
Helping developers to look deeper inside game sessions

Marco Túlio C. F. Albuquerque Geber Lisboa Ramalho Vincent Corruble*

André Luís Medeiros Santos Fred Freitas

Federal University of Pernambuco, Informatics Center, Brazil *UPMC Paris 6, France

Figure 1: Mapping of the GOP ontology for the PacMan game.

Abstract

Game design and development activities are

increasingly relying on the analysis of gamer’s behavior

and preferences data. Various tools are available to the

developers to track and analyze general data concerning

acquisition, retention and monetization aspects of game

commercialization. This is good enough to give hints on

where problems are, but not to enable a precise

diagnosis, which demands fine-grained data. For this

kind of data, there is not enough support or guidance to

decide which data to capture, to write the code to capture

it, to choose the best representation of it and to allow an

adequate retrieval and presentation of it. This paper

introduces GameGuts (GG), a framework devoted to

give further assistance to developers in choosing,

representing, accessing and presenting game sessions

fine-grained data. As a case study, GG recorded sessions

of a game platform with over a hundred thousand users.

The logs were analyzed using a Visual Domain Specific

Language (as a query language) and an ensemble of

rules (as a compliance test). The results are encouraging,

since we could - among other results - find bugs and

catch cheaters, as well as spot design flaws.

Keywords: game analytics, knowledge representation,

game data mining

Authors’ contact:
{mtcfa, glr, alms, fred}@cin.ufpe.br

*Vincent.Corruble@lip6.fr

1. Introduction

Digital distribution of games is becoming mainstream

for reaching a vast audience of customers [1]. In this

context, game is a service [20], since the game needs to

be continuously monitored and updated according to the

current player’s needs and behavior. Following Zynga’s

success, the “free to play” business model [35] (or

freemium), became the industry standard [43].

Therefore, fully understanding gamer’s behavior and

preferences, with the use of data analysis, is an essential

activity to adjust game design and correct technical

flaws in order to maximize user satisfaction and,

consequently, to achieve commercial success. This

paradigm called “Game as a Service” (GaaS) focuses

updates and analytics on three indicators of the “ARM

loop”: Acquisition (attracting new players), Retention

(keep players engaged) and Monetization (keep users

spending money in the game) [29].

Nowadays, there are effective tools adopted by the game

industry to address ARM-related issues [21], which

normally demand coarse-grained data, i.e. generic data

such as daily active users and active revenue per user.

Good to give hints on where problems are this data is

not enough for a precise diagnosis. A low “revenue per

user” is just as useful to understand what is wrong with

the game as a fever is to a medical diagnosis. In order

to go a step further in game analytics, it is necessary to

acquire and analysis fine-grained data [5], i.e. the one

related to the actual gameplay, such as which bullet the

player used to kill the boss.

For fine-grained data, the developer has not enough

support from current frameworks to decide which data

to capture, to write the code to capture it, to choose the

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 722

best representation of it and to allow an adequate use of

it [5]. These choices are usually “ad hoc” and data

granularity is not addressed with clarity. In this context,

we claim that, to take full advantage of the GaaS

paradigm, developers need further assistance.

Our work consists in an innovative framework devoted

to help developers to define, gather, represent and

visualize fine-grained game data. First, we propose a

process to help the developer to choose what to gather

and to represent using ontologies. Finally, we couple

this process with an Application Programming Interface

(API) to retrieve information using software tools, and

a visual query language to improve the data retrieval,

use and presentation. With respect to the state of the art,

we follow a complementary approach. Data storage

issues and analysis techniques are reasonably well

addressed by the current tools [5], and were not an issue

at any point in our work, so it is not discussed in this

paper. Our focus is on providing better data acquisition

and representation, using storage techniques available,

to improve game analysis such as automated testing,

tracking user experience and satisfaction, automatic

level design, among others.

As a case study, the process is applied to games in the

“Olimpiadas de Jogos e Educação” (OjE) platform. The

OjE platform is a learning platform for teenagers that is

used by public schools in Brazil it has over 100 000

users registered. The amount of users allowed the

framework to be tested in a “real life” production

environment where reliability and performance are

extremely necessary. Therefore, also validating the

framework regarding not only its function but also it

usefulness. The results are encouraging as shown in the

last section.

The rest of this paper is organized as follows. Next

Section discusses gameplay data analysis. The third

focus on the acquisition and representation problem.

Section 4 provides the state of the art for game analytics

frameworks. The GG framework is presented at Section

5. Section 6 shows how we applied the framework in a

commercial game and presents the obtained results.

Finally, the last section draws some conclusions and

outline directions for future work.

2. Different Uses of game data analysis

In order to define the appropriate process to capture and

analyze data in any domain, it is important to understand

the goals of the stakeholders involved in the analysis of

such data. In the game industry, there are several

stakeholders, each of them with different interests.

Marketing managers are especially concerned with

acquisition in terms of the performance of assets such as

short teaser videos and promotional images. They are

also interested in finding out which item sells the most,

the price that maximizes sales, what percent of player

makes a buy, what is the average revenue per active user

and many more. For not being directly related to the

game itself, we will not discuss marketing managers

concerns are not considered in our work.

Game designers are interested in game mechanics and

user experience. However, they are also interested in

fine-grained data to understand precisely the problems

to improve the game design [23; 24], to model

opponents [25], to automate level design [26; 27] or

maximize user experience [28].

Programmers and testers have special interest in bugs,

since recent games had huge losses because of bugs [36]

[37]. Simulating players to automatically provoke bugs

may help [21], but the only reliable way to solve this

problem is software testing [11]. Some games

implement bug-reporting systems [30]. Programmers

are also concerned with cheating. It is not only possible

to cheat but also very easy [8]. Fine-grained data is

required to identify active attacks (such as spoofing,

replay, modification of message content and denial of

service) [9].

