
A Non-intrusive Approach for 2D Platform Game Design Analysis
Based on Provenance Data Extracted from Game Streaming

Lidson B. Jacob¹, Troy C. Kohwalter¹, Alex F. V. Machado²

Esteban W. G. Clua¹ and Daniel de Oliveira¹

¹Instituto de Computação, Universidade Federal Fluminense (UFF)
Niterói, RJ, Brazil

²Departamento de Computação, Instituto Federal de Educação, Ciência e Tecnologia Sudeste de Minas Gerias
Rio Pomba, MG, Brazil

Abstract

The usage of provenance data drastically increases the
potential for game data mining since it is able to
record causes, effects and relationships of events and
objects during a game session. However, it commonly
requires modifications in the game engine in order to
collect such provenance data. The modifications in the
game engine may be unviable in commercial (and not
open source) systems. In this paper, we propose a
novel and non-intrusive approach for collecting
provenance data in digital games. Our proposal
collects provenance data using image processing
mechanisms and pre-defined image patterns, thus
avoiding accessing and modifying the source code of
the game. Using our approach, we are able to
generate, analyze and visualize game design features
based on the gameplay flow using provenance data.
Furthermore, we evaluated our proposal with a well
known commercial 2D game, called “Super Mario

World”.

Keywords: provenance, game analytics, image
processing, image analysis

Authors’ contact:

{ljacob, tkohwalter, esteban,

danielcmo} @ic.uff.br

alex.machado@ifsudestemg.edu.br

1. Introduction

The worldwide video game marketplace reached US$
93 billion in 2013 according to Gartner Inc. [2013].
Only in 2013 a huge number of game titles were
released, including new versions of well-established
games, such as “Assassin’s Creed” and “Call of
Duty”. With thousands of new game titles released
every year, the game industry faces a difficult and
important task of attracting and maintaining the
interest of players for long periods of time [Drachen
2012]. The popularization of each game title is
essential to generate income and to finance the game’s

production, as well as the possibility of making future
games.

 Analyzing and understanding every part of a game
session is an important information in order to
improve game quality [Kohwalter et al. 2013]. Thus,
we claim that an analysis tool allows for an easier
study of player behavior and game design. Therefore,
such tool may aid the game designer during the game
development and improve the overall quality of the
game. By analyzing game data captured from previous
game sessions and successful games, the game
designer can obtain useful information about features
or gameplay mechanics for future productions or
updates.

This game data is traditionally represented as a log

file that registers the game flow in details. However,
log files are not structured and do not allow to perform
queries on the data, which reduces the potential of
inferences and data mining. To overcome this
limitation, we claim that games should gather and
represent game data in a provenance repository.
Provenance data represents the ancestry of an object
[Freire et al. 2008]. Provenance of an object, such as
an NPC in the game session, contains information
about the actions involved with this NPC. It provides
important documentation that is essential to preserve
the data and to interpret and validate results of a game
session.

 However, to the best of our knowledge, to capture
such provenance data within a game session we have
to modify the game engine to be able to register
information in certain points of the game flow. This
approach may be unviable in several cases since most
commercial game titles has proprietary code, which
means that no modifications in the engine are allowed.
Some approaches already provide ways to capture
game data in a structured form such as the recently
proposed Provenance in Games framework
[Kohwalter et al. 2012], but all of them are intrusive
in respect to the source code of the game.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 732

 The main goal of this paper is to present a non-
intrusive framework capable of gathering and storing
provenance data of a game session for analysis.
However, unlike the Provenance in Games
framework, the proposed framework does not require
access to the source code in order to gather
provenance data. The proposed approach is based on
histogram and image processing techniques, thus only
requiring accessing the real time streaming of the
game session. This way, it can be applied in a variety
of proprietary games without access to its source code.

 After gathering the provenance data through image
processing techniques, we need to display the
collected data in a way that can be easily understood
and analyzed by the end user (or the game designer).
Thus, we have chosen to represent the gathered data in
the form of a graph, showing all actions taken by a
player in the form of vertices and the relationships
between them as edges.

 We used the game “Super Mario World” (SMW)
[Nintendo 2014] as a case study. This game was
chosen because it is a classic game and with great
success. Another reason is because SMW is still used
as a template for a large number of games titles of the
same genre. It is a platform-based game, where the
main character has to follow a path picking items and
destroying or deviating enemies.

