
Resource Management in complex environments: an application to Real Time
Strategy Games

Souza, Thiago A. Ramalho, Geber L. Queiroz, Sérgio R. M.

Federal University of Pernambuco, Informatics Center, Brazil

Figure 1: Starcraft Broodwar with PICFlex

Abstract

Resource management is concerned with the optimal

application of currently available resources and those that are

to become available in the future to achieve goals. Normally,

when resources are scarce, this is not an easy task, especially

when the environments are real-time, partially observable,

dynamic and uncertain. Despite being a common task in real

time strategy games (RTS), there is little research in resource

management applied to RTS games. In this study, we use the

RTS to propose an original approach to decision-making

involved in managing resources in complex environments. We

develop new techniques and concepts such as investment

policy and reuse some existing ones. We made several

simulations and the results were very promising.

Keywords: artificial intelligence; computer games; real time

strategy; resource management

Authors’ contact:
{tas3,glr,srmq}@cin.ufpe.br

1 Introduction

Resource management is the process of using resources as
efficiently as possible. These resources can be tangible like
equipment, financial resources, time and even human resources
as employees (Resource Management, 2013). Manage
resources range from managing simple things as the clothes to
be worn in a common day to managing the resources of a big
city. The latter is a good example of what we will call in this
study a complex environment: an environment where actions
occur in real time, which is partially observable, dynamic and
non-determinist (Russell & Norvig). Because of these
characteristics, resource management in complex environments
can be very hard. Besides that, these environments often present
conflicting goals and a strong and multiple (uncontrolled)
interactions among variables of the model. For instance,
meeting a demand from the citizens, a mayor decides to build a

viaduct in order to improve traffic flow. However, due to the
characteristics of the neighborhood, the viaduct may increase
thefts and murder rates, and it also can cause an undesirable
impact in the sightseeing.

 RTS games are a good laboratory for learning how to create
algorithms to manage resources, since all the aforementioned
problems of in complex environments are present in RTS
(Churchill & Buro, 2011) and (Weber, Mateas, & Jhala, 2010).
Indeed, RTS games require the creation of items such as
armies, buildings, and of technologies, each of the demanding
resources to be created. To achieve victory, the player must
then to perform optimal investments since the resources are
limited.

 Despites, its importance in RTS, resource management has
not been well studied. Few works are devoted to this issue and
most of them work with the concept of build-order, an order in
which units and structures must be produced (Churchill &
Buro, 2011). Build-order is narrow view of resource
management activity, and in most cases, this build order does
not take into account the dynamic evolution of the context
during the game.

 The main objective of our work was to propose a system
capable of performing resource management, particularly in
real time strategy games. Given the complexity of the problem,
instead of creating a supposedly complete or detailed model
and, then testing it, we follow the computer abstraction tradition
(Holte & Choueiry, 2003) (Polya, 1945) and the lean startup
philosophy (Ries, 2011): start with a simple approach and then
to go to a continuous cycle of tests and improvements. We
based our approach on the concept of "investment policy" (a
simplification of real life economics one) that establishes a
fixed resource management behavior. For instance, a possible
investment policy is to spend 40% of the resources on the army
units, 35% on buildings, and 25% on technology. Then, we
have improved the model in order to take into account the
context, and to give more flexibility to the decision. At this
point, we have introduced the possibility to change the

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 712

investment policy dynamically, as well as the idea of flexible
spending margins.

 In this study, we have used a computer game StarCraft
Broodwar as a laboratory for experimentation, where we
implemented our techniques and collected the results to be
analyzed. Various models, going from the simplest to the more
sophisticated ones, were created, tested and analyzed. Each of
the models were compared, confronting the same computational
and intelligent opponent: the BTHAI bot (created by Dr. Johan
Hagelbäck

1
), in the RTS game Starcraft Broodwar. The results

obtained via several simulations were very promising and
taught us which concepts/models produced better performance.

 In the next section we present the main problems related to
RTS games and resource management in detail. Then we
present the state of the art research in RTS games and resource
management as well some other aspects related to this field. In
Section 4 we present our original solution for resource
management and its application RTS. Then, we present and
discuss the obtained results. Finally, we conclude our remarks
and we mention some direction for future work.

2 The Problem

RTS games are simulators in which players instruct units in real
time to collect the various types of available resources, train
units, construct buildings, and eventually destroy opponents to
win the match. Since creating army units, buildings and
technologies demand resource, which are limited, an
appropriate management of resources is crucial in RTS (Buro,
2003).

 In order to better understand the problem of resource
management in RTS games, we will begin to describe the main
elements one can find in such a game. Although there is no
consensus on the elements of an RTS game, there are some
elements and concepts common to most of these, which are
described below.

 Units - A unit is any object present in the game with which
players can interact. The units are usually fighters, able to
attack and destroy other units or buildings. Usually one type of
unit can only be produced by a type of building. Through
technological development, they may be specialized in ground
attack, or long-range airstrike. Each unit has different valued
characteristics such as range, hit points, energy, speed, for
different purposes. It is up to the player to decide how many
and which units to invest due to its strategy. Example: soldiers,
citizen, etc.

 Buildings - The buildings are commonly used for the
production and upgrade of units, storage resources, technology
development or defense. The buildings may also serve as
storage facility for units, for example, the supply depot of
Starcraft Broodwar.

