
An architecture for real time crowd simulation using multiple GPUs
Mark Joselli

Pontifı́cia Universidade Católica do Paraná
PUC-PR

José Ricardo da S. Junior and Esteban Clua
Media Lab

Universidade Federal Fluminense

Figure 1: Real time crowd simulation

Abstract

Computing and presenting crowd simulation in real-time requires
an intensive processing effort, since it is necessary processing the
behavior and render of each entity. The advent of GPU comput-
ing has enabled the development of many strategies for accelerat-
ing these simulations. In this paper we propose an architecture for
multiples GPUs for crowd simulation, that allows a massive num-
ber of entities to be processed and rendered in real time. Also, we
implement a representative case-study based on the behavior of a
crowd during the street carnival from Rio de Janeiro from which
we run benchmarks and compare the benefits achieved using more
the presented architecture.

Keywords:: CUDA, GPU Computing, Crowd Simulation, Flock-
ing Boids, Multi GPU

Author’s Contact:

mark.joselli@pucpr.br
{jricardo, esteban}@ic.uff.br

1 Introduction

Realism in video-games is not only a matter of perfect graphics, but
also includes the search for real behaviors and physics [Joselli et al.
2012a]. In a typical natural environments it is common to find a
huge number of entities, such as plants, dynamic particles, animals
and even people. It is also the case for other densely populated
systems that appear in games like sport arenas, soldiers in a battle
and people wandering in a city. Recently, it is being common for
games to be set in open worlds, requiring the simulation of a living
organisms in order for them to be as more immersive as possible.
Games that need to present any of these systems usually have a
very limited number of independent entities, mostly of them having
a predictable behavior to allow its processing in real time.

Crowd simulation are becoming frequent on computer games, like
Gran Theft Auto V [Rockstar 2013], and digital films, such as The
Lord of the Rings [Aitken et al. 2004] trilogy. Typical examples
of crowd simulation usage are in the simulation of the behavior of
herbs of animals [Reynolds 1987a], people walking on the street
[van den Berg et al. 2008], soldiers fighting in a battle [Jin et al.
2007] and spectators watching a performance [nVidia 2008].

In order to achieve a real immersion, the behavior must mimic the
one observed in a real crowd, achieving also a real time frame rates.

Obtaining such results requires dealing with processing steering,
interaction and behavior of entities between different objects. Ad-
ditionally, the rendering process requires drawing a huge number of
entities, consuming even more computation time. Many approaches
employed for performing crowd simulation are very simple, capa-
ble of dealing only with fewer entities for video-games, since the
crowd simulation is only one of the many tasks that must be han-
dled during a complete simulation.

Processing and rendering large scale crowds in real time demands
a lot of processing power. PC clusters can be used as an alternative
to alleviate this processing. Unfortunately the communication effi-
ciency and maintainability of this solution becomes the bottleneck.
In contrast, modern GPUs are accessible by a wide range of peo-
ple and have a high processing power in relation to CPU. GPU is
now a low-cost ultra-large-scale parallel computing platform that is
being used by a wide broad of different kinds of simulations, such
as weather forecast [Michalakes and Vachharajani 2008], chemistry
[Ufimtsev and Martinez 2008] and behavioral AI algorithms [Joselli
et al. 2009d].

The first applications of GPUs performing general-purpose compu-
tation (GPGPU) had to rely on the adaptation of graphics rendering
APIs, leading to a difficult learning curve and sometimes not very
efficient data structures for the proposed solutions. CUDA [nVidia
2009] and OpenCL [Group 2009] technologies aim to provide a
new abstraction layer on top of graphics hardware to facilitate its
usage for non-graphics processing. Real-time simulation that ex-
plores this programming model on the GPU is a promising line of
research, since it can speedup the high cost computation solution of
the behavior simulation.

GPUs are a collection of SIMD processors designed to run streamed
graphics pipelines. It is a computational model where the process-
ing of each pixel is independent of the others and usually requires
localized memory reads. There are rules of thumb to create effi-
cient streamed applications, where, the most important one is to
organize the data streams in a way that maximizes the memory read
performance based on locality. These rules tend to result in more
efficient usage of available memory and read ahead mechanisms of
these devices.