 This paper is organized in four sections besides
this introduction: Section 2 introduces important
concepts about provenance and histogram used in this
paper. Section 3 shows related work about provenance
in games. Section 4 shows how the provenance data is
acquired, organized, analyzed, stored, and displayed to
game designer in our case study. Finally, Section 5
concludes this paper, listing contributions, limitations
and future work.

2. Background knowledge

The main purpose of this paper consists on
colecting provenance data of a game flow, using
image processing techniques. Following we present
some important concepts for a better understanting of
the proposed approach.

2.1 Provenance

As defined by Moreau et al. [2007a; 2007b],
provenance is traditionally adopted in several areas as
arts and digital libraries. The data provenance refers to
the historical documentation of an object or
documentation process life cycle of digital objects.
The historical documentation of an execution
application provides a better comprehension by
tracking all transformations and changes as well as
causal relationshiops between entities. According to
Moreau et al. [2007a], computational methods should
be transformed with the purpose of generating a

qualified provenance so it can be recovered, analyzed
and trustworthy, so that we may understand the result
of a historic object, answering questions related to
how the elements were achieved and why [Freire et al.
2008].

Cruz et al. [2019] detaches fundamental
provenance concepts, such as storing information of
time and location. The provenance references the
origin of an information which should contain its
identification, generator, date or time information, and
sequences of processes applied to it.

 For provenance related to computational tasks,
there are two variations: prospective and retrospective.
In the prospective provenance, the steps followed or
processes used to generate a product are captured,
allowing the registration of an specification of a
computational tasks. The data recorded refers to the
required steps to reach a specific result. The
retrospective provenance captures the steps that were
executed, in addition to information about the
circumstance that generated a specific data product.
Retrospective provenance also have a log that details
the execution of computational tasks [Freire et al.
2008].

White et al. [2009] first explored provenance in
game production and detach the importance of a game
designer to visualize what scripts and objects were
modified, and how these objects change over time.
White et al. concluded that data provenance is even
more important if the script runtime has an unusual
execution model and detach that game-aware runtimes
are more difficult to implement than language
features. Language features can often be implemented
piecemeal, as programming patterns are identified and
new language features can be added without adversely
affecting the old. Runtimes elements, once architected,
can be very interdependent and difficult to change.

2.2 Provenance in Games

In order to adopt provenance for the context of games,
it is necessary to map each type of vertices of the
provenance graph into elements that can be
represented in games. The PROV model uses three
types of vertex: Entities, Activities, and Agents. In
order to use these vertex types, it is first necessary to
define their counterparts in the game context.

 In the context of provenance, entities are defined
as physical or digital objects. Trivially, in our
approach they are mapped into objects present in the
game, such as weapons and potions. In provenance,
an agent corresponds to a person, an organization, or
anything with responsibilities. In the game context,
agents are mapped into characters present in the game,
such as non-playable characters (NPCs), monsters,
and players. It can also be used to map event
controllers, plot triggers, or the game’s artificial

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 733

intelligence overseer that manages the plot. Thus,
agents represent beings capable of making decisions,
while entities represent inanimate objects. Lastly,
activities are defined as actions taken by agents or
interactions with other agents or entities. In the game
context, activities are defined as actions or events
executed throughout the game, such as attacking,
dodging, and jumping.

 With all three types of vertex mapped into the
game context, it is also necessary to map their causal
relations to create the provenance graph. The PROV
model defines some causal relations that can be used
similarly to their original context. However, it also
provides rules to extend these relationships or to
create new ones. For instance, it is possible to create
relationships to express the damage done to a
character or relationships that affect specific core
mechanics from the game, like attack rolls, healing,
and interactions with NPCs or objects. Also, the
PROV model deals well with the aspect of time,
which can be heavily explored in games, especially on
games focused on storytelling.

 Each NPC in the game should explicitly model its
behavior in order to generate and control its actions,
providing an array of behavior possibilities. With this
explicit model, a behavior controller can register
information about the action when it is executed. The
main reason of using provenance is to produce a graph
containing details that can be tracked to determine
why something occurred the way it did.

