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Abstract 
 
Games, computer animations and three-dimensional 
interactive simulations have required the use of 
realistic and faster than ever before broad phase 
collision detection algorithms. In this work, we 
compare the performance of four broad phase 
algorithms implemented on CPU and GPU, using four 
different test scenarios. More specifically, one of them 
is a new GPU-based algorithm that we have developed 
in the Bullet library using CUDA, and the other three 
remaining implementations are CPU-based algorithms 
available in the same library. The experimental results 
show that the heterogeneous algorithm is competitive 
when compared to some robust methods available in 
Bullet, particularly in scenes with a large number of 
objects whose movements are complex and 
unpredictable. We believe that initiatives like this, 
which explore solutions for new implementations of 
collision algorithms running on GPU and operating 
asynchronously with the CPU, are extremely important 
and useful for game designers, especially in the area of 
digital games based on Physics, considering there are 
other elements of the animation, e.g., sound and 
artificial intelligence, which can thus be executed 
during the broad phase calculation. 
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1. Introduction 
 
Increasingly realistic interactive graphics applications, 
either visually or physically, have been developed. 
Among the factors that have enabled this increasing 
level of realism are the algorithms for 3D collision 
detection [Coutinho 2001]. Basically, collision 
detection systems ensure that animations generated at 
runtime are consistent with the major laws of Physics, 

by generating plausible responses to contacts and 
avoiding object interpenetration. 
 
 In digital games, particularly those based on 
Physics, the collision detection algorithms are essential 
to the gameplay. Some examples of popular games in 
this category are AngryBirds [Rovio 2009], World of 
Goo [2D Boy 2008], Crayon Physics [Kloonigames 
2009], Armadillo Run [Stock 2006], etc. Generally, the 
collision detection system is triggered after the 
execution of the dynamic system, which is responsible 
for moving objects based on the values of their 
velocities. The collision detection is then performed in 
two steps: (1) finding the intersections between objects 
in the scene; and (2) responding to the detected 
collisions [Moore and Wilhelms 1988]. In the first 
stage, by applying a discrete method, the objects can be 
evaluated from time to time to find any collisions, or 
using a continuous method, through parameterization 
techniques of their positions over time. In the second, 
physical models are used to simulate the action-
reaction forces that occur between colliding bodies. 

 
Usually, different levels of detail of 3D 

environments are used in such a way as to ensure the 
operations of collision detection occur as planned. For 
example, medical applications or 3D realistic  
simulations require more precise information about the 
collisions, particularly on the geometry of the 
intersection and applied forces. On the other hand, 3D 
real-time gaming and interactive graphics applications 
require that the relevant information about the 
collisions are calculated and extracted quickly, which 
often simplifies the whole process because it considers 
a minimum number of contact points between objects, 
instead of using the full geometry of the intersection 
[Bergen 2004].  
  
 One of the most frequent ways to implement a 
system of collision is dividing the process into two or 
even three phases [Hubbard 1995] and [Mirtich 1997]. 
The first one is called broad phase and aims to analyze 
all objects in the scene, and then select which pairs are 

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 770



possibly colliding (the others are discarded). This 
phase uses simplification techniques to improve the 
overall performance of the application that is essential 
to speed up the process as a whole, especially when 
there are a large number of objects in the scene [Rocha 
et al. 2006]. The second phase, known as narrow 
phase, aims to test pairs of objects found in the 
previous phase, by applying more robust and accurate 
methods. The third (which is optional), is the exact 
phase, in which the calculations are performed at the 
level of vertices, in order to obtain greater accuracy. 
 
 There are many algorithms devoted to each of these 
phases. Many of them are recommended only for 
specific scenes, hindering fair comparisons of 
performance between them. Thus, it is crucial to 
choose efficient and specific algorithms for scenarios 
where they will be executed. This type of problem is 
accentuated in multimedia applications such as digital 
games and interactive simulations, because more than 
one execution scenario may exist, besides the 
management of CPU threads and memory resources. 

 
At the same time, only recently there was a high 

diffusion of graphics cards in personal computers 
(although these resources exist for several years), as 
well as in the number of real-world applications 
implemented using computing platforms on GPU, such 
as Nvidia CUDA  [Nvidia 2014a]. Modern GPUs are 
extremelly efficient at manipulating computer graphics 
and their highly parallel structure makes them more 
effective than general-purpose CPUs. 