Nowadays, it is being common to have systems with more than one
GPU, being it for solving general purpose problems [Kim et al.
2011; Pharr and Fernando 2005] or used for improvement in ren-
dering processing, such as the Scalable Link Interface (SLI) [nVidia
1998] introduced by NVidia. However, for the former, tasks such
as the responsible to distribute the workload across multiple GPUs,
manage the data exchange between the main memory and these de-

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 695

vices, and guaranteeing consistency between the multiple copies of
data is enrolled to developers, making development for these archi-
tectures more difficult to build.

In this paper we present an architecture for crowd simulation using
multiple GPUs in the same machine or located on a cluster of GPUs,
allowing more realistic crowd simulation in the scene. Additionally,
this architecture can use the number of GPUs available during the
simulation. As far as the authors of this work knows, this is the first
real time crowd simulation to use this kind of architecture. Besides
that, we also present a simulation that is part of a game (based on the
boids emergent behavior) to verify the performance of the proposed
architecture.

The remainder of this paper is organized as follows. After refer-
ring to related crowd simulation works, in Section 2, we describe
the crowd simulation and the Neighborhood grid acceleration struc-
ture employed in this work in Section 3. Detailed computation per-
formed for our crowd simulation is presented in Section 4. Next we
evaluate our architecture using a test case in Section 5 and present
the results in Section 6. Finally, in Section 7 we present the conclu-
sions of the paper.

2 Related Work

The first known agent-based simulation for groups of interacting
animals is the work proposed by Craig Reynolds [Reynolds 1987a],
in which he presented a distributed behavioral model to perform this
task. His model is similar to a particle system where each individual
is independently simulated and acts accordantly to its observation
of the environment, including physical rules such as gravity and
influences of other individuals perceived in the surroundings. The
main drawback of the proposed approach is the O(n2) complexity
of the traversal algorithm needed to perform the proximity tests for
each pair of individuals. This was such an issue at the time since
the simulation had to be run as an offline batch process, even for a
limited number of individuals. In order to cope with this limitation,
the author suggested the use of spatial hashing. This work also
introduced the term boid (abbreviation for birdoid) that has been
used to designate generic simulated flocking creatures ever since.

Musse and Thalmman [Musse and Thalmann 1997] propose a
more complex modeling of human motion based on internal goal-
oriented parameters and the group interactions that emerge from
the simulation, taking into account sociological aspects of human
relations. Others include psychological effects [Pelechano et al.
2007], social forces [Cordeiro et al. 2005] or even knowledge and
learning aspects [Funge et al. 1999]. Shao and Terzopoulos [Shao
and Terzopoulos 2005] extend the latter including path planning
and visibility for pedestrians. It is important to mention that these
proposals are mainly focused on the correctness aspects of behavior
modeling. The data structures and algorithms used by these works
are not suitable for real-time simulation of very large crowds, which
is one of the goals of this work.

Reynolds further enhanced his behavioral model to include more
complex rules and to achieve the desired interactive performance by
the use of spatial hashing [Reynolds 2000; Reynolds 1999]. This
implementation could simulate up to 280 boids at 60 frames per
second (fps) in a Playstation 2 hardware. Also the work by Silva
et al. [Silva et al. 2008] implement a similar work, but it focus
on the optimization of the algorithm by doing occlusion based on
the vision of the boids. By using the spatial hash to classify the
boids into a grid, the proximity query algorithm could be performed
against a reduced number of pairs. For each boid, only those inside
the same grid cell and at adjacent ones, depending on its position,
were considered.

Because crowd simulation process each individual separately, they
are very good for parallel processing. Quinn et al. [Quinn et al.
2003] used distributed multiprocessors to simulate evacuation sce-
narios up to 10,000 individuals at 45 fps on a cluster connected
by a gigabit switch. More recently, a similar spatial hashing data-
structure was used by Reynolds [Reynolds 2006] to render up to
15,000 boids in Playstation 3 hardware at interactive framerates,
but with a reduced simulation frame rate of around 10 fps. Due

to the distributed memory of both architectures, it is necessary to
copy compact versions of the buckets/cells of boids to the individ-
ual parallel processors before the simulation step could run, copy-
ing them back at the end of it to perform the rendering, which leads
to a potential performance bottleneck for larger sets of boids. This
issue is evidenced in [Steed and Abou-Haidar 2003], where the au-
thors span the crowd simulation over several network servers and
conclude that moving individuals between servers is an expensive
operation.