1http://bth.se/tek/jhg.nsf/pages/273c7bbb699ba91cc1256bf80044ef09

 Resources - Resources are prerequisites for the production
of units, buildings or developing technologies. These resources
are scattered through the map and need to be collected during
the game. Resources are required for training a unit,
construction of a building or development of a technology.
They function as an economic currency as following example:
to build a Terran Marine it is necessary to have 50 minerals in
Starcraft Broodwar. Each unit, building, or technology tech tree
in the game has its resource requirements, i.e., if the player does
not have the resources to a specific unit it cannot be create in
that moment. Each RTS game has its own set of resources, in
Starcraft Broodwar, for example, the player must collect ore
and gas, whereas in Command & Conquer, only ore.

 Technologies and Updates - The technologies and updates
are quite common in this type of game, determining that the
player has a better chance to fight with his enemy, because the
development of such technologies will improve the player's
units. The developed technologies can improve important
characteristics of an army, such as speed of movement, attack
power, defense capability, etc.

 Fog of War - Is the lack of complete environment
visualization used in a RTS game. In strategy games this aspect
can be perceived by the darkened area of the map that despite
the fact that the terrain has been already explored, the player
does not know what occur in that region at that moment.

2.1 Resource Management in RTS

RTS games are usually won by players who destroy their
opponents first. This goal can be achieved in several ways. For
example, a player might try to rush and surprise his opponent.
In order to accomplish this, he invests resources to build an
attacking army early in the game, at the expense of investing in
buildings that are more important in later stages of the game. If
the opponent invest in technological development and does not
have a good defense at this early stage, the player who is
attacking succeeds easily. But if the defender is able to handle
the onslaught and remains alive, this could be a fatal blow to
the striker who has "wasted" his initial resources and will, from
now on, lag behind the defender. Therefore, the choice of
strategies of the players can determine the outcome of the
game. Another way to win the match would be to invest
resources in buildings, assemble large armies and develop
technology collecting as many resources as possible, so that
more investments are possible, and at a late stage in the game
engage the whole army against the enemy at once. Between the
former (rush) and the latter (patience), there are numerous
possibilities and adaptations that may occur during the game
depending on the opponent's strategy.

 As will be seen in the literature review, we found no studies
that enumerate and systematize the various problems
encountered in the management of resources in RTS. We made
an effort to produce a preliminary identification of these
problems. In order to achieve this we started by using our own
experience as players of RTS games and then we interviewed
ten experimented players. We were able to identify frequent
problems cited by them, which made us believe that these are

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 713

http://bth.se/tek/jhg.nsf/pages/273c7bbb699ba91cc1256bf80044ef09
http://bth.se/tek/jhg.nsf/pages/273c7bbb699ba91cc1256bf80044ef09
http://bth.se/tek/jhg.nsf/pages/273c7bbb699ba91cc1256bf80044ef09
http://bth.se/tek/jhg.nsf/pages/273c7bbb699ba91cc1256bf80044ef09

the most common problems involving resource management in
RTS. In what followings, we describe some problems of
resource management in RTS. The following questions were
asked to each of the players:

 What are the major challenges related to the
management of resources do you see?

 How do you see the influence of real time behavior of
this type of game on creating extra difficulties for you?

 How do you analyze the overall context of the game and
make decisions about investments and resource
management?

2.1.1 Limited resources

In a RTS game, whereas the resources are limited, in any
situation where we need to invest resources to get something
there is potential for having a problem.

2.1.2 Too many options

A player during a RTS game is faced with a myriad of
investment choices available. For instance, types of rider,
soldiers, several technologies that can be developed, buildings
that can be constructed, etc.
2.1.3 Quantities to consider

More than just evaluate and choose the investment item, the
player must decide how many items it will create at once. An
example is the following: the player at a specific time of the
game decides to create soldiers, but also needs to decide how
many soldiers it will build.

2.1.4 Options difficult to assess (multi criteria)

One aspect is quite complex: how to compare investment
options at a specific time? A priori comparison of items of the
same class seems to be easy and straightforward. But even
when these options are investment items of the same class, for
example, a soldier or a knight - both are items of combat that
have similar attack and defense values, but with different
characteristics - comparing them is a difficult task because the
current context of the game is crucial for this comparison. A
rider may be better than the soldier when you are playing
against one kind of army, but against another one a rider is
totally inefficient and a soldier would be a more interesting
choice. When it comes to compare different classes of items the
difficulty is even greater. How to compare in a specific
situation if it is best to create an airport or to develop a
technology, or even a new squad of soldiers?

2.1.5 Dependency between options

Normally the RTS game has dependencies between the items,
i.e., in order to create item A, item B should already exist. A
clear example of dependency among items that exist in most
RTS games are the deposits of units. The units cannot exist
without constructing a building first to serve as their deposit.

2.1.6 Time

Time itself is a scarce resource in a RTS game. It is an
orthogonal factor to all decisions in RTS games. The RTS game
takes place in real time and all players should accelerate their
actions so that they can build the largest empire in the shortest
time. For example, if a player is slow to make decisions at the
beginning of the game, he does not create an effective army that
can defend him and can be easily defeated by an opponent that
adopted a rush strategy.