 
 Currently, there are three physics libraries that 
stand out due to their complete system of collision 
detection: Bullet [Coumans 2014a], PhysX [NVIDIA 
2014b], and Havok [Havok 2014]. Definitely, these 
highly optimized collision detection libraries allow for 
more realistic virtual worlds in games. Bullet is open 
source (whereas Havok and PhysX are not) and fully 
implemented at the CPU level. Only PhysX has an 
implementation at the GPU level, however, limited to 
the video cards from Nvidia.  
 
 In this work, using four different test scenarios, we 
present a comparative performance analysis of four 
broad phase collision detection algorithms. One of 
them is a new GPU-based algorithm that we have 
developed in the Bullet library using CUDA, and the 
other three remaining implementations are CPU-based 
algorithms available in the same library. We believe 
that initiatives like this are extremely important and 
useful for game designers, especially in the area of 
digital games based on Physics. 
 
 
2. Related Work 
 
Currently, there are few works on broad phase collision 
detection using GPU devices [Grand 2007; Liu, et al. 
2010; Lo, et al. 2013]. Additionally, even fewer studies 

simultaneously address this issue and use the Bullet 
physics library. Many of them, which combine 
parallelism with broad phase collision detection 
algorithms, basically focus on adapting some existing 
methods to multi-core architectures [Avril 2010]. 

 
For example, the work of Grand [Grand 2007] 

pioneered the use of GPUs for processing broad phase 
collision detection. The author presents a GPU-based 
implementation of a regular grid to exploit the spatial 
coherence of the scene [Bergen 2004], which states 
that objects positioned far apart do not intersect. The 
whole process of construction and use of the grid is 
done at the level of the graphics card. 

 
A hybrid algorithm using Sweep and Prune & 

regular grids is described in [Liu et al. 2010]. It is 
implemented entirely on the GPU. Although the 
authors report that their algorithm achieves excellent 
results, such as simulating up to one million of objects 
in a scene, there is a lack of using a direct equivalent 
method implemented on CPU, for conducting a fair 
performance comparison. 
  
 Other authors have been working on adapting 
existing methods to multi-core architectures [Avril 
2010], which are currently available in the modern 
processors and have a robust model of parallelization. 
However, few threads are actually executed in parallel. 
Algorithms developed for these architectures can be 
easier adapted to many-core architectures than 
algorithms designed to single-threaded systems. 
Besides, this approach is undoubtedly important to the 
state-of-the-art in general, but is not ideal for games 
and other media intensive applications that have highly 
complex threading models to handle a multithreaded 
game-loop structure. 

 
Recently, Bullet's developers announced that the 

next version of the library will contain a fully GPU-
based pipeline for collision detection and physics 
[Coumans 2014b]. However, so far the library has 
made available only one experimental implementation 
of a regular grid, very similar to the approach proposed 
by Grand [Grand, 2007].  
  
3. Bullet Broad Phase Collision 
Detection  
 
The Bullet physics library contains an interface for 
defining broad phase collision algorithms that enables 
integration of new algorithms together with other 
modules that comprise the collision detection pipeline. 
This interface receives from the detection pipeline all 
the colliding objects in the form of Axis-Aligned 
Bounding Boxes (AABBs), and returns to the pipeline 
the broad phase results, as a structure called of 
colliding pairs cache. 
 
 Two considerations are relevant on the input and 
output data of the broad phase algorithms in the Bullet 

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 771



library: (1) every frame, all the objects have their new 
AABBs calculated and passed to the algorithm in order 
to update them; and (2) the colliding pairs cache is a 
persistent structure, i.e., the objects that remained in 
collision during multiple frames should remain in the 
same position in the cache. Therefore, we cannot 
empty the cache every frame in order to facilitate the 
management of colliding pairs of objects. More 
specifically, there are three algorithms that implement 
this interface in the Bullet library: Brute Force (BF), 
Sweep & Prune (SAP) and Bounding Volume 
Hierarchy (BVH). All those algorithms run on CPU 
and are single-threaded.  
 