 The information collected during the game is used
for the generation of the game flux log, which in turn
is used for generating the provenance graph. In other
words, the information collected throughout the game
session is the information displayed by the provenance
graph for analysis. Thus, all relevant data should be
registered, preferentially at fine grain. The way of
measuring relevance varies from game to game, but
ideally it is any information that can be used to aid the
analysis process.

2.3 Histogram

Since the proposed approach is based on the analysis
of game streaming, histogram analysis is a key issue.
According to Filho and Neto [1999], the histogram of
an image is a collection of numbers that indicate the
percentage of pixels in the image with a determined
tonality color. These values are easy to understand and
analyze through a bar graph that provides the number
of pixels for each tonality corresponding in the image.
Through visualization and analysis of an image
histogram, we can identify various characteristics,
such as the indication of its quality, the contrast level,
and its medium shine (if the image is predominantly
light or dark).

Each element of this collection is computed as:

������ = 	
	�

	

Where:

0 ≤ 	 �� ≤ 1	

	 = 	0, 1, . . . , � − 1, L is the number tonalities of
the digitized image;

		= total number pixels in the image;

������ = probability
-th of tonality;

	� = number of pixels with tonalities that
corresponds to
.

3. Related Work

Jacob et al. [2013] introduced a system that captures
information from a game of infinite run genre.
The captured information is represented as a graphic,
so that it becomes quick and easy to understand the
behaviors occurred during the game session. It also
informs to the game designer characteristics and
behaviors of the gameplay as well as the player’s
behavior during the game.

 Some important features that can be analyzed
graphically are ilustrated in Figure 1, including
distance achieved by the player, the distribution of
coins and special items gathered by the player. By
analyzing this graphic, it is clear that the player
achieved low distances in the initial rounds of the
game session. This behavior may be related to being
the first contact the player has with the game. Thus the
result suggests that the game need a better help or
tutorial before starting the game.

Another possible analysis is the distribution of
coins and special items. By analysing the graphic, the
game designer can verify if they were collected as
intended. An important feature can be observed by
analyzing the relationships between the data. For
example, in the section of the graph where the capture
of special items are growing and the distance is
constant (round 5 to 12), and immediately after when
special items are constant and the distance is growing
(round 15 to 20), is possible to infer that the capture of
elements disturbed the player’s progress. This may be
because the items were in difficult local to be
captured, inducing the player to get lost. However, the
system requires accessing and modifying the source
code of the game. The represented information is
limited, in our proposal shows more information to the
end user.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 734

Kohwalter et al. [2012] introduce
that captures provenance data during a game session.
This data is exported as a game flow log that can be
used to generate a provenance graph.
framework has the intention of captur
the user plays the game in order to
provenance graph that can be shown
session. This graph is able to help the player
understand the reasons during the game that induce
the final result, allowing a feedback to the player
about the decisions and actions execu
game in order to aid in the learning
identify his mistakes for future sessions
framework requires modifications in the game engine,
thus being intrusive.

 As a case of study, the authors used
called Software Development Manager

game, the user have to manage a software
development environment using the concepts of
software engineering to better develop the software
following the requirements stablished by the
company’s client. The player has to
of employees by deciding strategies
development in order to meet the established
prerequisites and restrictions. At
development, the player receives a
accordance with the quality analysis.

 Following this work, Kohwalter
proposed an approach for the representation of the
provenance data gathered during a game session
form of a provenance graph. The proposed graph has
the intention of representing the actions and decisions
made by the player while running the game.
graph allows for the developers and designers
identify possible problems in gameplay
the provenance graph from the game session

Figure 1: Combined Analysis. [Jacob

2012] introduced a framework
during a game session.

This data is exported as a game flow log that can be
used to generate a provenance graph. The proposed

capturing data while
the user plays the game in order to generate a
provenance graph that can be shown at the end of the

help the player to
understand the reasons during the game that induced

a feedback to the player
about the decisions and actions executed during the

learning process and
sessions. However, the

framework requires modifications in the game engine,

As a case of study, the authors used a serious game
oftware Development Manager (SDM). In this

have to manage a software
development environment using the concepts of

develop the software
stablished by the

has to manage a group
deciding strategies of software

in order to meet the established
At the end of the

, the player receives a payment in
accordance with the quality analysis.

llowing this work, Kohwalter et al. [2013]
the representation of the

gathered during a game session in the
. The proposed graph has

the intention of representing the actions and decisions
made by the player while running the game. This

the developers and designers to
identify possible problems in gameplay by analyzing
the provenance graph from the game session.

