 At the end of the sorting step, the cache will
contain the new colliding pairs (all colliding pairs
which are not anymore in collision have already been
removed). That is, all the processing is performed
during the updating of the objects and not in the
calculation method of the possibly colliding pairs.

3.3 Bouding Volume Hierarchy (BVH)

The BVH algorithm performs spatial partitioning of
objects using bounding volumes. At each level of the
hierarchy, two bounding volumes are used to separate
the objects in a left and right group. In the last level,
there will be only one object per bounding.

The insertion of objects is done seeking the nearest

leaf node of the inserted object and turning it into an
internal node with a bounding volume enough to
contain the old and new objects. Then, if necessary, the
volume of the nodes located above this one can be
changed to contain the new volume. The removal is
done analogously, by removing the node and its parent
node, leaving only its brother node. The volume of the
nodes located above is reduced, if necessary.

The update of the objects is done very simply: if an

object moves beyond a certain threshold, it is removed
and re-inserted into the structure. Collision detection is
performed during the updating of objects. If an object
has been updated, its volume is tested against the tree
to find all leaf nodes that intersect it. Finally, the pair
of objects is added to the cache. Prior to the collision
detection, a scan is made through all colliding pairs
currently in the cache to verify whether they no longer
collide. If they do not, these pairs are removed.

4. GPU Brute Force (GPU-BF)

The algorithm we have proposed and implemented for
broad phase collision detection in the Bullet library is
described in this section. Named as GPU-BF, this
algorithm is a variant of the BF algorithm presented in
Section 3.1. Just as the three algorithms previously
presented in Section 3, the GPU-BF also implements
the interface provided by the Bullet library. Despite its
relative simplicity, it explores the huge processing
power of modern graphics cards (GPUs) to perform
broad phase collision detection among a massive
number of objects.

 Traditionally, GPUs have been used only for
graphics processing, remaining idle during other

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 772

processing steps of the simulation. Therefore, it is
important to explore approaches that enjoy this latent
computational resource. The relevance of the GPU-BF
algorithm is in verifying the feasibility of performing
the broad phase processing on GPU, with the premise
that if a simpler algorithm is feasible for collision
detection, more robust methods probably will be too.

 However, GPUs have a different execution model
that is different from the traditional CPUs. For
example, these graphics cards work in a massively
parallel manner by threading models that are simpler to
manage than the model used in processors. Thus, they
are able to launch hundreds of processing lines
simultaneously, but all these lines should run the same
instruction sequence, changing only the data that is
provided for each processing line. This high degree of
parallelism at the hardware level is obtained through
the methodology SIMT (Single Instruction, Multiple-
Thread) [Nvidia 2014c], where the same instruction is
executed on different threads. The graphics card is then
composed of several arithmetic logic units (ALUs)
which are capable of executing an instruction in
parallel on multiple entries.

 One of the most important and fragile points is
when there are instructions for flow control, in which a
portion of the threads should follow through a stream
of instructions and partly by another. When this occurs,
the flow is serialized. Initially, the threads that run
along a path are executed until the point at which the
streams are merged, then the other thread group is
executed, and finally, the execution continues
normally. Another important point of weakness is the
memory access pattern. The main memory of the
device is unique to all threads, so memory readings
must also be serialized. However, if all threads of a
ALU order sequential data in memory, these readings
are coalesced into a single operation.

 Another way to minimize this problem is to use
another type of memory present in the device, the
shared memory. This memory is optimized for
individual accesses at the cost of low capacity, staging
and scope. The accesses are optimized using two
techniques: (1) the shared memory is located on the
same chip as the ALUs; and (2) this memory is
partitioned between groups of threads, so the
serialization of accesses is partially parallelized. On the
other hand, it offers low capacity. Due to the limited
physical space, data have low staging (whenever a
group of threads has finished running, the data stored
in this memory will be lost) and, finally, the scope of
the data is limited to the group of threads that
manipulate them. Apart from these two types of
memory, there are two other regions dedicated to
textures and constant data.
The development of algorithms that efficiently utilize
the memory resources of graphics cards is complex due
to the non-triviality in exploring these diverse memory
areas. For example, to use shared memory, initially the
data that are in global memory must be loaded and then

transferred to the shared memory. If they are not
contiguous in memory, the transfer will not be
coalesced and, therefore, will spend part of the cycles
saved during the execution on shared memory.