There are also important works that adapted the crowd simulation
to the GPGPU architecture. Chiara et al. [Chiara et al. 2004] show
a boids implementation on the GPU with the spatial hashing phase
on the CPU. This work also implements some physical behavior
with obstacle avoidance similar to the one by Reynolds [Reynolds
2006]. The work of Courty and Musse [Courty and Musse 2005]
also presents a mix of GPU-CPU execution to simulate the behav-
ior of a crowd with the influence of gaseous phenomena. This
work uses force fields pre computed on the CPU to avoid colli-
sions among the individuals on the crowd and the scenario (walls
and obstacles). A more recent work in the GPGPU field present by
Shopf et. al. [Shopf et al. 2008], which introduces an implemen-
tation that runs entirely on the GPU and can simulate and render
3,000 high detailed animated models or 65,000 simple primitives at
real-time frame rates. Also this last work also make collision avoid-
ance with a similar approach as the continuum crowds [Treuille
et al. 2006]. Another available works is [Passos et al. 2008; Pas-
sos et al. 2010; Joselli et al. 2009d; Joselli et al. 2009; Joselli et al.
2012b] where it presents another data structure based on the Ex-
tended Moore Neighborhood in the Cellular Automata theory in-
stead of the traditional spatial hashing which can simulate and ren-
der up to 1,000,000 simple primitives with interactive frame rates.
Even though this data structure seems promising, it does not appear
to be precise enough for collision detection. There are a lot of oth-
ers work on crowd simulation available on the literature, but most
of them does collision avoidance approach, like [Sud et al. 2007;
Kwon et al. 2008; Shao and Terzopoulos 2005; van den Berg et al.
2008], instead of a collision detection and response.

That are many works that deals with particle simulation using mul-
tiples GPUs. Fluid simulation using multiple GPUs are done by Da
Silva et al. [Junior et al. 2012] using Smoothed Particle Hydrody-
namics. Besides that, Ramada et al. [Hamada and Nitadori 2010]
uses a cluster of GPUs connected in a network for performing as-
trophysical N-Body gravitational simulation. Unfortunately, it is
inexistent crowd behavior that deals with the use of multiple GPUs.

The management of a the GPU architecture can be hard and there
has been some works that deals exclusive with this management.
The work by Joselli et al [Joselli et al. 2010a; Joselli et al. 2010b]
presents an architecture for game loops is able to implement any
game loop model and distribute tasks between the CPU and the
GPU. Also, the work by Zamith et al. [Zamith et al. 2011] presents
a game task that can be divided among several computers on the
same network, using the available CPUs and GPUs. These works
do not seen capable of managing diving the jobs, when there is
multiples GPUs on the same computer.

There are also some works that deals with GPUs in a cluster en-
vironment. Fan et. al. [Fan et al. 2004] proposed an architecture
of a GPU cluster and demonstrate it feasibility by a flow simula-
tion using the Boltzmann model with 30 GPUs. Abdelkhalek et.
al. [Abdelkhalek et al. 2009] designed a parallel simulator in order
to solve the acoustic wave equation on a GPU cluster, using a fi-
nite difference approach with up to 8 GPUs. Doost et. al. [Doost
et al. 2012] also uses an multi-GPU architecture to solve a acostic
wave simulation in cluster of GPUs. Hartley et. al [Hartley et al.
2008] use a cluster of collaborate GPUs and CPUs in order to ana-
lyze biomedical images. These works are important, since they deal
with the management of jobs in a multi-GPU ambient, but they are
hard to implement in a real-time simulation, that has to deal with
the visualization of the scene and also have a minimum response
time, which is our case with a crowd simulation.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 696

3 Crowd simulation

In a crowd, each entity has a particular vision in order to correct
move and interact with the environment. To mimic this fact, our en-
tities have a limited field of view, parameterized by an angle. Obsta-
cles and other entities outside this field of view are not considered
in the simulation. Figure 2 shows a comprehensible representation
of this field of view.