3. Challenges in fine-grained data
acquisition and representation

The focus, in this paper, is the challenges involving fine-

grained data: what data to capture; how to represent the

captured data using formal methods; how to code the

game to provide data capture; and, the needs of a good

data retrieval system.

3.1 What data to capture
Storing every possible data about each gameplay

session is not an option, not only because of the required

storage space or communication band, but also because

of the computational tractability problems, possibly

causing “the curse of dimensionality” [19]. However,

deciding what data is relevant is hard (it requires lots of

prior knowledge) [21]. There is then a trade-off in the

choice of which data to capture not too much, not too

less.

Even in fine-grained in-game data universe, there are

different levels of granularity: primitive inputs (pressed

keys, mouse clicks, etc.), actions (turn left, jump, etc.)

and intentions (avoid an obstacle, hit an enemy, etc.)

Usually, the primitive input value is too verbiage,

generating intractable data. Intentions are the most

abstract. For instance, different actions can “avoid an

obstacle”. Actions provide a better abstraction but it

might lack important usability information (like, do

users use the mouse or keyboard to fire the gun?).

Intentions might lead to missing data since it is

sometimes impossible to figure out the user action or the

input used to achieve the intention.

3.2 How to represent data
The game analysis field have been using a few

formalisms: attribute-value logic, first-order logic,

ontologies, and DSLs. For each of them, a trade-offs

regarding tractability and expressiveness must be

considered.

Attribute-value logic is simple and tractable but lacks

expressiveness. For instance, simple descriptions, such

as Above(X,Y) ∧ Left(X,Z) ∧ Behind (X,G),

concerning objects position with respect to each other,

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 723

cannot be concisely achieved using an attribute-value

representation [18]. Universal and existential quantifiers

are other examples of useful expressive elements that

are not available. It is hard to format a query for: Is there

a player that killed a certain boss without using a special

ability? This would require a first-order logic

representation like ∃x,y,z Player(x) ∧ Boss(y) ∧

EspecialAbility(z) ∧ Killed (x, y) ∧ ¬ Used (x, z).

Ontologies have been used for representing game data.

In terms of tractability and expressiveness, ontologies

are in-between attribute value and first-order logic. The

main advantage of ontologies is that they propose a

representation vocabulary. This is the case of the Game

Ontology Project (GOP) [3] that offers a vocabulary to

represent game sessions in the action-level granularity.

DSLs can be used to represent both knowledge and

reasoning on a domain. They can also use an ontology

as the domain mapping stage on the creation of new

DSLs [17].

3.3 How to code the game to provide data
capture

In order to capture data, the developer needs to modify

the game code. However, this seemingly simple task

may be complicated to guarantee the separation of

concerns. In other words, data capture is a crosscutting

concern since it affects other aspects of the code and

crosscutting concerns can generate duplicated code and

excessive dependencies, increasing the code’s

complexity and the costs of maintenance and updates

[17].

Allowing the developer to understand the capturing

needs early in the development cycle improves the

primary design decisions of the code and prevent issues

related to crosscutting concerns. Furthermore, using a

unique representation enables the standardization of the

code involved in the capturing and storing of the data

that also minimizes such separation of concerns issues

[12].

3.4 How to retrieve and use the data
Non-technical stakeholders, like game designers,

frequently need a user-friendly presentation of the game

data. On the other hand, programmers prefer data in a

format that can be readily used by the machine. This

trade-off between human-friendly and computer-

friendly format may be overcame by a clear separation

of the representation language to the presentation one,

which can be visual [21; 31]. It is easier to identify the

paths a player takes through the gameplay and recognize

errors in the design from the visual representation.

Spatial game data is also commonly presented visually

[13].

4. Game Analysis Frameworks: State of
the art
This section defines some properties of game analytics

framework that needs to be considered when creating,

extending or using one that is supposed to deal with

fine-grained data. Each of the properties described

below is related to the challenges or trade-offs discussed

in the last section.

1. Amount of Prior Knowledge Required: Most

frameworks expect the game developer prior knowledge

on data relevance. A framework should try to minimize

this burden from the developer.

2. Expressiveness: the game data representation

language must be able to express fine-grained data from

sessions.

3. Separation of concerns: Coding metrics into the

game, and writing its documentation, must be a simple

task, and the resulting code must be easy to maintain for

a long period (in the perspective of GaaS).

4. Computer-friendly format: it is important to allow

that computers easily retrieve and use the stored data in

order to mine information, generate content, etc.

5. Human-friendly format: data must also be presented

in a user-friendly manner, visually preferably, to non-

technical stakeholders.

6. Extensibility: the framework must be able to handle

new metrics as the game evolves.

Flurry [7], most used analytics framework, provides all

the major ARM related metrics for coarse-grained data.

Regarding fine-grained data, it provides the “custom

event storing format”, which consists in an event name

coupled with a hash table. Therefore, it is very

expressive, almost anything is allowed, but it requires

extensive prior knowledge since it does not provide any

process or mechanism to help the developer define what

to track or how to represent it. The same lack of process

applies to the extensibility and computer-friendliness of

this Flurry’s feature. Flurry’s API requires the developer

to develop its own code architecture for tracking metrics

not paying any attention to the separation of concerns.

Flurry also provides various graphics formats to help

visualize the data, being very user-friendly in the report

but lacks in the information retrieval process, which is

based on lists of events. Other options are available

(such as Kontagent, Honey Tracks, GameAnalytics and

others) but they are all very similar to Flurry. Some

allow fine-grained data representation but the same

criticisms concerning the lack of guidance in choosing

and representing data in Flurry applies to them.