 Therefore, to implement a GPU algorithm we have
to adapt it from the SISD (Single Instruction, Single
Data) methodology to the SIMT methodology used by
the graphics cards, as well as to structure it to minimize
flow control structures and random accesses to
memory. A final consideration that we should
emphasize in relation to algorithms on the GPU is the
cost of data transfer, from the computer's main
memory to the graphics card. This cost plus the
running time of the algorithm results in the total time
spent for its execution, making impossible to execute
transactions that involve little processing on graphics
cards. One example of this is sound processing, which
has high input/output bandwidth requirements to
process multiple input/output audio channels.

 Our algorithm, illustrates how these requirements
can be met. Since no test between objects is made
(only the intersection test), we identified a low number
of flow control structures. The tests of intersection
between AABBs, in turn, can be entirely made in the
bitwise form, further reducing the number of flow
controls. Since all objects are tested against all others,
many threads read the AABB of the same object and
the AABBs whose objects are located side by side in
memory, which shows an efficient use of global
memory and no need to use the shared one.

 The execution of the GPU-BF algorithm is
performed as follows: each AABB is located in a list of
locations, with n being the number of AABBs. Each
thread has an index i and should test an object A
against B. The object A is the element i / n and B is the
element i % n (rest) of the list. It is important to note
that not all combinations of elements must be tested. If
the indices of A and B are equal, the same object is
being tested. On the other hand, when the content of B
is less than A, this pair will have been tested (in our
implementation, we test the elements of A against the
elements of B, and not B against A). For each pair of
objects tested, a boolean result is generated indicating
whether there was an intersection between the objects.
These results are stored in a pre-allocated array and
then sent to the CPU.

 More specifically, for n objects, there are n(n-1) / 2
pairs to be tested. Each AABB is represented by a
minimum and a maximum point, having in total six
variables of type float, or 24 bytes. Each test consists
of one byte, since the manipulation of bits on GPU is
hampered by the parallelism. Consequently, for each
frame generated we have {24n + n(n-1) / 2} bytes
transferred between CPU and GPU. Let's consider the
indices A and B of two objects. If we know that A is
different and smaller than B, we can find the index i of
the byte that contains the test result of this pair of
objects by calculating {i = A•n + (B–1) – A(A-1) / 2}.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 773

Thus, this equation returns the index i of the pair A and
B, in the linear arrangement of the results.

 From the point of view of analyzing the time
complexity of the algorithm, where p is the number of
pairs and k is the number of threads, the time
complexity of the GPU-BF algorithm is O(p/k). For a
number of pairs smaller than the maximum threads in
parallel on the graphics card, k is equal to p, so the
time complexity is constant or O(1). However, for a
number of pairs bigger than the maximum of
concurrent threads of the graphics card, k becomes
constant and therefore no longer appears in the
calculation, with the time complexity being O(p). Note
that we can represent p as a function of the number of
n objects, as follows: p = n (n-1) / 2. Finally, for n
tending to infinity, the time complexity of the GPU-BF
algorithm is O(n²). In recent midrange graphics card, as
the one we used in this work, it can be thrown up to
1,024 threads in parallel. This implies that, for
example, from 33 objects, the complexity of the
algorithm changes from O(1) to O(n²).

 Because all objects are arranged sequentially in
memory and all threads are launched to sequential
pairs of objects, we have groups of threads that are
always running on sequential cells. This allows the
graphics board to optimize the readings from the global
memory, replacing the various accesses with a single
access burst that will supply several threads. Each
thread reads two AABBs, one for each object of the
tested pair. Adjacent threads share the first object in
the pair and the second object is adjacent in memory.
This results in two coalesced readings. The only shared
data between the threads is the first object in the pair.
Thus, there is no need to use shared memory.
However, when launching threads to sequential pairs,
the GPU-BF algorithm prevents the results are saved as
bits (rather than bytes), otherwise, 8 threads would try
to write into the same memory cell simultaneously.
This policy implementation has advantages and
disadvantages: optimized memory accesses are
produced, but a greater amount of data is sent from the
graphics card to the processor board.

 Finally, when the results come in the main memory,
they are iterated. For each result, the cache is updated.
However, this update is more optimized when
compared to the same algorithm implemented on CPU.
The GPU-BF keeps in memory the results of both the
current and previous frames. Thus, instead of
consulting the cache to test whether or not the pair is in
the structure, we use a simple XOR operation. If the
result of this operation is positive, it means that the pair
status has changed, i.e., the pair has not collided
previously and currently collides, so it should be added
to the cache. Otherwise, the pair has collided and no
longer collides, and should be removed from the

structure. If the operation result is zero, there is no
need to perform any further action.