The graph shown in Figure
tool named Prov Viewer
provenance graph. The ilustrated
example that represents a small flow of captured data
of a game. The graph notations used follows the
exisiting provenance models, with
representing the activities, entities
according to the legend. The edges represent
relationship between the vertices
or negatively in accordance with the color. The edge’s
thickness represents the intensity of the relationship,
thick edge represents bigger infuence
are neutral relationships and have little importance
besides associating vertices neighbors or owners

4. A Non-Intrusive Framework for
Extracting Provenance Data from
Games

In this paper we propose a novel strategy for
extracting and storing provenance data f
session based on image processing techniques. The
proposed approach is based in a workflow that is
showed in Figure 3. The solution starts w
interacting with a game in a game session. The entire
streaming is captured and the rendered images are
stored to be further analyzed. It is important to
highlight that this rendered image extraction is not a
simple and fast process to be perf
analyze the captired images, we need to have template
images that will be identified and recognized in the
extracted rendered images. For example, in the case of

: Combined Analysis. [Jacob et al. 2013].

Figure 2: Example of a generated

[Kohwalter et al. 2013].

Figure 2 is the visualization
 created to generate the

ilustrated graph is just an
represents a small flow of captured data
The graph notations used follows the

exisiting provenance models, with vertices
resenting the activities, entities and agents

The edges represents the
relationship between the vertices and can be positively

ce with the color. The edge’s
thickness represents the intensity of the relationship,

bigger infuences, dotted edges
neutral relationships and have little importance

besides associating vertices neighbors or owners.

Intrusive Framework for
Extracting Provenance Data from

In this paper we propose a novel strategy for
extracting and storing provenance data from game
session based on image processing techniques. The
proposed approach is based in a workflow that is

The solution starts with a player
interacting with a game in a game session. The entire
streaming is captured and the rendered images are
stored to be further analyzed. It is important to
highlight that this rendered image extraction is not a
simple and fast process to be performed. In order to
analyze the captired images, we need to have template
images that will be identified and recognized in the
extracted rendered images. For example, in the case of

: Example of a generated provenance graph.

[Kohwalter et al. 2013].

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 735

SMW game, template images for each character (
Mario, Koopa, Toad, Yoshi, etc.) have to be provided
in order to perform image recognization. We also store
metadata associated to the template images such as
names of the characters and influences in the game.

 This way, with the template images and the
extractect rendered images we can indeitify the
elements in the entire game session by comparing the
histograms of each one of the extratectd images with
the historgram of template images to verificy if the
characters are parte of a specific session. If a character
is identified and an action associated to this character
is also identified (e.g. Mario touches an enemy) we
have to store this information in our provenance
repository. This provenance repository is further
queried by Prov Viewer to generate a provenance
graph. This way, during the player interaction, his
input data are also stored and will be connected with
image features, generating a graph with the dynamic
elements. The game designer can interpret what
happened during the game session by analyzing the

Figure 3: Organization Modules

Figure 5: Sequence of pictures that represents each second during a game session.

SMW game, template images for each character (e.g.
) have to be provided

in order to perform image recognization. We also store
metadata associated to the template images such as
names of the characters and influences in the game.

This way, with the template images and the
extractect rendered images we can indeitify the

ame session by comparing the
histograms of each one of the extratectd images with
the historgram of template images to verificy if the
characters are parte of a specific session. If a character
is identified and an action associated to this character

Mario touches an enemy) we
have to store this information in our provenance
repository. This provenance repository is further

to generate a provenance
graph. This way, during the player interaction, his

are also stored and will be connected with
image features, generating a graph with the dynamic
elements. The game designer can interpret what
happened during the game session by analyzing the

provenance graph and can plan future developments or
correct bugs in the current version of the game, for
example.