Among the academic efforts in game analytics,

Memphan [6] proposes an event-driven framework that

can verify compliance of events with respect to rules

defined in OWL [31] with Jess [32]. The choice was to

limit the language to board games that leads to a

different path from the commercial frameworks. Every

player action in the client is validated against a set of

rules in the server. The player’s actions are represented

as facts on a Jess database. Although the authors found

it very difficult to express all the game rules using the

Jess limited expressivity, the representation language is

computer-friendly and fulfill its purpose for board

games. It also does not require any prior knowledge of

board games designer. The authors do not mention

anything about separation of concerns in the code

leaving, again, the burden to the developer. In another

initiative, Chan [4] creates an ontology borrowing

concepts from a set of related ontologies such as the

GOP, the Music Ontology [33] and others. Such an

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 724

ontology represents many concepts needed for fine-

grained gameplay analysis. However, since its focus is

on game quality evaluation, the framework does not

address the separation of concern issues. Chan, like

Memphan, is expressive and computer-friendly for its

limited purposes, requires no prior knowledge.

However, none of the two provides means on how to

extend the representation format for other games or

purposes therefore, are not extensible. Finally, the

presentation of the data is not visual; in fact, both

authors overlook the issue.

5. The GameGuts Framework
This section presents a series of methods and tools that

aids developers in the fine-grained data management

named GameGuts Framework (GG). GG consists of a

detailed systematic process on how to define, represent

and code fine-grained data, an API to retrieve data and,

finally, a visual DSL to present the data in a human-

friendly way. During this section, along with the

presentation of the process, the Pac-Man - chosen for

being a very popular and well-known game - will be

used as an example for clarity purposes.

5.1 Main Development Choices
This sections explain GG positioning related to other

frameworks according to the attributes presented in the

previous section.
1. Amount of prior knowledge: Defining which

analytics to track is a tedious and laborious job. Any

mistake leads to missing information and inability to

understand a problem. One of the main focus of GG is

to reduce this necessary prior knowledge about analytics

and help in the definition process, reducing the human

error factor. Using the GOP as a start point drastically

reduces the previous knowledge since this ontology

describe nearly all possible actions in a game and has a

small learning curve for game developers.
2. Expressiveness: The gameplay logs must be able to

represent any action that happens in the game. GG uses

GOP as a starting point. For its collaborative and open

nature, GOP provides terms and vocabulary for almost

any game available.
3. Separation of concerns: Most third party APIs usually

forces the developers to adapt the game code in order to

include analytics code. GG provides a few guidelines on

how to handle the game client code using the class

diagram generated when creating the gameplay

representation language. As the developer follows the

process of creating the representation language, the

class structure necessary to integrate GG in the game

code is created. This allows the developer to understand

upfront which parts of the code will be affected and

prevent crosscutting concerns issues.
4. Computer-friendly format: To facilitate the use of the

stored data by other tools and plug-ins GG provides an

API to retrieve the stored data. The Server API has the

ability to retrieve individual session, specific data and

scenarios from the whole set of stored sessions. GG also

provide the ability to create triggers in order to process

the data as it gets into the server according to the each

analysis needs.
5. Human-friendly format: To overcome presentation

issues of textual data and provide visual presentation

such as Flurry, GG provided a detailed systematic

process to help the developers create a visual query

language on top of GG.
6. Extensibility: As the game evolves new metrics needs

to be added and, in this sense, GG has a pretty straight-

forward process that can be applied again just for the

new parts and added to the previous created instance of

the representation language and APIs.
Since a new framework demands a big developing

effort, we decided to follow the Lean approach [15],

which suggest starting building a Minimum Viable

Product (MVP), which contains the essential features of

the system. According to the Lean approach, the

advantages of designing, implementing and evolving a

MVP, instead of starting by a “complete/perfect” system

design and implementation, is twofold: tests can be

made early, enabling adjustments or significant changes

before the developer is overcommitted with the system;

and the design and development effort is more focused,

and then more productive.

5.2 Overview of the GameGuts Architecture
The framework consists of the following key

components:
 A gameplay representation language

instantiated from the Game Ontology Project

 An API to store and access the recorded data

(by the game and other servers)

 A visual query language to visually retrieve

and present the recorded gameplay data.

A typical session starts with the player playing the game

and his actions being recorded. The session is captured

in the game client code then sent to the server. Every

session that arrives at the server through the client API

is stored in the gameplay database. The stored data can

be accessed through the GG Server API or using the GG

Visual Query Language. This section explains in details

each component.

5.3 GameGuts Component: Gameplay
Representation Language
In order to reduce the complexity on mapping and

choosing detailed analytics for each part of the game

and, therefore requiring less prior knowledge, GG

provides a detailed systematic process. It is important to

notice that although laborious, the process is simple and

easy to understand. The process starts starts from the

game entities and the Entity Manipulation branch of the

GOP ontology, chooses the appropriate subset of terms

from the branch that exist in the game and extends those

terms to include the necessary properties and variables.

Then, it is possible to instantiate a representation

language of gameplay data from the GOP ontology that

provides expressiveness to perform a variety of analysis

in a computer-friendly format. To overcome the user-

friendliness limitations of textual languages, there is

also a process to create a Visual DSL, presented further

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 725

along in this article, to improve the data retrieval and

presentation.

The following steps instantiates the gameplay

representation language:
1. Enumerate all the entities involved in the game, as

well as the state variables and properties of each entity.