 Evaluate and decide whether it is better to invest a specific
amount of resources in the current time or postpone the
investment for another time when it may be more appropriate is
a rather complicated task. An example to illustrate this
difficulty follows: how to decide whether it is better to invest X
now to create N infantry units or wait T turns to develop a
weapons technology that will cost X + Y?

2.1.7 Context

It is easy to see that when his empire live a peaceful moment
the best decisions are often very different from the ones in a
situation where the player's empire is being attacked by an
enemy army with a devastating force of attack. For example,
when the player is being attacked and there are no soldiers to
defend him, it is ill-advised to create workers instead of
soldiers. The context of the game is something very subjective
and it is essential in the evaluation of options and strategy
changes.

2.1.8 Combination between assessments

Throughout the game the previous problems clearly mingle and
the context changes at every moment. In a real-time
environment the time factor is orthogonal to all the problems
mentioned. When real-time is added to the problem of multiple
choice, the decision problems become even more complex,
because an item A may be better than an item B at time t0, but
may not be interesting in time t0+i which is the time in which the
investment is made.

2.1.9 Recommendations for the problem's solution

We believe that a good RTS game playing requires the
combination of activities deliberately planned and real-time
reactions to game changing conditions. The best solution for
management and investment of resources will be the one that
results in the highest game scores. It is expected that the
solution proposed by this study meets all these requirements:

 Fast – a solution to the problem of resource management
must be fast enough so that the decision making of
investments do not delay the game progress.

 Adaptable – the solution must be tunable to the constant
changes inherent in an RTS game, by adjusting it to the
current state. The suitability of the investments must
meet both the instant needs as well as the long-term
needs.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 714

 Performance – the system must meet the performance
standards for real-time games.

3 Related Work

An approach to the problem of resource management in a RTS
game is based on the concept of marginal utility, which means
in economics, the satisfaction of the consumer (Harmon, 2002).
The game units are consumable objects and the player is the
consumer. Each consumable object has a priority of the
investment according to ratio between its marginal utility and
its cost. The latter is measured by the monetary cost of the item
and its production time. The former is calculated as follows: an
utility is assigned to an objective (for instance, to build a
tower), a plan is created to achieve this objective, utilities are
assigned to each sub-objective of the plan (for instance, to
collect wood, to collect gold, to build a worker, etc.). This
approach has two main problems: (a) it is complicated to build
plans for all possible situation in a RTS game, (b) the
attribution of utilities are arbitrary. Besides that, no
experimental evaluation is presented to validate the approach.

 A large part of the research concerning resource
management is related to the concept of build-order.
Researchers Churchill and Buro define build-order as the order
in which units and structures are produced in a RTS game
(Churchill & Buro, 2011). Build-order is then related o
resource management, as it depends, among other things, on
existing resources and those that will be collected. However,
build-order is actually more restrict than resource management,
as it considers, a priori, the application of resources as static,
when a RTS game is dynamic, in the contrary. We understand
that the order in which things are created in an RTS game
should be contextualized. For instance, whether creating a
defense tower must come before creating a worker or an attack
unit depends on the game context. Working with an ordered and
fixed list of investments, no matter what is happening in the
game, may be not good enough to deal with the complexity
RTS environment.

 The study of Kovarsky and Buro (Kovarsky & Buro, 2006)
is focused on optimizing the build order in RTS games. The
research aims to optimize the collection of resources and the
creation of units and buildings in the early stages of RTS
games, which means that once optimized, the build order will
not change anymore. It considers two types of optimization
problems: minimizing the time to reach a certain goal, for
example, build two tanks and five soldiers, or maximize the
amount of resources at a specific time, i.e., maximize gold
collection in ten minutes. The approach seems interesting but
does not take into account the dynamic evolution of the context
during the game.

 The study of Churchill and Buro (Buro & Churchill, 2012)
focuses on optimizing the planning of investments, assuming
that the build order is already given (Churchill & Buro, 2011).
They try to find actions that achieve the implementation of the
build order as fast as possible. In other words, the point is not to
decide on what to invest, but how to minimize the time interval
of the investment plan. Acting fast is very important in a RTS

game due to the fact that players act asynchronously, however
this is marginal issue in resource management.

 Another study (MCCoy & Mateas, 2008) addresses the
problem of build order on an ad-hoc basis, so that the
construction of army units, technological development and
construction of buildings are made according to different
"strategies". In every moment of the game only one strategy is
enabled by starting with an opening strategy that they call
InitialStrategy responsible for the initial growth of the economy
and military production. The strategy that follows after this is
the TierStrategy which is responsible only for military growth,
building a soldier for every worker created. With an ad-hoc
strategy that is responsible for building two barracks and a
blacksmith; beyond that, two soldiers that are built for each
worker.

 We have reused some ideas and concepts from the state of
the art. We have applied Kovarsky ans Buro's idea of having a
module that decides which object to create when there is
demand for other objects or resources. Harmon's work inspired
us to borrowed concepts from real world economics to deal
with RTS resource management. From the work of MCCoy and
Mateas, we have adopted the idea of having a limited set of
strategies that, when adopted, may change the investment
priorities.