Visible Area

Invisible Area

Figure 2: The visual field of a entity

For situations where two entities are very close to each other up to
collide, a special case is triggered. In this situation, an entity takes
into account neighbors even if they are outside of the their field of
view. If collisions where allowed to happen, the simulation could
become unstable since neighbor entity coming from behind would
suddenly appear in front of another. It is possible to think of this as
a collision detection for a prevention system, having the same effect
as a movement made by animals that, even not seeing each other,
would have gotten into a sudden contact.

As stated before, performing the referred processing has complexity
of O(n2) for a collection of n entities using a brute force method,
leading to an expensive operation, even for a small set of them. In
order to avoid this time complexity, we employs an acceleration
structure based on hash tables [Harris 2005] for locating nearby
entities, which also allows the usage of an unbounded world. This
acceleration structure requires a predefined number of slots, called
bucket. Each of these buckets has two variables, indicating the
starting and ending offset in the array containing the index for a
entity, as shown in Figure 3 for an eight bucket hash grid. A bucket
that does not have any entity is set with a special flag, to avoid its
wrong computation during simulation.

Before the hash table processing, a preliminary operation produces
a hash key for each entity by using the absolute position of the
entity through the use of the algorithm proposed by Teschner et al.
[Teschner et al. 2003]. This algorithm receives p1, p2 and p3, which
are the greatest prime number used to minimize hash key conflicts
(chosen in our tests as 73856093, 19349663 and 83492791, respec-
tively). It also receives the parameter cell size, that represents the
imaginary grid’s cell size.

Following the original algorithm, the same hash key is produced for
entities that are located at symmetrical positions in the world, caus-
ing unnecessary data processing. In order to avoid this observed
problem, we introduced a new parameter in the proposed algorithm
named world limits. It is included in the hash key generation for-
mula and represents the world’s bounding box, calculated at each
time step. The algorithm with our modifications is presented in Al-
gorithm 1.

Following, after each entities’ hash key calculation, it is necessary
to sort these entities based on its calculated hash key. This opera-
tion is done in GPU by using the radix sort algorithm [Huang et al.

Figure 3: Process of generating an acceleration data structure
based on a hash table.

Algorithm 1: Algorithm for hash key genenation.
Input: float3 pos, float3 cell size, int num buckets, float3

world limits
Output: unsigned int hash code
int x← (int) ((pos.x + world limits.x) / cell size.x);
int y← (int) ((pos.y + world limits.y) / cell size.y);
int z← (int) ((pos.z + world limits.z) / cell size.z);
hash code← ((x * p1) xor (y * p2) xor (z * p3)) mod
num buckets;

2009], presented in CUDPP library 1. This way, using a imaginary
cell size equals the vision radius Kr , only 27 buckets are processed
during entities’ processing (three grid cells in each dimension).

4 Multiples GPUs architecture

Processing entity neighbor requires knowing which cells are close
to a entity being processed in order to steer and avoid collision. This
fact leads to a dependency between them, as presented in Figure 4.

The first strategy to allows more than one GPU to process entities
is to split up the domain among the available GPUs, being entities
located in the border processed differently from the ones located
inside the grid. In this case, entities that are not in the edge of
the grid can be processed normally, as all its dependency data is
available on the same GPU. On the other hand, entities that are
located in the edge cannot be processed, as half of its dependency
data are located in another GPU’s memory. Figure 5 shows this
technique for 2 GPUs in a host. For the cases where GPUs are
distributed over nodes in a network, this data can be transferred
using NVidia GPU Compute Direct with CUDA language [nVidia
2009], which enables peer GPU to GPU memory communication
over a network. For local GPUs, this data can be shared using Per
to Per (P2P) communication, which enables a single view of the
whole GPU’s memory in the host.

Processing entities using a set of GPUs located at independent
nodes in a network is done by a collection of ordered tasks, accord-
ing to Algorithm 2. In order to avoid the complexity of the code
for minor performance, in a first attempt, only behavior tasks that
requires more computational effort are distributed among various
GPUs.

1Available at http://gpgpu.org/developer/cudpp

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 697

Figure 4: Entities’ data dependency located in different cells.

Figure 5: Simulation domain distributed over 2 GPUs. Entities lo-
cated at yellow cells need to be transferred between them before its
computation, while entities at blue cells can be processed indepen-
dently.