4.1. Data Capture

The framework starts capturing images of the game
session. In the proposed approach,
analyzed per second, with 	
defined by the end user. Ideally,
smallest possible value without incurring in extremely
large scale processing that demands too much time,
thus being unfeasible to be used.
images require a high compu
require a long time to process
amounts of images. However, the
too low, otherwise information
process. For example, if in one second the character
performed σ actions, with σ
then have σ - 	 actions that will not be
captured. We can state that in
character Mario can perform various actions in one
second. By analyzing of Figure
is a good balance between execution time
and reliability.

 After the image acquisition
identifies the agents and entities
in a game are the main character
other objects that have some behavior in the game

: Organization Modules

Figure 4: Relation between actions and frames per

second showing the loss of information to value

game session.

: Sequence of pictures that represents each second during a game session.

provenance graph and can plan future developments or
gs in the current version of the game, for

The framework starts capturing images of the game
In the proposed approach, 	 frames are

	 being a parameter that is
defined by the end user. Ideally, n should have the

value without incurring in extremely
large scale processing that demands too much time,
thus being unfeasible to be used. Since processing
images require a high computational cost, it may

a long time to process even for medium
However, the n number cannot be
information could be lost in the

if in one second the character
σ being bigger then 	, we

that will not be appropriately
We can state that in Figure 5 where the

can perform various actions in one
Figure 4, we found that 	 = 3

execution time optimization

the image acquisition, the framework
and entities involved. The agents

are the main character, such as “Mario” and
that have some behavior in the game. For

: Relation between actions and frames per

second showing the loss of information to value 				 in one

: Sequence of pictures that represents each second during a game session.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 736

example, the “Yoshi”, “Red Koopa”

Koopa” are classified as agents by framework
entities are defined as elements that the main
character can capture or interact, such as the
Mushroom”, “Green Mushroom”,

SMW example.

 Agents and entities are detecte
their color histogram. In this paper,
color pattern. This is achieved by a
histogram of each agent and entity
image that we call layer. This search is performed by
checking if the histogram of the
contained in a specified part of the game frame. The
process of searching consists on scanning the
image through the complete frame
template image is not in the layer, then i
as not being an object and proceeds to th
the next layer.

 As the agents move during the game, the color
histogram changes as well. One way to treat this is by
comparing the histogram of each frame with the
animation of the agents. However, this process
too much processing time. For example, to analyze an
image with 800 × 600 pixels that has a window of 50
× 50, then 37,500 histograms should be analyzed. If
we consider an animation being composed of
frames, then the amount of histogram to be analyzed
for this agent would be 337,500. Remember that this
value is calculated for a single image. Nevertheless,
we need to analyze a video with hundreds or even
thousands of images.

 One way we use to optimize t
create a setting to define whether or not a layer

contains or not a template image. Let us consider
the margin of error for each index tonality of RGB and

a value δ	as margin of error for total percentage.

of the layer is larger than 	� - ε of the
we consider that the layer contains

image. Moreover, if ∑ 	�
�
� of the layer

of the template image is larger than the
we also consider that the layer cont

image.

 Another optimization for this process was sliding
the layer with more than one pixel of offset.
window does not contain a ����
minimum percentage) of the desired
layer does not increments by a number of pixels, but
skips an offset corresponding to its complete size.
this paper, we assume that the objects do
the same place. When is confirmed a presence of an
object in the window, then the entire layer is skipped

 In the vast majority of games, the main character is
usually located in the center of the screen.
are analyzing only the red central region
in Figure 6 to further reduce the processing time.
the framework execution, we painted the border of the

“Red Koopa”, and “Green

by framework. The
elements that the main

such as the “Red

Mushroom”, “Green Mushroom”, and “coins” in

and entities are detected by comparing
er, we use the RGB

This is achieved by analyzing the
agent and entity with a section of
layer. This search is performed by

hecking if the histogram of the template image is
contained in a specified part of the game frame. The
process of searching consists on scanning the template

through the complete frame window. If a
not in the layer, then it is considered

proceeds to the analysis of

As the agents move during the game, the color
histogram changes as well. One way to treat this is by
comparing the histogram of each frame with the
animation of the agents. However, this process costs

For example, to analyze an
image with 800 × 600 pixels that has a window of 50
× 50, then 37,500 histograms should be analyzed. If
we consider an animation being composed of 9
rames, then the amount of histogram to be analyzed

for this agent would be 337,500. Remember that this
value is calculated for a single image. Nevertheless,
we need to analyze a video with hundreds or even