5. Performance Analysis

In order to perform the comparative performance
analysis between the broad phase algorithms and verify
the scalability of the algorithms, tests were made using
four different scenarios, each of them with different
objects distribution's patterns and specific movement
controls, as detailed in the following sections.

5.1 Methodology

All tests were made using an Intel Core i7 2600 (3.4
GHz) machine with 8GB of RAM and Nvidia GTX630
video card, capable of launching up to 1,024 threads in
parallel. For each of the four scenarios, we conducted
tests with 500, 1,250, 2,000, 2,750 and 3,500 objects.
Each test configuration (scenario– algorithm–number
of objects) was executed five times. The averages were
calculated and used for the results consolidation and
generation of the diagrams. All tests have 2,048 frames
and each frame progresses 1/30s in the animation time,
with a total time of approximately 68s.

 Several processing times were calculated for the
comparative performance analysis: (1) the update time
of the objects in the structures of the algorithms; (2)
the time spent during the search of possibly colliding
pairs of objects; and (3) the total processing time
consumed during the simulation, including the time
spent in collision response. For example, with the
information about the time spent updating AABBs, we
could analyze the difficulty of the algorithm in dealing
with complex or unpredictable objects' movements.

5.2 Test Scenarios

The simulations in the four scenarios (Figure 1) start
with all instantiated objects with their positions
bounded by the inner boundary of a geometric cube
and with random speeds.

 The simulations are governed by gravity force in
the first scene (first row of Figure 1). At the end of the
simulation, it can be observed that all objects stop fully
on the cube's bottom face.

 In the second scenario (second row of Figure 1),
every frame, a new random velocity is attributed to 25
objects, which are also chosen randomly. All frames
generated are similar, as there is a continuous time-
changing data streams, keeping the objects moving.

 In the third scene (third row of Figure 1), the
modeled environment is somewhat different, because
rather than alter the speed of some objects, we modify

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 774

the gravity vector (for each frame, the gravity vector is
rotated around an axis e1, which in turn is rotated
around e2 and around e3). These three axes are
initialized with the unit vectors i, j, k and these
rotations are of the 1 / 120 radians. All objects are
thrown against the cube's bottom face, and then against
its sides and the top of it. Over the generated frames,
the objects collide against the six faces of the cube.
This movement forces that all objects are always
located close to each other and constantly mixed.

 Finally, the fourth test modeled (fourth row of
Figure 1) corresponds to a variation of the third one.
The objects in the environment have different sizes,
ranging between 10% and 400% of their original size.
The size distribution was divided into three classes:
small (between 10% and 40%); average (between 80%
and 120%); and large (between 160% and 400%). Each
third of the objects is contained in one of these three
classifications. The tests carried out in environments 1
and 2 use the same gravitational acceleration value of
the Earth (9,798 m/s²), whereas the environments 3 and
4 use this same value multiplied by 50.

Figure 1. From the top to the bottom, four keyframes of the animations generated with scenarios 1, 2, 3 and 4, respectively.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 775

5.3 Results and Discussion

The graphical results with 1,250 objects in the scene
for the environments 1, 2, 3 and 4 were quite distinct
and are shown, respectively, in Figures 2, 3, 4 and 5.

 We can observe that the first scenario is the
simplest to be treated by the most robust algorithms
(middle and bottom of Figure 2), since after a few
seconds many objects are inert in the data structures
(top of Figure 2, from the frame 512).

 In the second scene, all the algorithms show a
similar level of complexity during the animation,
generating more stable curves with constant slopes
(top, middle and bottom of Figure 3).

However, in the third scenario, due to the constant
shuffling and grouping of objects during the
simulation, the data structures used by the SAP and
BVH algorithms had to be the most required,
demonstrating a clear difficulty in the upgrade process
(top of Figure 4). On the other hand, the BF and GPU-
BF algorithms did not show this behavior, since they
only updated values of the AABBs in their lists of
objects. This is an important feature of brute force
methods, i.e., each object takes the same time to be
updated, regardless of whether in motion or not
(middle and bottom of Figure 4).