Usually the game design document contains this

information. For instance, in Pac-Man, the entities are

the Pac-Man, the pellets he can eat along the way, the

fruits which gives him powers and the ghosts that chase

him - Inky, Blinky, Pinky and Clyde. Concerning the

properties/states, the Pac-Man must have a position and

a velocity, and whether he is under the power of a fruit

or not is state variable.
2. Identify which parts of the Entity Manipulation

branch is needed (which events occurs for each entity).

The Entity Manipulation branch of the GOP is the part

of the ontology, which describes all the actions

performed by or in a game entity. This is the most

crucial part of the process since it is the basis of the

representation. It is important to consider all the

manipulations in the GOP to make sure nothing is

missing. The Pac-Man character, for instance, can move

(ToMove) and collide with the other entities

(ToCollide). We can represent a collision between Pac-

Man and Blinky as ToCollide(PacMan, Blinky) or

ToCollide(Blinky, PacMan). ToMove is also used for

the Ghosts. Pellets and Fruits do not move, but are

created (ToCreate) and also collides.
3. Adapt each Entity Manipulation element of the

ontology providing the actual representation in terms of

cardinality and valid parameters. This is necessary since

GOP is usually superficial. For instance, the ToCollide

class child of the Entity Manipulation part of the GOP

does not provide time and point of collision. Then, for

the ToCollide a few properties should be added to aid

further analysis. A timestamp and the position of the

collision is usually very useful. A collision record would

look something like ToCollide(PacMan, Blinky, (27,

32), 5674) where (27, 32) would be the position of the

collision (it can be in pixel or tiles depending on the

game) and 5674 would be the timestamp in seconds or

game loops (for replay purposes, game loops are

generally a better idea). To record a move there are a

few possibilities: using a velocity vector, using

directions or using the previous and current position. In

PacMan, for its simplicity, directions work well and a

move to the left from Clyde would be like

ToMove(Clyde, LEFT, 676).
4. Convert the Ontology in a DSL using Taira’s [17]

method.
4.1 The method requires the domain to be modeled as a

class diagram. It’s an extensive process but improves the

separation of concerns. Figure 1, shows the class

diagram for the PacMan game.
4.2 Transform the class diagram into a grammar in the

Back-Naus Form [41]. The Pac-Man game BNF would

have definitions like the following:

ToCreate ::= ToCreate(<entity>, <entity>, <position>,

<timestamp>)
ToCollide ::= ToCollide(<entity>, <entity>, <position>,

<timestamp>)
ToMove::=ToMove(<entity>,<direction>,<timestamp>

)
ToRemove ::= ToRemove(<entity>, <timestamp>)
<direction> ::= left | right | up | down
<position> :== (<number>, <number>,<number>)
<number> ::= <digit> | <number> <digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<timestamp> ::= <number>
EntityManipulation ::= ToCreate | ToMove | ToOwn |

ToShoot | ToCollide | ToRemove <timestamp>
<entity> ::= MAZE | PACMAN | BLINKY | PINK | …
5. Refactor the resulting DSL to use the JSON standard

syntax to make the creation and parsing of the files

easier. This step is optional but highly recommended.

Using a new syntax will require the creation of a new

parser, using a standard format makes things easier.

Additional details are included to increase human

readability of the generated logs. An excerpt of a Pac-

Man session record would look like the following:
{ "entities":[

 {“id”: 0, “type”: "game.pacman.enemies.Inky"},

 {“id”: 1, “type”:"game.pacman.PacMan"},

 {“id”: 2, “type”:"game.pacman.Pellet"},

 {“id”: 3, “type”: "game.pacman.Pellet"},

 {“id”: 4, “type”: "game.pacman.Pellet"},

 {“id”: 5, “type”: "game.pacman.Maze"},
 {“id”: 6, “type”: "game.pacman.Fruit"}, ...],

 "EntityManipulations":{

 "ToCreate":{ "creator":5,

"created":1, "timestamp":403},

 "ToMove":{ "moving":1, "direction":"left",

"timestamp":1055},

 "ToMove":{ " moving ":1, "direction":"left",

"timestamp":1146},

 "ToCreate":{"creator":5, "created":0,

"timestamp":1507 }, …

 "ToCollide":{"entity":1,

"entity":6, "timestamp":7200},

 "ToMove":{ " moving ":1, "direction":"left",

"timestamp":7202},

 "ToMove":{ " moving ":1, "direction":"left",

"timestamp":7450},

 "ToCollide":{"entity": 0, "entity":

1, "timestamp":7580},

 "ToRemove":{"entity":0, "timestamp":7803}

 }}

5.4 GameGuts Component: API (GGAPI)
The API is broken into two parts: The client API,

responsible for packaging and sending the session data

to the server, and the server API that receives that data,

stores it, and provides ways to access it.

5.4.1 Client API
Most of the state of the art previously presented in this

article does not pay any attention to the client side. As

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 726

stated before, this leaves a heavy burden in the

developer that needs to spend effort in creating analytics

code instead of the game code alone. To help developers

in this matter GG provides a few guidelines on how to

handle the game client code using the class diagram

generated during while creating the gameplay

representation language.

1. Every entity in the game has its manipulations already

mapped. To maintain separation of concerns the class

that represents the game entity and holds its properties

(the model) is separated from the class that handles the

manipulations (the change in the properties, the

controller). For PacMan, the class architecture would

work as in Figure 2.

Figure 2: Class Diagram used in the client side of GG API

2. Use the Template Method design pattern [38] to

abstract the record code from the game logic code.