4 PICFlex: an approach to resource
management based on Contextual and
Flexible Investment Policy

The problem was so complex that we had to take a set
abstractions and reformulations so that we could make
simplifications. The number of possible states in a finite
environment, dynamic and partially observable is potentially
very large. The combination of all the variables in all states that
these results can take on a huge set of possible states make this
problem intractable by solutions based purely on exhaustive
search (Cunha & Chaimowicz, 2010). To create rules to handle
each one of the possibilities and nuances of context seem
unreasonable, because besides the dynamics of the environment
there is also the fact that it is partially observable, which brings
the uncertainty factor. Additionally, the environment can have
constraints of time - which could even be real-time constraints -
which would likely be disregarded because the amount of
possibilities that should be analyzed. So to overcome all the
problems mentioned above, and to simplify the decision making
investing module, a higher level of abstraction has proved
essential, since it is believed to enter the complex combination
of numerous variables involved makes any solution apart from
being found.

4.1 Investment policy

The central concept of our model is the investment policy,
around which other concepts are articulated, such as investment
classes, investment context, policy flexibility, investment
demand, etc.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 715

 We name as investment policy the spending pattern of
resources according to the type of demands. Formally, an
investment policy P is given by:

 ∑

where cn is the n-th investment class and tn is the reference
target for investment in the n-th investment class. In other
words, percentage values that represent spending targets for
each investment class.

 Investment Policy choice - The experienced human player
perceives the nuances of the game over the course of the match.
The general context changes: defending his empire of an
opponent's attack, attacking the enemy, or even in a peace time.
Depending on the context player adopts different strategies that
unfold in different investment policies and behaviors. For
example, targets investment in times of peace are usually
different from those when the player is under attack or
conducting attacks against enemies. Therefore it is not
recommended to have a single policy. As the environment is
dynamic, context switches and a proper investment policy at a
time may not be as proper as before. You need to choose the
best policy according to the context. in other words, have goals
for each class of investment that are consistent with current
reality. This led us to formulate the concept of investment
policy choice function, F, which is formally defined as

where P is the current investment policy, C is the current game
context and P' is the new policy chosen by F, and P' supposedly
better adapted to the new game context.
We have created two implementations of F for us to use and
test in our implementations of PICFlex. The first is called
simple (Fs) that regardless of the context always returns the
same policy, i.e., the investment policy is never changed. It can
be defined as follows:

The second implementation of F is more sophisticated and
analyzes the game context to choose a more appropriate
investment policy. This function analyzes a set of pre-existing
investment policies that have been identified as appropriate by
experts to specifics contexts. We call this function adequate
(Fa), it creates a new investment policy which adapts PICFlex
to the new reality of the game. Fa is defined below:

where P is the current investment policy, C is the context in
question, and G is a set of pre-existing policies. In practice, F
allows switching policies to adapt better to the game context.
It should be noted that it is possible to create numerous versions
of F more sophisticated than Fa function, not needing to rely
on pre-existing policies. However, for the scope of this work
and in order not to complicate without apparent necessity, we

adopt the Fa function as an alternative version of the even
simpler version, Fs.

 Context - The context of a game consists of variables that
describe its current state. We know that the context is
something very complex, but to simplify our overall
implementation we have defined only three contexts; they are:
"peacetime", "under attack" or "performing attack".

 Execution's strategy of Investment Policy - The
investment policy will set spending goals for each investment
class, but it does not say how these goals should be pursued. It
is understood that, in the long term, the adoption of the policy
will provide "balance" in spending per class according to the
proposed goals, but the process of pursuit of these goals may
not be linear. As the goal can work as a spending ceiling, there
may be complications in policy execution. For example,
suppose that the goal of spending on buildings units is 25% of
the resources, and expenditures made so far to this specific
class are 23%. If it becomes clear in the context of the game, it
would be necessary to create a new building unit that would
raise the percentage spent for this class to 27%, the player
should do or not such investment? If he follows strictly the
policy should not do it, but the player could build that unit,
because he understands the urgency and usefulness, and pay the
"overflow" of the goal in future investments, bringing the
percentage of spending on buildings to the original level of
25% as specified in the policy.

 To explain the way or whether one can pursue the goals we
have introduced the concept of implementation of the
investment policy strategy S, which is formally defined

where P is the current investment policy, D is the current
demand and H is the set of expenditures made by PICFlex
throughout the game. The S function receives a demand that
may be creating an item of army, or the development of any
technology and must authorize it or not based on H and P.
 We have created several variations of S to use in our
implementations of PICFlex. The generous function St always
allows demand to be made returning true whatever the
investment policy, demand and set of expenditures. This
strategy turns out to nullify the effects of the investment policy
chosen once given a demand, it shall be permitted regardless of
the set of expenditures or investment policy. Formally, St and is
defined by

 The second implementation of S is called accept once So
allows a demand to break the ceiling of the investment target
only one time, the second demand (which break the ceiling of
the target) will be denied until the balance of spending is
reestablished.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 716

where D1…n go beyond the target ceiling D2…n consecutive to
D1.

 The third implementation we model S is called rigid Sr and
does not allow a claim, which break the ceiling of the target of a
class of investment is met and is defined as follows

if the cost of creating D1 extrapolates the target of his class. In
practice, this strategy does not allow spending beyond the
goals.

 The fourth implementation of S we have created is called
observed growth Sg and is a little different than the previous
one so that it allows the demands that exceed the target ceiling
of a class X are met until a demand of a class Y is rejected by
extrapolating its target. Defined as follows

 For exemple:

1.

2.

3.