As can be seen in Algorithm 2, the first task that needs to be done
is called entities’ structuring. Mainly this task calculates a hash
code for each entity in order to group them in the same cell. This
task is performed by only one GPU, as concurrency data writing is
needed. It is important to state that this task is not an intrinsic part
of crowd simulation, used here only to avoid de O(n2) complexity.
Additionally, beside this task, all subsequent computations are done
in parallel by available GPUs.

For all subsequent tasks, processing entities requires data access to
all neighborhood entities inside the kernel radius, such as position,
type and velocity. To allow data sharing, they are done by a collec-
tion of synchronized steps, according to Figure 6.

In the first step, after entity have been grouped, the main GPU,
which stores all the entities in the simulation, starts to divide,
equally, all of them among the available GPUs and starts sending
their respective data for processing. As long as all GPUs receives
its data, immediately it starts a kernel to perform the calculation of
all the behavior. During this calculation, it is important to notice
that only entities that are not in the grid’s edge can be processed, as
data in the grid’s edge are not yet available. In parallel, each GPU
in the node starts sending entities located at its edge to it’s neigh-
borhood GPU. This information is made available for each GPU by
the master GPU, the ones who manages all tasks performed by each
GPU.

After the end of the previous step, each GPU is responsible to check
if all required information is available. In this case, after finishing
the previous step, each GPU starts the second step. In this second
step, entities located in the edges are processed, using the same
tasks that were performed in the entities in the previous step.

Finally, in the integration task, new velocities and position are cal-
culated for all entities and sent back to master GPU. It is important

Algorithm 2: Algorithm describing the high level steps during the
simulation for various GPUs.
Input: entities, num gpus
entities structuring(GPU master);
synchronize();
amount entities per gpu = entities / num gpus;
for availabe GPU do

share-data(edge-position-entities);
calculate-behavior-forces(inner-entities);

end
synchronize();
for availabe GPU do

calculate-behavior-forces(edge-entities);
integrate(inner-entities);
share-data(edge-density-entities);

end
synchronize();
for availabe GPU do

integrate(edge-entities);
share-data(all-entities-positions);

end
synchronize();

to notice that, absent for the integration task, all the other one do not
need to synchronize, allowing the GPU to stay busy all the time.

In the first version, our approach are able to deal with GPUs lo-
cated on the same machine, using the P2P communication among
the GPUs. Even with this restriction, our architecture leads to a bet-
ter speedup, as communication with CPU memory is avoided. For
future versions, we will allows crowd simulation to be performed
over various GPUs located in different hosts over the network.

5 Evaluation

For the purpose of this work, we have choose to validate the pro-
posed technique by implementing a behavior algorithm based on a
well-known flocking boids algorithm [Reynolds 1987b]. This al-
gorithm is able to provides good visual results, near to real world
behavior observation of huge groups of animals and people. As
a test scenario, the street Carnival of Rio de Janeiro is simulated,
which in the real word can have over a million of people in some
cases. This simulation is going to be used as part of a game called
Máquina do Carnaval to be release soon .

The proposed model simulates a crowd of people interacting with
each other and avoiding random obstacles in the space. In real
life, people normally tend to form groups, which are typically
their friends and colleagues. They also try to follow the ”Carni-
val block”, which is the name of the group that organizes the party,
giving direction to the crowd and playing the music. In our simula-
tion, both characteristics can be observed.

In order to achieve a believable simulation, our approach try to
mimic what is observable in the Carnival: many crowd behaviors
resemble state machines and cellular automata, where a combina-
tion of internal and external factors define which actions are be-
ing taken and how they are made. A state machine is employed to
decide which actions are going to be taken, which are performed
themselves by a cellular automaton algorithm. In this proposal, in-
ternal state is represented by the entity type and external ones cor-
responds to the visible neighbors, depending from where the entity
is looking at (direction), and their relative distances.