Using the Template Method helps to abstract the

analytics code from the game logic code improving the

code’s separation of concerns and therefore its

maintainability, reducing costs. A sample code for

PacMan would look as follows.

public class ToCreate {
 public void ToCreate(Entity creator, Entity created,

long timestamp) {
 // create the JSON entry, the entry is send to the

server at the end of the session
 GG.getInstance().createJSONEntry(EntityManipul

ation.TO_CREATE, creator, created, timestamp);
 // call the subclass that actually implements this

method
 this.apply(creator, created, timestamp);
 }
 protected abstract void apply(Entity creator, Entity

create, long timestamp);
}

public class ToCreatePellet extends ToCreate {
 protected void apply(Entity creator, Entity create, long

timestamp) {
 Vector3 nextPosition =

((Maze)creator).getNextPelletPosition();
 created.setPosition(nextPosition);
 ((Maze)creator).addEntity(created);
 }}
5.4.2 Server API
The Server side of the API is concerned about the

storage of the logs that comes from the client and also

to provide methods to retrieve that data. To improve

performance, the GG server also provides triggers that

are used to process the data when a log arrives from the

client. The server side of GG, uses Google App Engine

along with its NoSQL database [42]. Every log that

arrives at the server is then processed by several triggers

and stored in a various of formats according to different

analysis needs. The raw data from the log is also stored

and used when new analysis need the data in a format

that is not available yet. Each of the analysis done in this

article is explained in the corresponding section.
 The server API also provides the following functions

that can be used to access the data and are specially

useful for the visual query languages.
1. View Log: Retrieves the whole log of a specific

session. Example: Log of a given player in a given day

and time.
2. Get Logs With: Retrieves the sessions logs that

contains a specific list of Entity Manipulations.

Example: All the logs where the player beats level 3. It’s

important to notice the Composite Action concept

where you can represent a series of events that happens

sequentially. It is very helpful to emulate universal and

existential quantifiers.
3. Count: Counts the amount of times a specific Entity

Manipulation appears in all logs. Example: How many

times the player shoots with a pistol?
4. Count in: Counts the amount of times a specific Entity

Manipulation happens in a given log. Example: For the

log of a given player in a given date and time how many

times he died?
5. Before: Lists all entity manipulations that happens

before another specified. Example: How many times the

boss of level five shoots his fireball before the player

dies.
6. After: Lists all entity manipulations that happens after

another specified. Example: How many times the player

ship goes left after an iceberg spawns in the level?
7. Register Game Log: Used by the game client API to

record a game session.
8. Register Visual Query: Used by the Visual Query

Language to register a query (more of this in the next

section).

5.5 GameGuts Component: Visual Query
Language (GGVQL)
The GG Query Language (GGQL) is a language to

query specific kinds of information from the database of

session logs. The idea is to visually define gameplay

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 727

scenarios or patterns and search the stored data for them

[16]. GG Server API enables the creation of such tool

and this section explains how to create the language,

how it integrates with the server and how to use the

language to retrieve information, all using PacMan as an

example.

5.5.1 Creating the Visual Query Language

The Visual DSL consists of all the game

elements, and the possible relationships between them

(represented by the same actions mapped from the GOP

into the UML class diagram). Every entity in the game

is represented by its sprite in the game. This way,

anyone can easily identify an entity in the query, and the

entity manipulations are relationships between those

entities. Ideally, to see how many times a PacMan

collided with a Ghost, the query would look like Figure

3.

Figure 3: Visual representation of a query to see

how many time a collision happens between
PacMan and one of the ghosts.

Using Visual Studio DSL Tools solution [39] and its

Minimal Language template creating such a language is

simple. The language is created using the Classes and

Relations partitions and the Diagram Elements partition

is used to integrate the game sprites as elements of the

language. Visual Studio itself can be used as a query

editor. Each created query “compiles” into a program

that registers the query in GG’s server. GG Server then

provides an interface to execute the query and see its

results.

5.5.2 Integrating in the server
When a record arrives at the server, there is series of

special triggers that adjust the data to be used by the

visual query language. The following are used by the

query languages:

1. Simple Counter trigger
Counts the occurrence of each entity manipulation. This

means that every logs that arrives at the server is read

and each entity manipulation (ToCollide, ToCreate,

etc…) has its counter increased. This makes it simpler

to understand how many times a collision happens per

session, for instance.

2. Composite Action trigger
Creates a list of actions in the order they happened in the

log. This trigger stores the session as a list of entity

manipulations and provides faster retrieval for questions

like: What is the accuracy of the player? Which can be

done by querying how many times a ToCollide happens

after a ToShoot event.

3. Game, Level and Time clustering triggers

At last, it is interesting to understand at which point of

the level in a certain game the manipulations happen.

This trigger separates each entry by their timestamp and

level. It helps to identify things like: In Level 3, what is

the part player’s die the most?

5.5.3 Creating and using queries
As states before, using Visual Studio DSL Tools is

pretty simple. The user creates a query and defines a

name for it (the server lists the registered queries by

name). Using the editor from Visual Studio all the user

needs to do is drag and drop the entities and

manipulations involved in his query.
The player then compiles the query and executes it,

registering the query in the GG server. All the queries

created are stored. The server creates a trigger, if

necessary, to facilitate the query. It also includes the

query in a list of queries created. The user then access

the GameGuts server and choose the query to be

executed. GG shows the results. The following section

shows how the language was created for Imuno and how

it was useful to find design flaws.