One way we use to optimize this process is to
create a setting to define whether or not a layer

Let us consider ε as
margin of error for each index tonality of RGB and

as margin of error for total percentage. If 	�

the template image,
contains
 of the template

layer that contains

is larger than the ∑ 	�
�
� - δ, then

contains the template

optimization for this process was sliding
the layer with more than one pixel of offset. When a

��� value (specified
desired object, then the
a number of pixels, but

skips an offset corresponding to its complete size. For
that the objects do not occupy

When is confirmed a presence of an
object in the window, then the entire layer is skipped.

the main character is
in the center of the screen. Thus, we

are analyzing only the red central region as presented
to further reduce the processing time. For

the framework execution, we painted the border of the

layer which contained the histogram of the
image so we can analyze what was correctly being
captured. Figure 7 is an example of colors used to
represent some objects.

 Figure 8 (A) shows an example where the
matching correctly occurs. However,
similar histogram may lead to incorrect matching, as
can be observed with the pipes and
(B), caused by the similarity of colors
false positive. We can identify
an analysis of the data that will be detailed in the next
section by comparing what was captured with
should have been captured. We can see in
sample objects captured with their
which corresponds approximately

4.2 Activity Identification

After having the position
the screen, it is possible to
taken by the player. We consider the captured entities
when the player is closer than
from another entity, with the
entities that enable clamp, such
of SMW.

If the player’s position is
is considered that he/she is stepping in the agent. If the
height of the player is approximately equal to
object, then it is considered that he

Figure 6: Central area where search happens.

Figure 7: Referential colors of objects

layer which contained the histogram of the template
so we can analyze what was correctly being

is an example of colors used to

shows an example where the
. However, objects with

similar histogram may lead to incorrect matching, as
ipes and coins in Figure 8

the similarity of colors, resulting in a
We can identify this false positive, after

an analysis of the data that will be detailed in the next
omparing what was captured with what

We can see in Table 1 the
with their respective errors,

which corresponds approximately 90.2% of accuracy.

Activity Identification

the position of each agent or entity in
 infer which actions were

We consider the captured entities
closer than a specified distance
, with the exception of some

such as turtle shells in case

position is higher than agent, then it
is stepping in the agent. If the

is approximately equal to the
object, then it is considered that he/she caught the

: Central area where search happens.

: Referential colors of objects.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 737

agent. Furthermore, if the height
smaller than the object, it is considered that he
touched in the agent. The possible actions that the
main character can realize in relation to some other
agents and entities are illustrated in Table

Table 1: Sample objects captured compared with

what should be captured.

 Expected Captured

420 432

16 6

4 4

4 2

16 8

8 8

50 68

6 4

Total 524 532

Figure 8: Object capturing process.

agent. Furthermore, if the height of the player is
e object, it is considered that he

touched in the agent. The possible actions that the
main character can realize in relation to some other

Table 2.

4.3. Storing Provenance Data

After capturing and analyzing
organized and stored in the provenance repository that
follows the provenance schema represented in the
class diagram showed in Figure
contains the information from the
further analysis. Example of information includes
name, attributes, goals, and location
example, the "Red Koopa" has
and she walks on the ground.

 The “entity” table is filled by the game designer
and contains the name, type, importance, location and
attributes of each entity in the game.
is used to identify as possible help or
character. The importance
how much this entity mean
considering his analysis. Finally,
represents where the entity is
can be used for playability analysis

The table “activitytype”
designer and contains the possible actions types during
a game, such as catch, touch
or entity. The table “gamesession

processing and analysis of
information about time and phase of the game.
table “activity”, stores the agent or entity involved in
the action with the player,
action. This table is also stored f
However, a game session may have various activities.
In other words, table “activity

: Sample objects captured compared with

what should be captured.

Captured Error

 12

10

0

2

8

0

18

2

 52

: Object capturing process.

 Table 2: Possible actions related to some agents

and entities.