Based on these ideas, the simulation algorithm uses internal and
external states to compute these influences for each entity: group-
ing (some people tend to form groups of friends); repulsion (people
tend to stay away from others by a variable distance); leader follow-
ing (most people follows their leader, represented by the ”Carnival
block”); avoid obstacle (the crowd avoid obstacles in their path);
avoid all (people who tries to avoid all the obstacles and also the
”Carnival block” which can happen in situations where she/he does
not belong to the party or wants to leave the event). Additionally,
there are multiplier factors which dictate how each influence type

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 698

http://www.maquinadocarnaval.com.br
http://www.maquinadocarnaval.com.br

For	 each	 GPU	 	
in	 the	 Grid	

For	 each	 GPU	 	
in	 the	 Grid	

For	 each	 GPU	 	
in	 the	 Grid	

En##es	
Structuring	 	

Synchronize	

Calculate	
Behavior	

Forces	 (inner	
en##es)	

Share	 Grid	
Edge	 Data	

Synchronize	

Synchronize	

Share	 Inner	
En##es	 Data	

Calculate	
Behavior	

Forces	 (edger	
en##es)	

Inner	 En##es	
Integra#on	

Share	 Final	
En##es	 Data	

Edge	 Par#cle	
Integra#on	

Figure 6: Crowd simulation’s tasks distribution over our multi GPU architecture.

may get blended to another, applied in each step. In order to enable
a richer simulation, these factors are stored independently for each
type of entity and entity group in separate arrays.

This scenario was implemented using CUDA technology [nVidia
2009]. The loop of the proposed architecture will process the fol-
lowing simulations steps/methods:

• Get the user’s input, sending it to the GPU;

• Make a spatial hash on the individuals, i.e, a broad phase of
the collision detection;

• Calculate the narrow phase of the collision detection, i.e, ap-
ply the collision in each individual;

• Applying the gravity force on the crowd individuals;

• Use the broad phase to determinate the neighborhood of the
crowd individuals;

• Apply the crowd behavior type in each individual, as forces;

• Present the results, i.e., render the crowd and scenario.

The data that is changed during the user input step is encapsulate in
special structure, in order to keep the communication between the
GPUs and the CPU to a minimum (which can be a bottleneck of a
simulation [Krueger 2008]), and then sent to the GPU.

The narrow phase of the collision detection, the application of the
gravity force, the determination of the individuals and the appli-
cation of the crowd behavior is done in one single CUDA step, in
order to optimize the loop.

The render is responsible for present the results to the user. In this
work it uses OpenGL for doing that. The crowd individuals can be

represented in difference ways: as impostors, or as simple primi-
tives. Impostor is a way of render a lot of individuals because it
only rendes a quad texturing with a pre-render figure of the crowd
individual. And the simple primitives is very fast but it is not very
suitable for graphics applications.

6 Results

For the tests, a PC running Ubuntu 10.10 Linux distribution
equipped with an Intel i7 3.07GHz using 8 GB of RAM was used.
This PC has two NVidia GeForce GTX 580 with 1 GB DDRAM
each, where 512 cores were used for the simulation. Tests using
different configurations for performing the simulation were also
performed: the first one uses sprites, while the second one uses
simple primitives (for performance tests). To assure that results are
consistent, each test was repeated ten (10) times and the standard
deviation of the average times was confirmed to be within 5%.

Table 1 shows the simulation of crowd made by using both a single
GPU and our multi GPU architecture. A graph showing the curve
of this simulation can be seen in Figure 7. The column labeled FPS
represents the frames per second which measure the time necessary
to update and render the simulation. Speedup is measured by the
relation of FPS Multi GPU over FPS Single GPU.

According to the presented result, it is possible to see that using
more than one GPU has increased the overall performance of the
simulation. In this case, growing the number of available GPUs de-
creases the time to perform this simulation, allowing more entities
to be used, or even a more complex behavior, in order to grow up
the realism of the simulated crowd. In Figure 8, a screenshot of
the simulation can be seen, where Figure 8(a) uses primitives for
rendering while Figure 8(b) uses sprites. In this simulation, a to-

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 699

Table 1: Results of the simulation using both a single GPU and our multi GPU architecture.