3.1 Brute Force (BF) 
 
In the BF algorithm, every object in the scene is tested 
against every other object. For each test, if the objects 
are in collision, it is checked if this colliding pair is 
already in the cache. If it is not, it will be added; 
otherwise, it will be removed. Although it is generally 
slower than the other algorithms that exist in the Bullet, 
for scenes containing few objects it can be more 
efficient, since it has no updating overhead of its data 
structures. However, it is too inefficient to be used 
when the number of objects is large. On the other hand, 
its performance depends solely on the number of 
objects, thus being independent of the movements and 
physical characteristics of the objects. This is due to 
the fact that it always performs the same number of 
operations, regardless of these factors. However, it also 
presents some limitations, e.g., if the pair of objects is 
(or is not) in the colliding pairs cache, the algorithm 
does not interfere in the process, being necessary to 
consult the structure for obtaining such information. 
 
3.2 Sweep & Prune (SAP)  
 
The traditional SAP algorithm reduces the 3D 
dimension of calculating the broad phase to three 1D 
related problems. Basically, the strategy consists of 
designing all objects in the scene in the coordinate axes 
x, y and z and inserting these projections into three 
lists, one for each axis. These lists are sorted according 
to the minimum point of the projection. Finally, each 
list is traversed to find intersections between the 
projections of objects on each axis. Pairs that intersect 
in the three lists are then sent to the next stage of the 
collision process, i.e., the narrow phase. 
   
 The big difference between this method and the BF 
is that there is no need to traverse the entire list for 
each projection. Since this list is ordered, if the 
minimum point of a projection is higher than the 
maximum one of the current projection, this means that 
no other projection from this one will intercept the 
current projection. 
 
 In particular, in the Bullet, a variation of the 
traditional SAP algorithm is implemented. More 
specifically, the ordered lists are maintained between 
frames of the simulation. During the sorting process, 

each object whose AABB was updated has its 
projections updated, moving the projection through the 
list, until its new position is found. When a projection 
is moved, it fails to intercept some projections but 
intercepts others. However, it is possible to infer, using 
the direction of the projection motion if it is ceasing to 
intercept (or intercepting) an object, in such a way as to 
make the necessary changes in the cache.  
 
 At the end of the sorting step, the cache will 
contain the new colliding pairs (all colliding pairs 
which are not anymore in collision have already been 
removed). That is, all the processing is performed 
during the updating of the objects and not in the 
calculation method of the possibly colliding pairs. 
 
3.3 Bouding Volume Hierarchy (BVH)  
 
The BVH algorithm performs spatial partitioning of 
objects using bounding volumes. At each level of the 
hierarchy, two bounding volumes are used to separate 
the objects in a left and right group. In the last level, 
there will be only one object per bounding. 

 
The insertion of objects is done seeking the nearest 

leaf node of the inserted object and turning it into an 
internal node with a bounding volume enough to 
contain the old and new objects. Then, if necessary, the 
volume of the nodes located above this one can be 
changed to contain the new volume. The removal is 
done analogously, by removing the node and its parent 
node, leaving only its brother node. The volume of the 
nodes located above is reduced, if necessary.  

 
The update of the objects is done very simply: if an 

object moves beyond a certain threshold, it is removed 
and re-inserted into the structure. Collision detection is 
performed during the updating of objects. If an object 
has been updated, its volume is tested against the tree 
to find all leaf nodes that intersect it. Finally, the pair 
of objects is added to the cache. Prior to the collision 
detection, a scan is made through all colliding pairs 
currently in the cache to verify whether they no longer 
collide. If they do not, these pairs are removed.  
 
4. GPU Brute Force (GPU-BF) 
 
The algorithm we have proposed and implemented for 
broad phase collision detection in the Bullet library is 
described in this section. Named as GPU-BF, this 
algorithm is a variant of the BF algorithm presented in 
Section 3.1. Just as the three algorithms previously 
presented in Section 3, the GPU-BF also implements 
the interface provided by the Bullet library. Despite its 
relative simplicity, it explores the huge processing 
power of modern graphics cards (GPUs) to perform   
broad phase collision detection among a massive 
number of objects. 
 
 Traditionally, GPUs have been used only for 
graphics processing, remaining idle during other 
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processing steps of the simulation. Therefore, it is 
important to explore approaches that enjoy this latent 
computational resource. The relevance of the GPU-BF 
algorithm is in verifying the feasibility of performing 
the broad phase processing on GPU, with the premise 
that if a simpler algorithm is feasible for collision 
detection, more robust methods probably will be too. 
 