Catch Touch

Touch

4.3. Storing Provenance Data

ing the elements, the data is
the provenance repository that

follows the provenance schema represented in the
Figure 9. The “agent” table

the information from the game agents for
Example of information includes the

als, and location of each agent. For
has the hull as an attribute
.

filled by the game designer
and contains the name, type, importance, location and
attributes of each entity in the game. The attribute type
is used to identify as possible help or hinder the main
character. The importance field serves to represent

mean to the game designer,
. Finally, the location

the entity is found in the game and
analysis.

 is also filled by the game
the possible actions types during

catch, touch, or step in another agent
gamesession” is filled after the

processing and analysis of the data, saving
information about time and phase of the game. The

the agent or entity involved in
, as well as the type of

is also stored for each game session.
, a game session may have various activities.

activity”, stored all the

: Possible actions related to some agents

and entities.

Touch Step

Touch

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 738

information collected from the images analysis
enables the reconstruction of sequence of actions that
occurred during the game execution.

4.4. Data Representation

We used the tool Prov Viewer from
[2013] and made some changes to become possible
represent our collected data, allowing
compreensible for the game designers
analysis process. The main change was related to the
vertices structures, where we added
and gamessession elements, which are required for our
context.

This input.xml file is created
provenancedatabase. The vertex tags
agent with their proper information.
same manner a tag for each activity and entity.
same input.xml file we added an edge tag with
type in order to associate all actions with the next
action. The edge tags contain the element
is the current action and the targetid

next action. We then generated a graph with edges
organizing actions in chronological order.
that all actions are made by the main character
generate a tag for every action with
containing the entity or agent which relates to the
main character. We can see this in
input.xml file as follows.

Figure 9: Class Diagram representing the provenance schema of the provenance repository

information collected from the images analysis. This
the reconstruction of sequence of actions that

occurred during the game execution.

from Kohwalter et al.
some changes to become possible to

, allowing it to be easily
the game designers during their

The main change was related to the
vertices structures, where we added importance, time

which are required for our

created by querying the
The vertex tags represent each

agent with their proper information. We created in the
same manner a tag for each activity and entity. In the

edge tag with Neutral
ll actions with the next

The edge tags contain the element sourceid, it
targetid containing the

a graph with edges
organizing actions in chronological order. Assuming

actions are made by the main character, we
generate a tag for every action with targetid
containing the entity or agent which relates to the

We can see this in sections of

<vertex> <id>ac38</id> <type>Activity</type> <label>Touch</label> <date>0</date> <importance>1</importance> <time>14</time> <gamesession>4</gamesession> <details/> </vertex> <edge> <id>e53</id> <type>Neutral</type> <label></label> <value>1</value> <time>66</time> <gamesession>4</gamesession> <sourceid>ac53</sourceid> <targetid>ac54</targetid> </edge>
 The Figure 10 illustrates
Prov Viewer with our modifications.
represents activities performed by
The agents are represented by an orange pentagon.
Entities are represented by a yellow circle. The edges
represents the relationship between two vertices.

Class Diagram representing the provenance schema of the provenance repository

<type>Activity</type> <importance>1</importance> <gamesession>4</gamesession>
 <gamesession>4</gamesession> <sourceid>ac53</sourceid> <targetid>ac54</targetid>

illustrates the graph generated by
modifications. Purple squares

represents activities performed by the main character.
The agents are represented by an orange pentagon.
Entities are represented by a yellow circle. The edges
represents the relationship between two vertices. The

Class Diagram representing the provenance schema of the provenance repository.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 739

green edge represents a positive action bringing
benefits to the character with its proper associated
importance and the red edge is a bad action that brings
prejudice to the character.

 It can be observed that the edges have different
thickness according to its value. The beige frames are
the detailed information of each vertex or e
frame is a tooltip that is shown when we
mouse cursor over the vertices or edges.
motage in Figure 10 showing various f
same time to be represented in a single figure.