In the fourth case, there is a marked difficulty of
the robust algorithms to handle more complex
scenarios. Additionally, we observe that the SAP
algorithm has greater difficulty in dealing with objects
of varying sizes (Figure 5). This results from the fact
that small objects, when displaced in the lists of
projections tend to cross many other objects and thus
perform various operations to keep the list organized.
The BVH algorithm, in turn, shows a better
performance in the treatment of small and large
objects, since the small objects, as they move, hardly
change their bounding volumes, resulting in no major
performance impact of upgrades.

 In terms of performance, in all tests the GPU-BF
algorithm shows superior results to the BF algorithm
and practically similar to the most robust CPU methods
tested (bottom of Figures 2, 3, 4 and 5). In addition, in
scenarios 3 and 4 (Figures 4 and 5, respectively) the
GPU-BF algorithm is very competitive compared to
the others. We can clearly note, by considering the
total running time for the fourth scenario (bottom of
Figure 5), that the GPU-BF algorithm has the best
performance, almost during the entire animation. We
can also verify a greater difficulty of the SAP
algorithm in treating the objects in such an
environment, when compared to the performance
demonstrated by the BVH algorithm.

Figure 2. Diagrams generated for scenario 1 with
1,250 objects. Top, middle and bottom: the time to
update the structures, the time spent on the broad

phase, and the total time to process the frame,
respectively.

Figure 3. Diagrams generated for scenario 2 with
1,250 objects. Top, middle and bottom: the time to
update the structures, the time spent on the broad

phase, and the total time to process the frame,
respectively.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 776

Moreover, in the first frames of the animation we

perceive a considerably lower performance of the
algorithms than in subsequent frames. This probably
occurs for the following reasons: (1) in the first frame
all objects are added to the scene and, therefore, to the
structures; (2) algorithms such as SAP and BVH have
to perform sorting and building the tree for all objects,
and particularly in the case of BVH, all objects are
initialized in the dynamic tree; and (3) in the first
frames, few collisions occur, however, in the following
frames, various objects have an intersection, due to
their initial speeds.

The moments in which all algorithms suffer some

negative impact on performance are the times when
new collisions occur. In those moments, all algorithms
are forced to make changes in the colliding pairs cache.
These moments are easily observed in the total time of
scenarios 3 and 4 (bottom of Figures 4 and 5,
respectively), at peak points in the graphs. For
example, changes in the gravity vector generated a
movement in which the objects were thrown against
the cube's faces, resulting in a large amount of
collisions. In the following frames, the objects that
were located behind the first objects collided with the
objects that were already on the cube's wall.

Finally, the graphs in Figure 6 show the total
processing times for all test scenarios, as the number of
objects increases. Note the superiority of the GPU-BF
algorithm compared to the BF, the similar performance
of the algorithms in scenario 3 (Figure 6.c) and the
advantage and disadvantage of the BVH and SAP
algorithms, respectively, in scenario 4 (Figure 6.d).

6. Conclusion and Future Work

We presented a detailed performance analysis
conducted using four test scenarios, running a new
GPU-based algorithm for broad phase collision
detection (which we have implemented in the Bullet
library, using CUDA) and three CPU-based algorithms
available in the same Physics library.

 The results show that the heterogeneous algorithm
implemented is competitive when compared to some
robust methods available in the Bullet, particularly in
scenes with a large number of objects whose
movements are complex and unpredictable.

 We believe that initiatives like this, which explore
solutions for new implementations of collision
algorithms running on GPU and operating
asynchronously with the CPU, are extremely important

Figure 4. Diagrams generated for scenario 3 with
1,250 objects. Top, middle and bottom: the time to
update the structures, the time spent on the broad

phase, and the total time to process the frame,
respectively.

Figure 5. Diagrams generated for scenario 4 with
1,250 objects. Top, middle and bottom: the time to
update the structures, the time spent on the broad

phase, and the total time to process the frame,
respectively.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 777

and useful for game designers, especially in the area of
digital games based on Physics, considering there are
other elements of the animation which are not good
candidates for GPU paralellization, e.g., sound and
artificial intelligence, that can thus be executed during
the broad phase calculation.