 However, GPUs have a different execution model 
that is different from the traditional CPUs. For 
example, these graphics cards work in a massively 
parallel manner by threading models that are simpler to 
manage than the model used in processors. Thus, they 
are able to launch hundreds of processing lines 
simultaneously, but all these lines should run the same 
instruction sequence, changing only the data that is 
provided for each processing line. This high degree of 
parallelism at the hardware level is obtained through 
the methodology SIMT (Single Instruction, Multiple-
Thread) [Nvidia 2014c], where the same instruction is 
executed on different threads. The graphics card is then 
composed of several arithmetic logic units (ALUs) 
which are capable of executing an instruction in 
parallel on multiple entries. 
  
 One of the most important and fragile points is 
when there are instructions for flow control, in which a 
portion of the threads should follow through a stream 
of instructions and partly by another. When this occurs, 
the flow is serialized. Initially, the threads that run 
along a path are executed until the point at which the 
streams are merged, then the other thread group is 
executed, and finally, the execution continues 
normally. Another important point of weakness is the  
memory access pattern. The main memory of the 
device is unique to all threads, so memory readings 
must also be serialized. However, if all threads of a 
ALU order sequential data in memory, these readings 
are coalesced into a single operation.  
 
 Another way to minimize this problem is to use 
another type of memory present in the device, the 
shared memory. This memory is optimized for 
individual accesses at the cost of low capacity, staging 
and scope. The accesses are optimized using two 
techniques: (1) the shared memory is located on the 
same chip as the ALUs; and (2) this memory is 
partitioned between groups of threads, so the 
serialization of accesses is partially parallelized. On the 
other hand, it offers low capacity. Due to the limited 
physical space, data have low staging (whenever a 
group of threads has finished running, the data stored 
in this memory will be lost) and, finally, the scope of 
the data is limited to the group of threads that 
manipulate them. Apart from these two types of 
memory, there are two other regions dedicated to 
textures and constant data.  
The development of algorithms that efficiently utilize 
the memory resources of graphics cards is complex due 
to the non-triviality in exploring these diverse memory 
areas. For example, to use shared memory, initially the 
data that are in global memory must be loaded and then 

transferred to the shared memory. If they are not 
contiguous in memory, the transfer will not be 
coalesced and, therefore, will spend part of the cycles 
saved during the execution on shared memory.  
 
 Therefore, to implement a GPU algorithm we have 
to adapt it from the SISD (Single Instruction, Single 
Data) methodology to the SIMT methodology used by 
the graphics cards, as well as to structure it to minimize 
flow control structures and random accesses to 
memory. A final consideration that we should 
emphasize in relation to algorithms on the GPU is the 
cost of data transfer, from the computer's main 
memory to the graphics card. This cost plus the 
running time of the algorithm results in the total time 
spent for its execution, making impossible to execute 
transactions that involve little processing on graphics 
cards. One example of this is sound processing, which 
has high input/output bandwidth requirements to 
process multiple input/output audio channels. 
  
 Our algorithm, illustrates how these requirements 
can be met. Since no test between objects is made 
(only the intersection test), we identified a low number 
of flow control structures. The tests of intersection 
between AABBs, in turn, can be entirely made in the 
bitwise form, further reducing the number of flow 
controls. Since all objects are tested against all others, 
many threads read the AABB of the same object and 
the AABBs whose objects are located side by side in 
memory, which shows an efficient use of global 
memory and no need to use the shared one.  
 
 The execution of the GPU-BF algorithm is 
performed as follows: each AABB is located in a list of 
locations, with n being the number of AABBs. Each 
thread has an index i and should test an object A 
against B. The object A is the element i / n and B is the 
element i % n (rest) of the list. It is important to note 
that not all combinations of elements must be tested. If 
the indices of A and B are equal, the same object is 
being tested. On the other hand, when the content of B 
is less than A, this pair will have been tested (in our 
implementation, we test the elements of A against the 
elements of B, and not B against A). For each pair of 
objects tested, a boolean result is generated indicating 
whether there was an intersection between the objects. 
These results are stored in a pre-allocated array and 
then sent to the CPU. 
 