6. Case Study: OjE
To be validated, GG was used in a gaming and learning

platform called OjE, which contains various games

made in Flash [40] and is used in public schools in

Brazil by over than 100,000 students. Each game in the

platform was changed to include the GG client API and,

consequently, record its gameplay sessions. Over half a

million sessions, from all the games, were recorded

using GG. This section shows how it was used to

acquire, represent and analyze data for one of the OjE

games: Imuno, a River Raid clone in which the player

is a medical nanobot that needs to eradicate anything

harmful to the human body. Figure 4 illustrates the

game. At the end of the section improvements over the

QA process applied to all the games are also discussed.
Besides the changes performed to include GG client API

in the games, another change was done to create a

version of the game that used the recorded log instead

of the player’s input to control the main character. This

helped to ensure the gameplay representation language

was expressive enough to hold all the information in the

session therefore enabling designers to watch a replay

of any record. The ability to watch a replay was essential

for a handful of analysis. First, it helped game designers

to analyze the session of dozens of players. Second,

when a bug was found, it was easy to reproduce and,

therefore, reducing a large amount of testing and bug

fixing effort.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 728

Figure 4: Imuno

6.1 Imuno: Game Design Analysis
Imuno is a action shoot ‘Em Up game. It is of

special interest to designers to identify the most difficult

the parts of the levels that are too easy or too difficult.

This information allows designers to understand the

pace of a created level and adjust it to the desired player

experience. A few queries were created in Imuno to

perform this pace analysis. First, parts of the level (that

we call scenario) where the player died were identified

by searching for the tag ToRemove involving the player.

This gave the designers a good understanding of

frustrating scenarios. Then, the analysis tried to identify

the scenarios that were too easy, i.e., the parts of the

levels where the player did a lot of shooting and without

dying. Using queries like that shown in Figure 5, , the

designers were able to identify that the end of the first

level (more precisely in the boss battle) was one of those

“easy scenarios”.
Another scenario of interest for game

designers, where the player health reached very low

numbers and could come back to continue playing were

called “near-death experiences”. It was desired to have

as many of these scenarios as possible since it provides

a neither too hard or too easy challenge. Being able to

watch replays of those scenarios helped game designers

to recreate them in several levels.
Looking for easy parts was also useful to to

identify design flaws. On the most critical one was

found in one of the game’s bosses. Players could stand

in a certain part of the screen without ever being hit. The

boss spawned mobs periodically and the player would

keep killing them from the safe position without ever

hitting the boss too. This way, the players that found the

glitch, could stay forever killing the helper mobs and,

potentially, achieving infinite score. Although a careful

analysis of the level could lead to the same conclusion,

the game was played by OjE players for several months

without the designers ever understanding why it

happened. As soon as GG was implemented, with the

ability to search the logs and watch a replay of the match

the issue was understood in a few minutes.

Figure 5: The query created using the Visual Description

Language Tools in Visual Studio 2010

6.2 Imuno: Security Rules
One of the biggest issues in online games are cheating

players. Using cheats to improve the score is not only

fair but also provokes mass evasion from regular players

that finds it impossible to beat a cheating player. To

prevent that, each log that arrives at the server is

analyzed in search for bugs. Attaching a trigger in the

server reads each event in the log transform it to facts in

a Drools rule database [32]. Then, rules are ran against

the data to identify whenever someone is suspected of

performing one of the most common cheats. For

instance, some of the rules inspect all the collisions

occurred between an enemy and a bomb or a bullet.

Only in these situations should the score change. After

running the whole session, the score is checked against

the score from the client message and indicates cheating

whether they differ.
Using GG, a cheat analyst needed about four to eight

hours to code rules to catch a cheat type, leading to a

total of eighty hours for all the rules of Imuno. The

time spent in coding rules is by far compensate by the

fact that large logs can be analyzed fastly. Pure manual

analysis (without GG) would be nearly impossible. In

fact, taking the time required by the same analyst to

examine very small logs looking for the same kind of

information, the analysis of all logs from OjE would

require approximately one million hours (two hours of

analysis per log).

rule "Bullet-Enemy Collision"
 when
 $e : Enemy(isDead == false);
 $p : Player();
 $b : Bullet(createdBy == $p.ID);
 $c : ToCollide (
 (entityA == $e.ID || entityB == $e.ID)
 && (entityA == $b.ID || entityB == $b.ID))
 then
 $e.setHealth($e.getHealth() - $p.getDamage());
 retract($b);
 update($e);
 System.out.println("Enemy lost some health: " +

$e.getID());
end
rule "An enemy has died, update player's score"
 when
 $e : Enemy (health <= 0, isDead == false);
 $p : Player();
 then
 $p.setScore($p.getScore() + 200);
 $e.setIsDead(true);

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 729

 update($e);
 System.out.println("Player got some score from: " +

$e.getID());
end

6.1 OjE: Quality Assurance Automation
Being able to replay sessions also helped a lot in the

testing process for OjE. As explained in the beginning

of the session, the bugs were easily reproduced with the

change to use logs as input. This adjustment also made

it possible to automate some conformance tests,

regression tests (where all the bugs ever found is tested

again to see if a change in the code broke the game again

and the “bug is back”) and also exploratory tests.
 Conformance tests were easier since the tester only

needed to create the scenario and play the game once.

Any bug found could be easily reproduced and the test

could be made several times using the replay system

without any additional human effort. The exploratory

test for most of the game was made by creating a random

player. This way, several scenarios not foreseen by the

game testers could be tested. All the games were tested

using this approach, which is not new but was greatly

improved and facilitated by the use of GG.

7. Conclusion
The current existing frameworks are very good in

providing game analytics in general, with a

special attention to the ARM coarse-grained metrics.