Single GPU Multi GPU
Entities FPS Time FPS Time Speedup
4,096 1103 0.90 ms 1158 0.86 ms 1.05

16,384 588 1.70 ms 676 1.48 ms 1.15
65,536 211 4.74 ms 280 3.57 ms 1.33

262,144 38 26.3ms 60 16.6ms 1.58
1,048,576 6 166.7ms 11 90.9ms 1.83

0	

200	

400	

600	

800	

1000	

1200	

1400	

4096	 16384	 65536	 262144	 1048576	

Fr
m
es
	 p
er
	 S
ec
on

d	
(F
PS
)	

Total	 of	 En66es	

Mul6	 ✖	 Single	 GPU	 Comparision	

Single	 GPU	

Mul7	 GPU	

Figure 7: Crowd simulation comparison using single and multi GPU architecture.

tal of 256,000 entities (only 56,000 entities appears in the scene) is
employed.

7 Conclusions and Future Work

Our proposed simulation using a multi GPU architecture reaches a
speedup of almost twice the implementations of the most recent full
GPU based approaches, allowing the simulation of more complex
behavior in real time games and other kinds of simulation. The
main acceleration factor comes from the fact that many complex
and time consuming tasks can be split up among a collection of
GPUs during the simulation processing.

According to the results presented, the proposed architecture is be-
ing extended in order to enable the use Dynamic Parallelism of the
Kepler GPUs architecture, which allows dispatch of CUDA kernel
inside the kernel being processed. This way, we can avoid spend
time processing empty cells during the simulation.

Additionally, due to the capacity of GPUs, an architecture that
sends data for processing according to each device capability would
be very beneficial for the whole simulation. This way, entities are
sent for GPUs with less capability, avoiding possible bottlenecks.

In the future, we plan to measure the scalability of this architecture
when more than two GPUs are used both in a local connection as
well as across the network.

Acknowledgements

Special thanks to Secretariat of Culture of the State of Rio de
Janeiro for sponsoring this project. The developer Team for as-
sisting in this study and for the inspiring and fruitful cooperation.
Also thanks to Daniel Mafra, Vynicius Moraes Pontes, Rafael Lan-
goni Smith and Licnio de Souza Ribeiro for all the hard-work on
this project. We also like to thanks Eduardo Soluri for his help in
the beginning of the project.

References

ABDELKHALEK, R., CALANDRA, H., COULAUD, O., ROMAN,
J., AND LATU, G. 2009. Fast seismic modeling and reverse time
migration on a gpu cluster. In High Performance Computing &
Simulation, 2009. HPCS’09. International Conference on, IEEE,
36–43.

AITKEN, M., BUTLER, G., LEMMON, D., SAINDON, E., PE-
TERS, D., AND WILLIAMS, G. 2004. The lord of the rings:
the visual effects that brought middle earth to the screen. In
ACM SIGGRAPH 2004, ACM Press, New York, NY, USA, SIG-
GRAPH: ACM Special Interest Group on Computer Graphics
and Interactive Techniques.

CHIARA, R. D., ERRA, U., SCARANO, V., AND TATAFIORE, M.
2004. Massive simulation using gpu of a distributed behavioral

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 700

(a) Optimization mode.

(b) Normal mode.

Figure 8: Crowd simulation for the Carnival scenario.

model of a flock with obstacle avoidance. In Vision, Modeling,
and Visualization (VMV), 233–240.

CORDEIRO, O. C., BRAUN, A., SILVEIRA, C. B., AND MUSSE,
S. R. 2005. Concurrency on social forces simulation model.
In Proceedings of the First International Workshop on Crowd
Simulation (V-CROWDS), V-CROWDS.

COURTY, N., AND MUSSE, S. R. 2005. Simulation of large crowds
in emergency situations including gaseous phenomena. In CGI
’05: Proceedings of the Computer Graphics International 2005,
IEEE Computer Society, Washington, DC, USA, CGI, 206–212.

DOOST, M. S., SADJADI, S. M., DA SILVA, J., ZAMITH, M.,
JOSELLI, M., AND CLUA, E. 2012. Architecture of request
distributor for gpu clusters. In Applications for Multi-Core Ar-
chitectures (WAMCA), 2012 Third Workshop on, IEEE, 13–18.

FAN, Z., QIU, F., KAUFMAN, A., AND YOAKUM-STOVER, S.
2004. Gpu cluster for high performance computing. In Pro-
ceedings of the 2004 ACM/IEEE conference on Supercomputing,
IEEE Computer Society, 47.