 More specifically, for n objects, there are n(n-1) / 2 
pairs to be tested. Each AABB is represented by a 
minimum and a maximum point, having in total six 
variables of type float, or 24 bytes. Each test consists 
of one byte, since the manipulation of bits on GPU is 
hampered by the parallelism. Consequently, for each 
frame generated we have {24n + n(n-1) / 2} bytes 
transferred between CPU and GPU. Let's consider the 
indices A and B of two objects. If we know that A is 
different and smaller than B, we can find the index i of 
the byte that contains the test result of this pair of 
objects by calculating {i = A•n + (B–1) – A(A-1)  /  2}.            
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Thus, this equation returns the index i of the pair A and 
B, in the linear arrangement of the results.  
 
 From the point of view of analyzing the time 
complexity of the algorithm, where p is the number of 
pairs and k is the number of threads, the time 
complexity of the GPU-BF algorithm is O(p/k). For a 
number of pairs smaller than the maximum threads in 
parallel on the graphics card, k is equal to p, so the 
time complexity is constant or O(1). However, for a 
number of pairs bigger than the maximum of 
concurrent threads of the graphics card, k becomes 
constant and therefore no longer appears in the 
calculation, with the time complexity being O(p). Note 
that we can represent p as a function of the number of 
n objects, as follows: p = n (n-1) / 2. Finally, for n 
tending to infinity, the time complexity of the GPU-BF 
algorithm is O(n²). In recent midrange graphics card, as 
the one we used in this work, it can be thrown up to 
1,024 threads in parallel. This implies that, for 
example, from 33 objects, the complexity of the 
algorithm changes from O(1) to O(n²). 
  
 Because all objects are arranged sequentially in  
memory and all threads are launched to sequential 
pairs of objects, we have groups of threads that are 
always running on sequential cells. This allows the 
graphics board to optimize the readings from the global 
memory, replacing the various accesses with a single 
access burst that will supply several threads. Each 
thread reads two AABBs, one for each object of the 
tested pair. Adjacent threads share the first object in 
the pair and the second object is adjacent in memory. 
This results in two coalesced readings. The only shared 
data between the threads is the first object in the pair. 
Thus, there is no need to use shared memory. 
However, when launching threads to sequential pairs, 
the GPU-BF algorithm prevents the results are saved as 
bits (rather than bytes), otherwise, 8 threads would try 
to write into the same memory cell simultaneously. 
This policy implementation has advantages and 
disadvantages: optimized memory accesses are 
produced, but a greater amount of data is sent from the 
graphics card to the processor board.  
  
 Finally, when the results come in the main memory, 
they are iterated. For each result, the cache is updated. 
However, this update is more optimized when 
compared to the same algorithm implemented on CPU. 
The GPU-BF keeps in memory the results of both the 
current and previous frames. Thus, instead of 
consulting the cache to test whether or not the pair is in 
the structure, we use a simple XOR operation. If the 
result of this operation is positive, it means that the pair 
status has changed, i.e., the pair has not collided 
previously and currently collides, so it should be added 
to the cache. Otherwise, the pair has collided and no 
longer collides, and should be removed from the 

structure. If the operation result is zero, there is no 
need to perform any further action. 
 
5. Performance Analysis 
 
In order to perform the comparative performance 
analysis between the broad phase algorithms and verify 
the scalability of the algorithms, tests were made using 
four different scenarios, each of them with different 
objects distribution's patterns and specific movement 
controls, as detailed in the following sections.  
 
5.1 Methodology 
 
All tests were made using an Intel Core i7 2600 (3.4 
GHz) machine with 8GB of RAM and Nvidia GTX630 
video card, capable of launching up to 1,024 threads in 
parallel. For each of the four scenarios, we conducted 
tests with 500, 1,250, 2,000, 2,750 and 3,500 objects. 
Each test configuration (scenario– algorithm–number 
of objects) was executed five times. The averages were 
calculated and used for the results consolidation and 
generation of the diagrams. All tests have 2,048 frames 
and each frame progresses 1/30s in the animation time, 
with a total time of approximately 68s. 
 
 Several processing times were calculated for the 
comparative performance analysis: (1) the update time 
of the objects in the structures of the algorithms; (2) 
the time spent during the search of possibly colliding 
pairs of objects; and (3) the total processing time 
consumed during the simulation, including the time 
spent in collision response. For example, with the 
information about the time spent updating AABBs, we 
could analyze the difficulty of the algorithm in dealing 
with complex or unpredictable objects' movements. 
 
5.2 Test Scenarios 
 
The simulations in the four scenarios (Figure 1) start 
with all instantiated objects with their positions 
bounded by the inner boundary of a geometric cube 
and with random speeds.  
 