4.

where D1, D2, D3 and D4 are consecutive and extrapolate the
target and D1, D2, and D4 and are class X but D3 is of class Y. If
the step 3 had not happened the step 4 could return true.

 A demand for PICFlex is a need for some investment item
and is defined as

where Object is something that needs to be created, build time
is the time that the object takes to be created, cost is the price
paid to create a new Object and Class refers to the investment
type to which the object belongs.

 When demand comes an investor should consider it and
decide whether to answer or not, and for simplicity, we divide
into two types: permanent and circumstantial. A perennial
demand is the demand that happens steadily, without any
extraordinary event happens. This demand is scheduled and
when the time comes PICFlex will analyze and decide whether
it will meet it or not. To illustrate an example of a perennial

demand imagine if this case our model was applied to a mayor
of a municipality, then a perennial demand would be garbage
collection, police patrol neighborhoods or even checking the
lighting. The other type of application, the circumstantial
situations happens when the environment does not create any
scheduled necessity. Using again the example of city hall, an
example of a situational demand would be the building of a new
public school when the student population grew.

 We can also divide the circumstantial demands on internal
or external demands. Internal demands are those that arise from
the internal resource manager as the example of the school
described in the previous paragraph circumstances - in this case
the Investor is the mayor. Have external demands are caused by
some external entity. To illustrate using the town hall, an
external demand would be hiring more teachers who had been
given for the creation of a federal law - in this case the external
agent is the federal government.

 The way that comes PICFlex demand takes into account the
type of demand and its urgency. The PICFlex for some
circumstantial and urgent situation may find that an external
demand has priority over an internal, but the most common
situation is to treat the PICFlex internal demands with higher
priority than the external and treat circumstantial demands with
higher priority over perennial.

TABLE 1 PROPORTIONS

Defensive policy

Army 30%

Building 35%

Upgrade 20%

Tech 15%

4.2 PICFlex architecture

In this section we describe the module that will do the
necessary tests and finally take the decisions. To simulate the
behavior of PICFlex, we use the simulation platform game
Starcraft Broodwar provided by the company Blizzard
Entertainment which makes possible the testing of the
intelligent module.

 The process of decision making in a complex environment
involves many aspects that make the task quite complicated.
Therefore, we conducted several observations matches
experienced RTS players to identify the techniques used. The
aim was to identify aspects of the experienced player that led to
victory. We understood that if PICFlex had intelligent behavior
similar to the human player their success rate would be good.
Then, we find the frequent presence of behavioral aspects
described in detail below.

 Class proportions - we found that players obey a
proportion of investment of resources among investment
classes. Basically, it is a share of the investments can be made
in a class. A potential distribution is shown at Table 1.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 717

 Investment item - all things of RTS games that can be
created we named investment items. They are the possible
investments that PICFlex can make. When investments are
made and the items are purchased, going to be called "objects",
we can say that the investment item is a class and object is an
instance of this class. Each object has own life and behavior as
well as characteristics or properties which each of these have an
assigned value. These are items that, through their properties,
change the current state of the environment. The properties
common to investment items are:

 Cost of creation – the value in monetary resources of the
item.

 Creation time – the time it takes to create.

 Required objects – the item has a list of objects that
should exist prior to its creation be possible.

 Builder / Creator – item type that uses resources to
create the item in question.

 Role – the role that develops in the setting item.

 Basic investment item - we created the concept of basic
investment item for this study that is the most representative
item. In Starcraft, for example, for the Terran race, the Marine
was chosen as the most representative, as well as being the first
army item that can be created, it is inexpensive, and has good
attack characteristics. This item will be used as a basic
reference for a balanced growth pattern as discussed below.
 Balanced growth pattern - we found that the armies of the
players grew up in a balanced way conducted by an implicit
pattern of all players. This pattern requires that for every X
items of type A are needed Y of type B. So whenever this
amount of items is out of the pattern the PICFlex should
schedule creation of units required for pattern to be
reestablished. We chose the Terran Marine as the basic item,
thus balancing the army's growth will be based on the number
of reference Terran Marine existing.

 Trigger rules - rules that trigger investments scheduling
events according to specific situations and ultimately creates
circumstantial demands. For example, when there are few items
to store units, or insufficient, the players commonly order the
creation of more of these.

 Prerequisites - set of prerequisites must be provided so
units can be created. These prerequisites can be resources or
other units that must exist before starting their creation. The
graph obtained by listing all units prerequisites and removing
transitive edges is called the tech tree (Churchill & Buro, 2011).

 Posture - we created the concept of posture that is a set of
values assigned to the properties of the investment policy. In
technical terms we can say that an posture is an instance of an
investment policy. For simplicity, we created three basic
postures and essential PICFlex can assume that during the
game: initial, defensive and aggressive. In practice, the posture
determines the way that the PICFlex behaves in a given time of
game - may assume another policy at any time. It is the posture
that will determine the PICFlex take a more aggressive
behavior and invest in a great army in order to storm the
opponent or get more defensive strengthening their buildings

and defense units. With regard to implementation, the posture
toggles a set of attribute values of the investment policy that
define the behavior of PICFlex. In the initial posture, the
PICFlex obeys ad-hoc rules. Defensively, the PICFlex main
goal is to invest in the growth and strengthening of army
building buildings for the production of army units and
performing upgrades / techs that will strengthen such units and
buildings. In aggressive, the goal is to increase the power of the
army increased in numbers and firepower.