 As future work, we anticipate the interest in
exploring other approaches for performing broad phase
collision detection on GPUs and to test then against
other GPU based solutions, such as [Lo et al., 2013].
Moreover, we plan to compare the performance of
algorithms taking into account the operations of
insertion and removal of objects, as well as to test
asynchronous approaches in which the calculation of
broad phase collision detection is performed in parallel
to the CPU, while other tasks are performed by the
CPU processing. Additionally, we plan to explore in

detail and compare the behavior of btCudaBroadPhase
algorithm, which is available in the Bullet library, with
our GPU-BF algorithm, since the time this work was
submitted the former produced inconclusive results.
Although most parameters of this algorithm have an
intuitive meaning (3D grid dimensions, number of
small and large proxies, maximum number of colliding
pairs per proxy, number of objects per cell, world's
AABB, etc.), they vary considerably from scenario to
scenario, thus, tuning its parameters accordingly is not
a trivial task. In most cases, these parameters had an
unpredictable and unstable effect on the simulated
motions. Therefore, this issue deserves indeed further
attention. Finally, another possibility for future work
might be the implementation of the remaining stages of
the collision detection on GPU, with the aim of
reducing the amount of data sent and received from the
graphics card and performing, for bytes sent, a large
number of operations.

Acknowledgements

This project was partially funded by FUNCAP-CE
(Fundação Cearense de Apoio ao Desenvolvimento
Científico e Tecnológico), Open Call application
36/2012.

References

2D BOY GAMES, 2008. World of Goo. Available at

www.2dboy.com/games.php. Accessed 30/06/14.

AVRIL, Q., GOURANTON, V., ARNALDI, B., 2010. Broad Phase

Collision Detection Algorithm Adapted to Multi-cores
Architectures. In Proc. of Virtual Reality International
Conference. Laval, France.

BERGEN, G. VAN DEN., 2004. Collision Detection in

Interactive 3D Environments. Morgan and Kaufmann
Publishers, 2004.

COUMANS, E., 2014. Bullet Physics Library. Available from

www.bulletphysics.org. Accessed 30/06/14.

COUMANS, E., 2014. Bullet 3.x teaser. Available at

www.bulletphysics.org/wordpress/?p=381. Accessed
30/06/14.

COUTINHO, M. G., 2001. Dynamic Simulations of Multibody

Systems. LA, CA: Springer-Verlag.

LIU, F., HARADA, T., LEE, Y., KIM, Y. J., 2010. Real-time

Collision Culling of a Million Bodies on Graphics
Processing Units. ACM TOG, vol. 29(6), 154.

GRAND, S. L., 2007. GPU Gems 3. Boston, MA: Addison-

Wesley Professional, p. 697–721.

HAVOK, 2014. Havok Physics. Available at

www.havok.com/products/physics. Accessed 30/06/14.

HUBBARD, P. M., 1995. Collision Detection for Interactive

Graphics Applications. IEEE TVCG, vol.1(3), p. 218–
230.

Figure 6. In (a), (b), (c) and (d) the total processing
time as the number of objects in the scene increases

(from 500 to 3,500), respectively, for scenarios 1, 2, 3
and 4.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 778

LO, S. H., LEE, C. R., CHUNG, I. H., AND CHUNG, Y. C.,
2013. Optimizing Pairwise Box Intersection Checking on
GPUs for Large-scale Simulations. ACM TOMACS, vol.
23(3), Article 19, p. 1-22.

MIRTICH, B., 1997. Efficient Algorithms for Two-Phase

Collision Detection. Practical Motion Planning in
Robotics: Current Approaches and Future Directions, p.
203-223.

MOORE, M., WILHELMS, J., 1988. Collision Detection and

Response for Computer Animation. In Proc. of the 15th
SIGGRAPH. ACM Press, p. 289–298.

NVIDIA, 2014. Nvidia CUDA Parallel Programming and

Computing Platform. Available at
www.nvidia.com/object/cuda_home_new.html. Accessed
30/06/14.

NVIDIA, 2014. CUDA C Programming Guide. Available at

www.docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html. Accessed 30/06/14.

NVIDIA, 2014. Physix Library. Available at

www.geforce.com/hardware/technology/physx. Accessed
30/06/2014.

ROCHA, R.S., RODRIGUES, M.A.F., TADDEO, L.S. 2006.

Performance Evaluation of a Hybrid Algorithm for
Collision Detection in Crowded Interactive
Environments. In Proc. of the SIBGRAPI'06. Manaus-
AM, Brazil: IEEE CS Press. p. 86–93.

ROVIO ENTERTAINMENT, 2009. Angry Birds. Available at

www.rovio.com/en/our-work/games/view/1/angry-birds.
Accessed 30/06/14.

KLOONIGAMES, 2009. Crayon Physics. Available at

www.crayonphysics.com. Accessed 05/07/14.

STOCK, P., 2006. Armadillo Run. Available at

www.armadillorun.com. Accessed 05/07/14.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 779