 The simulations are governed by gravity force in 
the first scene (first row of Figure 1). At the end of the 
simulation, it can be observed that all objects stop fully 
on the cube's bottom face.  
 
 In the second scenario (second row of Figure 1), 
every frame, a new random velocity is attributed to 25 
objects, which are also chosen randomly. All frames 
generated are similar, as there is a continuous time-
changing data streams, keeping the objects moving.  
 
 In the third scene (third row of Figure 1), the 
modeled environment is somewhat different, because 
rather  than alter  the speed of some objects, we modify 
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the gravity vector (for each frame, the gravity vector is 
rotated around an axis e1, which in turn is rotated 
around e2 and around e3). These three axes are 
initialized with the unit vectors i, j, k and these 
rotations are of the 1 / 120 radians. All objects are 
thrown against the cube's bottom face, and then against 
its sides and the top of it. Over the generated frames, 
the objects collide against the six faces of the cube. 
This movement forces that all objects are always 
located close to each other and constantly mixed.  
 

 Finally, the fourth test modeled (fourth row of 
Figure 1) corresponds to a variation of the third one. 
The objects in the environment have different  sizes,  
ranging  between 10% and 400% of  their original size. 
The size distribution was divided into three classes: 
small (between 10% and 40%); average (between 80% 
and 120%); and large (between 160% and 400%). Each 
third of the objects is contained in one of these three 
classifications. The tests carried out in environments 1 
and 2 use the same gravitational acceleration value of 
the Earth (9,798 m/s²), whereas the environments 3 and 
4 use this same value multiplied by 50. 
 

Figure 1. From the top to the bottom, four keyframes of the animations generated with scenarios 1, 2, 3 and 4, respectively. 
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5.3 Results and Discussion 
 
The graphical results with 1,250 objects in the scene 
for the environments 1, 2, 3 and 4 were quite distinct 
and are shown, respectively, in Figures 2, 3, 4 and 5.  
 

 

 
 
 We can observe that the first scenario is the 
simplest to be treated by the most robust algorithms 
(middle and bottom of Figure 2), since after a few 
seconds many objects are inert in the data structures 
(top of Figure 2, from the frame 512).  
 
 In the second scene, all the algorithms show a 
similar level of complexity during the animation, 
generating more stable curves with constant slopes 
(top, middle and bottom of Figure 3). 
 

However, in the third scenario, due to the constant 
shuffling and grouping of objects during the 
simulation, the data structures used by the SAP and 
BVH algorithms had to be the most required, 
demonstrating a clear difficulty in the upgrade process 
(top of Figure 4). On the other hand, the BF and GPU-
BF algorithms did not show this behavior, since they 
only updated values of the AABBs in their lists of 
objects. This is an important feature of brute force 
methods, i.e., each object takes the same time to be 
updated, regardless of whether in motion or not 
(middle and bottom of Figure 4).  

In the fourth case, there is a marked difficulty of 
the robust algorithms to handle more complex 
scenarios. Additionally, we observe that the SAP 
algorithm has greater difficulty in dealing with objects 
of varying sizes (Figure 5). This results from the fact 
that small objects, when displaced in the lists of 
projections tend to cross many other objects and thus 
perform various operations to keep the list organized. 
The BVH algorithm, in turn, shows a better 
performance in the treatment of small and large 
objects, since the small objects, as they move, hardly 
change their bounding volumes, resulting in no major 
performance impact of upgrades. 

 

 
 
 In terms of performance, in all tests the GPU-BF 
algorithm shows superior results to the BF algorithm 
and practically similar to the most robust CPU methods 
tested (bottom of Figures 2, 3, 4 and 5). In addition, in 
scenarios 3 and 4 (Figures 4 and 5, respectively) the 
GPU-BF algorithm is very competitive compared to 
the others. We can clearly note, by considering the 
total running time for the fourth scenario (bottom of 
Figure 5), that the GPU-BF algorithm has the best 
performance, almost during the entire animation. We 
can also verify a greater difficulty of the SAP 
algorithm in treating the objects in such an 
environment, when compared to the performance 
demonstrated by the BVH algorithm. 
 

Figure 2. Diagrams generated for scenario 1 with 
1,250 objects. Top, middle and bottom: the time to 
update the structures, the time spent on the broad 

phase, and the total time to process the frame, 
respectively. 