5 Evaluation

We have implemented various investment policy variations,
going from the simplest to the more sophisticated ones. Then
we have compared them using the StarCraft Broodwar
simulation platform. This section presents these
implementations, the platform and the obtained results.

5.1 The six implementations PICFlex

To evaluate the techniques studied and developed by ourselves,
we create six incremental implementations PICFlex. The
implementations were called "Player 1" to "Player 6" and will
be described below in detail.

 Player 1 (random player) - The first implementations
PICFlex is completely random and their behavior with respect
to resource management is impossible to predict. There is not
investment policy in its behavior nor concept of balanced
growth pattern neither concept of class proportions. Also there
is not the routine that schedules army's growth investing in
basic item. Like all implementations will be described, the
player begins his first game with an open strategy that is
enough to not be defeated in the match early in the game.
Hence forth, this player starts to make decisions on resource
management at random and without any control.

 Player 2 (investment policy random player) - The second
player was created in order to evaluate our concept of
investment policy. The Player 2 is a modification of Player 1,
described in the previous section, but has army's growing
routine based on the basic investment item - a routine that every
X turns creates a basic item; investment policy – has investment
policy, but it is randomly set at the beginning of the game and
immutable; balanced growth pattern – there is, however
random.

 Player 3 (investment policy fixed player) - The Player 3 is
a change from Player 2 made to evaluate the concept of
investment policy, but this time with the values of the attributes
of the policy chosen by experts.

 Player 4 (balanced growth player) - The fourth player we
created is identical to Player 3, but with the change in the
army's pattern of growth was defined by experts.

 Player 5 (toggled policy by postures player) - The only
difference between the Player 5 and above is the fact that for
Player 4 investment policy is fixed, so their behavior is the
same for any game situation. However, for Player 5 policy

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 718

changes during the match (by changing posture) and thus this
player assumes behaviors appropriate to the different contexts
of the game.

 Player 6 (flexible policy player) - The player of this
section is again equal to the previous player, but with the
difference that the proportions of investment classes are
flexible.

 Player 6 in details - This section aims to describe how
PICFlex, in its most complete form, behaves - the Player 6 is
the implementation of PICFlex that aggregates all the concepts
mentioned in the previous sections.

 In this paper we treat the RTS game in which empery begins
with a few units and resources available in its economy – often
just enough to build a few workers. Then, once the game begins
the initial posture is assigned ant toggles the policy's attributes.
The initial posture creates trigger rules for construction of
essential units at the beginning of the game, for example, the
construction of a Barracks a Academy, twenty Marine and six
Medics. These investments are scheduled because the opponent
used to evaluate the solution attacks the empire coordinated by
our player early in the game. If these investments are not made
in an ad-hoc way, there will not be time enough for PICFlex
identify the need and then it lose the game most of the times.

 When the empire player reaches a level of maturity specific
set of ad-hoc manner, the PICFlex assume defensive posture.
The defensive aims of strengthening the empire as a whole
inducing PICFlex choose to create multiple buildings, train
army units and develop a tech tree. Investments in buildings
and army classes are covered with proportions (at this time)
slightly larger, as is the vast majority of possible investments in
RTS games and therefore require more resources especially at
this moment when the army needs to grow quickly.

 One aspect that was incorporated Player 6 for a balanced
growth pattern that governs the growth of the army with the
types of units that will be created and the amount of each type.
But in order to the army to grow there must be a rule that fires a
basic investment item creation trigger for every X turns. Several
simulations were performed to find the best configuration of
proportions between the items.

 The game follows and investment items are allocated and
investments are made. The empire grows and as it grows some
criteria are analyzed in the current environment to the change of
posture. The rule that triggers the change of current posture –
that is defensive to aggressive posture – is based on criteria ad-
hoc. So PICFlex that could invest in technology, buildings, and
now an army can then invest heavily in increasing the attacking
army is already created so strengthened - by technology
developed previously - and grow more rapidly by buildings
constructed.

 To determine the time to attack the opponent we defined a
simple rule - because this analysis is very complex and it is not
the focus of this study. Basically checks if the ratio of the
number of units of the attack squad with the number of all units

of the army is greater than 50%. Thus, the PICFlex realizes the
right moment to attack the enemy and, in addition, aggressive
posture is assigned to it (if not already in this position), which is
the most appropriate approach for moments of attacking the
enemy.

 When PICFlex takes aggressive posture that will have more
resources to invest in the army – in proportional terms, because
as has been said, the posture toggles a set of variables and
among which are the class proportions. For example, when the
posture taken by PICFlex is aggressive, the investment class
army will have more investment quota than all other classes
(building, tech/upgrade), which will allow larger amounts of
resources to be spent in this class.

5.2 The simulation platform

In order to deploy the solution and run the tests on digital
computers we needed a platform that would make it possible to
create AI modules and tests for the analysis of the results. The
BWAPI 3.7.2

2
 (BroodWar API) is a framework for C++ open

source that made possible the creation of artificial intelligence
modules for Starcraft Broodwar. Using BWAPI, developers can
get information about the players and the individual units of
Starcraft as well as issue a variety of commands to units,
opening the door for AIs with custom algorithms. This API has
been used to study aspects of AI RTS games (Buro &
Churchill, 2012).