With this type of graph and the information that
brings to the game designer, we can see all actions
performed by the main character
order. We can identify possible problems
session. For example, the repetition of actions.
happens probably, because the associated action is
very easy or very difficult to be performed
10 we can observe a large number of

Figure 10: Representation of the provenance graph using the modified Prov Viewer.

green edge represents a positive action bringing
its proper associated

importance and the red edge is a bad action that brings

It can be observed that the edges have different
thickness according to its value. The beige frames are
the detailed information of each vertex or edge. This

shown when we pass the
mouse cursor over the vertices or edges. We made this

showing various frames at the
same time to be represented in a single figure.

raph and the information that
, we can see all actions

character in chronological
problems in the game

. For example, the repetition of actions. It
the associated action is

to be performed. In Figure
a large number of association of

activitytype Touch with the entity Coin

easy and ordinary task and very common
session. Similarly, this hard tasks
would be identified as well, since the user would
repeat the same actions several times
associate will be negative and have a

5. Conclusion

This paper presents a novel provenance based
approach to help the game designer
analysis of their games. The most important
this work is the possibility of
platform games without depend
source code. In other words,
intrusive and can be applied in various existing games
and does not requires the source code in order
generate the game log. By gathering
data using simple image processing
later displaying it in the form of
game designer can better understand the game flow.

: Representation of the provenance graph using the modified Prov Viewer.

entity Coin because it is an
very common in the game

session. Similarly, this hard tasks in the game session
would be identified as well, since the user would

several times. However, the
and have a red color.

a novel provenance based
help the game designer by allowing an

he most important feature of
ssibility of analyze gameplay of 2D

games without depending upon the game’s
n other words, our approach is non-

and can be applied in various existing games
the source code in order to
By gathering the provenance

processing techniques and
in the form of provenance graph, the

understand the game flow.

: Representation of the provenance graph using the modified Prov Viewer.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 740

 We plan to enhance some of the existing features
as future work, especially when treating the false
positives generated by objects with similar histogram.
In order to solve this, it is possible to include other
image processing techniques, such as image
segmentation. In order to accelerate the image
analysis, we may implement all the image analysis at
the GPU level.

 Although we focused this work for 2D platform
games, it is possible to increase the technique for other
2D styles of games. This is a trivial work, being only
necessary to formalize the corresponded activities and
behaviors. Nonetheless, this paper presents interesting
results allowing the visualization and possible actions
interpretations in the game flow through data
provenance collected from image sequence. This
technique provides a basis for future work beyond its
use in different type of games and can be studied in
other interactive applications outside the game
environment.

Acknowledgements

We would like to thank CNPq, CAPES, FAPERJ, and
FAPEMIG for partially support this work.

References

Cruz, S. M. S., Campos, M. L. M., Mattoso, M. 2009.

Towards a Taxonomy of Provenance in
Scientific Workflow Management Systems.
Los Angeles, CA, Congress on Services - I,
pp.259-266.

Drachen, A., 2012. Game Analytics. Available at:
http://blog.gameanalytics.com/blog/announci
ng-game-analytics-maximizing-the-value-of-
player-dat.html [Accessed April 22, 2013].

Filho, O. M., & Neto, H. V., 1999. Processamento
Digital de Imagens. Brasport. pp. 55.

Freire, J., Koop, D., Santos, E., & Silva, C. T., 2008.
Provenance for Computational Tasks: A
Survey. Computing in Science and

Engineering , pp. 11-21.

Gartner, Inc., 2013. Gartner Says Worldwide Video
Game Market to Total $93 Billion in 2013.
Available at:
http://www.gartner.com/newsroom/id/261491
5 [Accessed July 22, 2014].

Jacob, L. B., et al., 2013. A game design analytic
system based on data provenance.
Entertainment Computing – ICEC, pp.114-
119 .

Kohwalter, T. C., 2013. Provenance in Games.
Dissertação (Mestrado em Computação)

Niterói, RJ, Universidade Federal
Fluminense.

Kohwalter, T. C., Clua, E. W., and Murta, L. G., 2013.
Game Flux Analysis with Provenance.
Advances in Computer Entertainment , pp.
320-331.

Kohwalter, T. C., Clua, E. W., and Murta, L. G., 2012.
Provenance in Games. XI SBGames . pp. 162-
171

Moreau, L.et al., 2007a. The open provenance
model(v1.00). Technical report, University of

Southampton .

Moreau, L., et al., 2007b. The Provenance of
electronic data. Communications of the ACM

51.4 , pp. 52-58.

Nintendo 2014. Super Mario World. Available at:
http://www.nintendo.com/games/detail/OnT
m1QccFa_Ht39i-dKiI-f8WRu2Cje [Accessed

July 22, 2014].

White, W., et al. 2009. Better scripts, better games.
Communications of the ACM, v. 52(3), pp.
42-47.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 741