However, when dealing with fine-grained data, the

frameworks do not offer enough support or guidance to

decide which data to capture, to write the code to capture

it, to choose the best representation of it and to allow an

adequate retrieval and presentation of it.
In this paper we have presented GameGuts

(GG) as an original attempt to provide better assistance

to game developers to work with fine-grained data

through a (i) step-by-step process on how to define,

represent and code fine-grained data, (ii) an API to

retrieve data and, finally, (iii) a visual DSL to present

the data in a human-friendly way.
GG was successfully used in OjE, a framework

composed by six casual game played by over 100.000

users, especially in the Imuno game. This proved the

efficiency and usefulness of the framework for OjE

case. However, in order to get a better understanding on

GG limitations, as well as to improve it, it is necessary

to use it in games created by other developers. Not only

to see GG limitations but also to test some of the

hypothesis (e.g. is GOP simple for developers or it still

requires too much prior knowledge, does it helps the

separation of concerns). Therefore, we intend to adapt

GG to be compatible with other existing frameworks,

such as Google Analytics and Flurry, in order to allow

the developers that already make use of these

frameworks to adopt GG more easily and, after that, be

able to interview the users of GG in order to understand

its strengths and weaknessess. This is just a matter of

implementation, since conceptually GG can couple with

some of the existing tools for coarse-grained data

analysis as a complementary approach.

Acknowledgements
The author would like to thank Joy Street S/A, maker of

Olimpiadas de Jogos e Educação (OjE) and owner of

Imuno for allowing this work and providing the game’s

source code and access to programmers and designers

involved in the production. And our supporters and

sponsors: Cin – UFPE, CAPPES and Manifesto Game

Studio LTDA.

References
1. Glasser, The Smurfs & Co Top This Week`s List of

Fastest-Growing Games by DAU [Online]

Available: http://bit.ly/1jbQWnA [Accessed: May

12, 2014]

2. Zagel, J.P., et al. Towards an ontological language

for game analysis. In: DiGRA 2005 Conference:

Changing Views – Worlds in Play 2005

3. J. ZAGAL. Game Ontology Project

http://www.gameontology.com/index.php/Main_Pa

ge

4. J. T. C. Chan, W. Y. F. Yuen. Digital game

ontology: Semantic web approach on enhancing

game studies. In: 9th International Conference on

Computer-Aided Industrial Design and Conceptual

Design, 2008. CAID/CD 2008.

5. El-Nasr, S.; Drachen, A.; Canossa, A. (Eds.). “Game

Analytics”, 1st ed. New York, Sprint, 2013.

6. W. Memphan, “Semantically enhanced games for

the Web”, In: Proceedings of the Web-Sci'09:

Society On-Line, Athens, Greece, 2009

7. Flurry. [Online]. Available: http://www.flurry.com/

[Accessed: November 30, 2013].

8. J. Yan, B. Randell, An Investigation of Cheating in

Online Games. In: IEEE Security & Privacy, vol. 7,

no. 3, May/June 2009.

9. W. Stallings. Cryptography and Network Security:

Principles and Practice. 4. ed. New Jersey: Prentice

Hall, 2005.

10. Hürsch W. L. and Lopes C. V. Separation of

Concerns. Northeastern University, Boston, USA.

Technical report NU-CCS-95-03, February 1995.

11. J. A. Whittaker What Is Software Testing? And Why

Is It So Hard? IEEE Software, v.17, n.1, p.70-79,

Jan./Feb 2005.

12. Miryung Kim, Lawrence Bergman, Tessa Lau,

David Notkin. An Ethnographic Study of Copy and

Paste Programming Practices in OOPL. In

Proceedings of 3rd International ACM-IEEE

Symposium on Empirical Software Engineering

(ISESE’04), pp. 83- 92, Redondo Beach, CA, USA,

August 2004.

13. Thompson, C. Halo 3: How Microsoft Labs

invented a new science of play. Wired. August 8,

2007.

http://www.wired.com/gaming/virtualworlds/maga

zine/15-09/ff˙halo. 2007

14. Olimpiadas de Jogoes e Educação (OJE) [Online]

Available: http://www7.educacao.pe.gov.br/oje

[Accessed: July 12, 2013].

15. Ries, E. "The Lean Startup: How Today's

Entrepreneurs Use Continuous Innovation to Create

Radically Successful Businesses", Crown

Publishing 2011

16. W. B. FURTADO. SharpLudus: Improving Game

Development Experience through Software

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 730

Factories and Domain-Specific Languages. MSc

thesis, Federal University of Pernambuco. 2006

17. R. Tairas, M. Mernik, J. Gray, Using ontologies in

the domain analysis of domain-specific languages.

In: Proceedings of the 1st International Workshop

on Transforming and Weaving Ontologies in Model

Driven Engineering 2008. CEUR Workshop

Proceedings., CEUR-WS.org, vol. 395 2008

18. Hazewinkel, M, "Predicate calculus", Encyclopedia

of Mathematics, Springer, 2001

19. Richard E.; "Dynamic programming". Princeton

University Press. 1957

20. O. Sotamaa, T. Karppi. Games as Services Final

Report. TRIM Research Report 2010.

21. M. J. Nelson Game Metrics Without Players:

Strategies for Understanding Game Artifacts. AAAI

Technical Report WS-11-19 2009

22. Drools [Online] Available:

http://www.jboss.org/drools/ [Accessed: July 26,

2013]

23. P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper, E.

Postma, Adaptive game ai with dynamic scripting.

Machine Learning, 63 (3), 217–248. 2006

24. T. Schaul Evolving a compact concept-based

Sokoban solver. Master’s thesis,

EcolePolytechnique Federale de Lausanne. 2005

25. P. Spronck, I. Sprinkhuizen-Kuyper, E. Postma,

Online adaptation of computer game opponent AI.

In Proceedings of the 15th Belgium-Netherlands

Conference onArtificial Intelligence, pp. 291–298.

2003

26. N. Sorenson and P. Pasquier "The evolution of fun:

Automatic level design through challenge

modeling", Proc. 1st Int. Conf. Comput.