 So in order to test our intelligent module, we needed to
build a bot so it could play a lot of matches of Starcraft without
human interference and collect the results at the end of the
matches. We decided to use the bot of a researcher in the field
of Artificial Intelligence in RTS games, the BTHAI

3
, Ph.D.

Johan Hagelbäck.

5.3 Results

We made experiments on our implementations PICFlex to
whether the techniques used or not improve the performance of
the task of managing resources. We put our players one by one
to fight native AI game of Starcraft Broodwar and collect data
from 150 matches for each player. The data collected were
scores of our implementations of PICFlex and native IA
opponent's score.

TABLE 2 RESULTS

PICFlex Success rate Dif. Score Mean Dif. Score Std. Dev.

Player 1 15.33% -1851.92 14536.95

Player 2 2.67% -1863.62 6469.54

Player 3 20.67% 1839.42 12918.82

Player 4 25.33% 2389.47 21559.54

Player 5 26.67% 7062.02 14640.15

Player 6 42.00% 10801.01 17343.73

Players comparison. Dif. Score Mean is the mean of the difference between the player’s score and the
enemy’s score; Dif. Score Std. Dev is the standard deviation of score’s difference.

2 API C++ StarCraft BroodWar Interface (BWAPI) can be found at

http://code.google.com/p/bwapi

3
 Information about BTHAI can be found at http://code.google.com/p/bthai

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 719

The Table 2 shows the comparison between players. There are
information of samples that were collected for each player as
their number of wins and losses. Success rate which is the
percentage of victories compared to the number of samples.
Average score difference where the difference in score is the
score of the player subtracted from the opponent's score. And
finally, the standard deviation calculated for the difference in
score. You can see that the Player 6 has the best success rate
which is 42% of matches won.

 We run tests of normality and we concluded that our data
had not normal distribution, so it wasn’t possible to run the
Student's t-Test for hypothesis testing, so we decided for using
the Wilcoxon signed-rank test.

5.4 Analysis of the results

The Player 1 is completely random and it has no investment
policy. This player plays unpredictably, but with a open
strategy. What we realized is that this player is very innocent
and it is easily defeated by the opponent; it does not make any
reasoning about the context or plan of attack or defense.

 The first of the players has a success rate of 15.33%,
winning 23 matches. We realize that the open strategy was what
determined that this player could beat that rate, since it does not
even have a routine growth of military or any other planning
that gauge context data to act in response. After opening
strategy the player realized investments randomly which in
15.33% of the time it took the victory we understand as being
fortuity.

TABLE 3 HYPOTESIS TESTS

Name Alt. H. Name Null H. p-value (α = 0.05) rejected

HA1 P2 > P1 HN1 P2 = P1 0.0004065 HN1

HA2 P3 > P2 HN2 P3 = P2 0.9698 -

HA3 P3 > P1 HN3 P3 = P1 0,001898 HN3

HA4 P4 > P3 HN4 P4 = P3 0.4412 -

HA5 P4 > P2 HN5 P4 = P2 0,6311 -

HA6 P4 > P1 HN6 P4 = P1 0,01789 HN6

HA7 P5 > P4 HN7 P5 = P4 0.003252 HN7

HA8 P5 > P3 HN8 P5 = P3 5,53 * 10-5 HN8

HA9 P5 > P2 HN9 P5 = P2 3,81 * 10-8 HN9

HA10 P5 > P1 HN10 P5 = P1 6,331 * 10-10 HN10

HA11 P6 > P5 HN11 P6 = P5 0.01637 HN11

HA12 P6 > P4 HN12 P6 = P4 7,888 * 10-5 HN12

HA13 P6 > P3 HN13 P6 = P3 3,737 * 10-7 HN13

HA14 P6 > P2 HN14 P6 = P2 1,415 * 10-12 HN14

HA15 P6 > P1 HN15 P6 = P1 1,152 * 10-11 HN15

To understand the Table 3: Being P1 the score of Player 1 and P2 Player 2's score, we have established
the following hypothesis: Alternative Hypothesis HA1: P2> P1 and HN1 and Null Hypothesis: P2 = P1.
We ran the wilcox-Test with α = 0.05 to the results were p-value = 0.0004065 which means that the null
hypothesis HN1 can be rejected.

 Player 2 added in the investment policy, but the policy is
random. A random routine defines the attribute values of the
investment policy, and from there these values are no longer
adapted regardless of what happens during the game. The
player also has the balanced growth by a pattern, but the pattern
was such assignment taken at random, that is, the pattern was
set at the start of the game randomly, once defined the pattern
was not changed over, which had allowed the growth of their

army so predictable. The Player 2 obtained a success rate of
only 2.67% winning 4 matches which resulted in a rate worse
than Player 1. We observed that the investment policy was the
cause of this win rate worse than Player 1, because the
investment policy exists and that player is chosen at random,
what ends up waging investments that were demanded by the
context. For example, the army required a Barracks, however, if
the policy of investment in buildings prevent more spending,
the army could not grow and the players ended up being
defeated. The chosen policy can prevent an investment if the
share of investment in a given class has already been attained.
However, the hypothesis tests indicates that Player 2 is superior
to Player 1 as the null HN1 (P1 = P2) can be rejected.