 

Figure 3. Diagrams generated for scenario 2 with 
1,250 objects. Top, middle and bottom: the time to 
update the structures, the time spent on the broad 

phase, and the total time to process the frame, 
respectively. 
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Moreover, in the first frames of the animation we 

perceive a considerably lower performance of the 
algorithms than in subsequent frames. This probably 
occurs for the following reasons: (1) in the first frame 
all objects are added to the scene and, therefore, to the 
structures; (2) algorithms such as SAP and BVH have 
to perform sorting and building the tree for all objects, 
and particularly in the case of BVH, all objects are 
initialized in the dynamic tree; and (3) in the first 
frames, few collisions occur, however, in the following 
frames, various objects have an intersection, due to 
their initial speeds.  

 
The moments in which all algorithms suffer some 

negative impact on performance are the times when 
new collisions occur. In those moments, all algorithms 
are forced to make changes in the colliding pairs cache. 
These moments are easily observed in the total time of 
scenarios 3 and 4 (bottom of Figures 4 and 5, 
respectively), at peak points in the graphs. For 
example, changes in the gravity vector generated a 
movement in which the objects were thrown against 
the cube's faces, resulting in a large amount of 
collisions. In the following frames, the objects that 
were located behind the first objects collided with the 
objects that were already on the cube's wall. 

 
 

Finally, the graphs in Figure 6 show the total 
processing times for all test scenarios, as the number of 
objects increases. Note the superiority of the GPU-BF 
algorithm compared to the BF, the similar performance 
of the algorithms in scenario 3 (Figure 6.c) and the 
advantage and disadvantage of the BVH and SAP 
algorithms, respectively, in scenario 4 (Figure 6.d). 

 
 
6. Conclusion and Future Work 
 
We presented a detailed performance analysis 
conducted using four test scenarios, running a new 
GPU-based algorithm for broad phase collision 
detection (which we have implemented in the Bullet 
library, using CUDA) and three CPU-based algorithms 
available in the same Physics library. 
 
 The results show that the heterogeneous algorithm 
implemented is competitive when compared to some 
robust methods available in the Bullet, particularly in 
scenes with a large number of objects whose 
movements are complex and unpredictable.  
 
 We believe that initiatives like this, which explore 
solutions for new implementations of collision 
algorithms running on GPU and operating 
asynchronously with the CPU, are extremely important 

Figure 4. Diagrams generated for scenario 3 with 
1,250 objects. Top, middle and bottom: the time to 
update the structures, the time spent on the broad 

phase, and the total time to process the frame, 
respectively. 

 
 

Figure 5. Diagrams generated for scenario 4 with 
1,250 objects. Top, middle and bottom: the time to 
update the structures, the time spent on the broad 

phase, and the total time to process the frame, 
respectively. 
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and useful for game designers, especially in the area of 
digital games based on Physics, considering there are 
other elements of the animation which are not good 
candidates for GPU paralellization, e.g., sound and 
artificial intelligence, that can thus be executed during 
the broad phase calculation. 
 

 
 
 As future work, we anticipate the interest in 
exploring other approaches for performing broad phase 
collision detection on GPUs and to test then against 
other GPU based solutions, such as [Lo et al., 2013]. 
Moreover, we plan to compare the performance of 
algorithms taking into account the operations of 
insertion and removal of objects, as well as to test 
asynchronous approaches in which the calculation of 
broad phase collision detection is performed in parallel 
to the CPU, while other tasks are performed by the 
CPU processing. Additionally, we plan to explore in 

detail and compare the behavior of btCudaBroadPhase 
algorithm, which is available in the Bullet library, with 
our GPU-BF algorithm, since the time this work was 
submitted the former produced inconclusive results. 
Although most parameters of this algorithm have an 
intuitive meaning (3D grid dimensions, number of 
small and large proxies, maximum number of colliding 
pairs per proxy, number of objects per cell, world's 
AABB, etc.), they vary considerably from scenario to 
scenario, thus, tuning its parameters accordingly is not 
a trivial task. In most cases, these parameters had an 
unpredictable and unstable effect on the simulated 
motions. Therefore, this issue deserves indeed further 
attention. Finally, another possibility for future work 
might be the implementation of the remaining stages of 
the collision detection on GPU, with the aim of 
reducing the amount of data sent and received from the 
graphics card and performing, for bytes sent, a large 
number of operations. 
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