Creativity, pp.258 -267 2010

27. K. Chiu, K. Chan, Using data mining for dynamic

level design in games. Proceedings of the 17th

international conference on Foundations of

Intelligent Systems 2008

28. Pedersen, J. Togelius, and G.N. Yannakakis,

“Modeling Player Experience in Super Mario Bros,”

Proc. IEEE Symp. Computational Intelligence and

Games. pp. 132-139, Sept. 2009.

29. J. Williams, Acquisition, Retention, Monetization:

Understanding & Optimizing player behavior on

any plataform,

http://casualconnect.org/lectures/monetization/acqu

isition-retention-monetization-josh-williams

30. Crash Reporter [Online] Available:

http://en.wikipedia.org/wiki/Crash_reporter

[Accessed: July 26, 2013]

31. D.L. McGuinness and F. van Harmelen eds. "OWL

Web Ontology Language Overview," World Wide

Web Consortium (W3C) recommendation, Feb.

2004, www.w3.org/TR/owl-features.

32. Jess, The Rule Engine for the Java Platform [Online]

Available: http://herzberg.ca.sandia.gov/ [Acessed:

July 26, 2013]

33. Music Ontology Specification [Online] Available:

http://musicontology.com/ [Accessed: July 26,

2013]

34. M. Smith , M. J. Nelson and M. Mateas "Ludocore:

A logical game engine for modelling

videogames", Proc. IEEE Conf. Comput. Intell.

Games, 2010

35. J. Stenros, O. Sotamaa. Commoditization of

Helping Players Play: Rise of the Service Paradigm.

In Proceedings of DiGRA 2009: Breaking New

Ground: Innovation in Games, Play, Practice and

Theory. 2009

36. Shacknews.com, EA continues to add servers to

alleviate SimCity crush, [Online]

http://www.shacknews.com/article/78127/ea-

continues-to-add-servers-to-alleviate-simcity-crush

[Accessed: July 26, 2013]

37. Arstechnica.com, Blizzard fixes Diablo III gold

duplication bug, but the damage may be done,

http://arstechnica.com/gaming/2013/05/blizzard-

fixes-diablo-iii-gold-duplication-bug-but-the-

damage-may-be-done/[Accessed: July 26, 2013]

38. E. Gamma, et al. Behavioral Patterns “Design

Patterns: Elements of Reusable Object-Oriented

Software” Addison-Weles 1994 pp 325

39. Overview of Domain-Specific Language Tools

[Online], http://msdn.microsoft.com/en-

us/library/bb126327.aspx [Accessed: July 23, 2014]

40. Flash Developer Center [Online]

http://www.adobe.com/devnet/flash.html

[Accessed: July 23, 2014]

41. ISO/IEC, EXTENDED BNF 1996 [Online]

www.dataip.co.uk/Reference/EBNF.php

[Accessed: July 23, 2014]

42. Rick Cattell, 2010. “Scalable SQL and NoSQL

data stores,” ACM SIGMOD Record, volume 39,

number 4, pp. 12–27

43. Marketing Tech, App Annie report reveals

freemium rules for app revenue [Online],

http://www.marketingtechnews.net/news/2014/mar

/28/app-annie-report-reveals-freemium-rules-app-
revenue/ [Acessed: September 7th, 2014].

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 731

http://www.shacknews.com/article/78127/ea-continues-to-add-servers-to-alleviate-simcity-crush
http://www.shacknews.com/article/78127/ea-continues-to-add-servers-to-alleviate-simcity-crush
http://www.shacknews.com/article/78127/ea-continues-to-add-servers-to-alleviate-simcity-crush
http://www.shacknews.com/article/78127/ea-continues-to-add-servers-to-alleviate-simcity-crush
http://arstechnica.com/gaming/2013/05/blizzard-fixes-diablo-iii-gold-duplication-bug-but-the-damage-may-be-done/
http://arstechnica.com/gaming/2013/05/blizzard-fixes-diablo-iii-gold-duplication-bug-but-the-damage-may-be-done/
http://arstechnica.com/gaming/2013/05/blizzard-fixes-diablo-iii-gold-duplication-bug-but-the-damage-may-be-done/
http://arstechnica.com/gaming/2013/05/blizzard-fixes-diablo-iii-gold-duplication-bug-but-the-damage-may-be-done/
http://arstechnica.com/gaming/2013/05/blizzard-fixes-diablo-iii-gold-duplication-bug-but-the-damage-may-be-done/
http://arstechnica.com/gaming/2013/05/blizzard-fixes-diablo-iii-gold-duplication-bug-but-the-damage-may-be-done/
http://msdn.microsoft.com/en-us/library/bb126327.aspx
http://msdn.microsoft.com/en-us/library/bb126327.aspx
http://msdn.microsoft.com/en-us/library/bb126327.aspx
http://msdn.microsoft.com/en-us/library/bb126327.aspx
http://www.adobe.com/devnet/flash.html
http://www.adobe.com/devnet/flash.html
http://www.dataip.co.uk/Reference/EBNF.php
http://www.dataip.co.uk/Reference/EBNF.php
http://www.marketingtechnews.net/news/2014/mar/28/app-annie-report-reveals-freemium-rules-app-revenue/
http://www.marketingtechnews.net/news/2014/mar/28/app-annie-report-reveals-freemium-rules-app-revenue/
http://www.marketingtechnews.net/news/2014/mar/28/app-annie-report-reveals-freemium-rules-app-revenue/
http://www.marketingtechnews.net/news/2014/mar/28/app-annie-report-reveals-freemium-rules-app-revenue/
http://www.marketingtechnews.net/news/2014/mar/28/app-annie-report-reveals-freemium-rules-app-revenue/
http://www.marketingtechnews.net/news/2014/mar/28/app-annie-report-reveals-freemium-rules-app-revenue/