 To the Player 3 expert human players were who have
assigned values to the investment policy which caused the
player had a success rate much higher than that of Player 2.
This player won 31 matches and got a rate of 20.67%. The
Player 3 also had more success than Player 1 which indicates
that the investment policy or for a balanced growth pattern
(although this random player) were the cause in the
improvement of the results. Despite the number of victories of
Player 3 is superior to Player 2, the hypothesis tests doesn’t
show this superiority once the null hypothesis HN2 cannot be
rejected.

 To Player 4 experts assigned values to the patterns that
defines the balanced growth and this player was even better
than his previous. It achieved a win rate of 25.33% winning 38
matches. We understand from the data that defines the growth
pattern is what made this player have better results than the
Player 3. However, even the number of wins Player 4 being
higher than the Player 3’s wins, nothing can be said about this
relationship because HN4 hypothesis cannot be rejected.

 The Player 5 obtained a success rate very close to its
predecessor, got 26.67% winning 40 matches. We believe that
only the switching of postures according to the context was not
sufficient to reasonably increase the results in relation to Player
4. However the null hypothesis Hn7 can be rejected which
confirms the superiority of the Player 5 over the Player 4.

 The sixth player is the most complete of all the players and
got the best results when compared to others winning 63
matches with a 42.00% rate of success. The investment policy
of that player besides switched according to the context, is
flexible. We believe that the automatic adjustments that are
made in the investment policy that players were the cause of its
success, once, for example, when there was demand for some
investment that the policy did not accepted, rather than deny the
policy investment, the PICFlex fit the needs. Definitely Player 6
is the most superior of agents and the null hypothesis Hn11 is
rejected.

 As imagined, the concepts that we insert our players, as
balanced growth pattern and investment policy improved the
results obtained with the exception of Player 2 that got the
worst success rate. As we have previously clarified, we believe
that the failure of that player is due to the fact that the policy
was chosen completely at random and was not adjustable, and it

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 720

ended up preventing major investments to be made because the
policy was poorly chosen (randomly). The Player 3 has
achieved better results than the previous ones because the
policy is assigned by experts human players. The Player 4
Player 5 and had success rates very close which leads us to
believe that only the switching of postures was not sufficient to
significantly improve the results. The best success rate was
obtained by Player 6 which has in itself all the concepts
mentioned in this paper. We believe the most significant
success of the latter player is due to the fact that its policy
besides being switched (according to the context of the game) is
flexible which gives more freedom to investments.

6 Conclusions and future work

In this paper we have presented an original artificial
intelligence approach focusing on problem performing resource
management in complex environments. For the sake of
simulation and adherence to our scope we chose RTS games to
test our approach. For this purpose, we explored the concept of
investment policy, which was progressively improved to be
context-sensitive and flexible.

 We have showed that our investment policy approach
brought positive results especially when we added to the policy
contextualization and flexibility. Our simulations have
demonstrated that PICFlex, our most complete model, has the
potential to be implemented for resource management in
commercial games.

 The BOT we use as test platform presented tactical issues
that could not be solved because the scope of our research was
on resource management only. Beyond the limitations of BOT
we use, the actual API available for testing BWAPI has several
limitations and bugs still to be fixed, which made it more
difficult our simulations and data collection and created a
limitation in our experiment. For these reasons, we intent to
make some improvements on the BOT since we believe that,
once solved the tactical issues, several opportunities to improve
the strategy will be possible. Another study we believe could be
really interesting is the adaptation of PICFlex to other complex
environments rather than RTS games, such as the decision
support systems.

REFERENCES

Buro, M. (2003). Real-time strategy gaines: a new AI research
challenge. Proceedings of the 18th international joint
conference on Artificial intelligence, (pp. 1534-1535).

Buro, M., & Churchill, D. (2012). Real-Time Strategy Game
Competitions. AI Magazine .

Churchill, D., & Buro, M. (2011). Build order optimization in
starcraft. Proceedings of AIIDE , 14-19.

Cunha, R., & Chaimowicz, L. (2010). Um sistema de apoio ao
jogador para jogos de Estratégia em Tempo Real.

Harmon, V. (2002). An economic goal approach to Goal-
directed reasoning in an RTS. Ai Game Programming Wisdom ,
402.

Holte, R. C., & Choueiry, B. Y. (2003). Abstraction and
reformulation in artificial intelligence. Philosophical
Transactions of the Royal Society of London. Series B:
Biological Sciences , 1197-1204.

Kovarsky, A., & Buro, M. (2006). A first look at build-order
optimization in real-time strategy games. Proceedings of the
GameOn Conference, (pp. 18-22).

MCCoy, J., & Mateas, M. (2008). An Integrated Agent for
Playing Real-Time Strategy Games. Association for the
Advancement of Artificial .

Polya, G. (1945). How to solve it: A new aspect of
mathematical method.

Resource Management. (11 de 07 de 2013). Fonte: Business
Dictionary:
http://www.businessdictionary.com/definition/resource-
management.html

Ries, E. (2011). The Lean Startup: How Today's Entrepreneurs
Use Continuous Innovation to Create Radically Successful
Businesses.

Russell, S. J., & Norvig, P. Artificial intelligence: a modern
approach (Vol. 74). Prentice hall Englewood Cliffs.

Weber, B. G., Mateas, M., & Jhala, A. (2010). Applying goal-
driven autonomy to StarCraft. Proceedings of the Sixth
Conference on Artificial Intelligence and Interactive Digital
Entertainment.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 721