FUNGE, J., TU, X., AND TERZOPOULOS, D. 1999. Cognitive
modeling: Knowledge, reasoning and planning for intelligent
characters. In Siggraph 1999, Computer Graphics Proceedings,
Addison Wesley Longman, Los Angeles, A. Rockwood, Ed.,
Siggraph, 29–38.

GROUP, K., 2009. Opencl - the open standard for paral-
lel programming of heterogeneous systems. Avalible at:
http://www.khronos.org/opencl/.

HAMADA, T., AND NITADORI, K. 2010. 190 tflops astrophys-
ical n-body simulation on a cluster of gpus. In Proceedings
of the 2010 ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis, IEEE
Computer Society, Washington, DC, USA, SC ’10, 1–9.

HARRIS, M. 2005. Fast fluid dynamics simulation on the gpu. In
ACM SIGGRAPH 2005 Courses, ACM, New York, NY, USA,
SIGGRAPH ’05.

HARTLEY, T. D., CATALYUREK, U., RUIZ, A., IGUAL, F.,
MAYO, R., AND UJALDON, M. 2008. Biomedical image analy-
sis on a cooperative cluster of gpus and multicores. In Proceed-
ings of the 22nd annual international conference on Supercom-
puting, ACM, 15–25.

HUANG, B., GAO, J., AND LI, X. 2009. An empirically opti-
mized radix sort for gpu. Parallel and Distributed Processing
with Applications, International Symposium on 0, 234–241.

JIN, X., WANG, C. C. L., HUANG, S., AND XU, J. 2007. Inter-
active control of real-time crowd navigation in virtual environ-
ment. In VRST ’07: Proceedings of the 2007 ACM symposium on
Virtual reality software and technology, ACM, New York, NY,
USA, 109–112.

JOSELLI, M., PASSOS, E. B., ZAMITH, M., CLUA, E., MON-
TENEGRO, A., AND FEIJO, B. 2009. A neighborhood grid data
structure for massive 3d crowd simulation on gpu. Games and
Digital Entertainment, Brazilian Symposium on 0, 121–131.

JOSELLI, M., PASSOS, E. B., ZAMITH, M., CLUA, E., MON-
TENEGRO, A., AND FEIJO, B. 2009d. A neighborhood grid
data structure for massive 3d crowd simulation on gpu. Games
and Digital Entertainment, Brazilian Symposium on, 121–131.

JOSELLI, M., ZAMITH, M., CLUA, E., LEAL-TOLEDO, R.,
MONTENEGRO, A., VALENTE, L., FEIJO, B., AND PAGLIOSA,
P. 2010. An architeture with automatic load balancing for real-
time simulation and visualization systems. JCIS - Journal of
Computational Interdisciplinary Sciences, 207–224.

JOSELLI, M., ZAMITH, M., CLUA, E. W. G., MONTENEGRO,
A., LEAL-TOLEDO, R. C. P., VALENTE, L., AND FEIJÓ, B.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 701

2010. An architecture with automatic load balancing and distri-
bution for digital games. In Games and Digital Entertainment
(SBGAMES), 2010 Brazilian Symposium on, IEEE, 59–70.

JOSELLI, M., SILVA JUNIOR, J. R., ZAMITH, M., SOLURI, E.,
MENDONCA, E., PELEGRINO, M., AND CLUA, E. W. G. 2012.
Techniques for designing gpgpu games. In Games Innovation
Conference (IGIC), 2012 IEEE International, 78–82.

JOSELLI, M., PASSOS, E. B., JUNIOR, J. R. S., ZAMITH, M.,
CLUA, E., AND SOLURI, E. 2012. A flocking boids simu-
lation and optimization structure for mobile multicore architec-
tures. SBGames 2012.

JUNIOR, J. R. D. S., JOSELLI, M., ZAMITH, M., LAGE, M.,
CLUA, E., SOLURI, E., AND TECNOLOGIA, N. 2012. An
architecture for real time fluid simulation using multiple gpus.
SBC-Proceedings of SBGames.

KIM, J., KIM, H., LEE, J. H., AND LEE, J. 2011. Achieving a
single compute device image in opencl for multiple gpus. In Pro-
ceedings of the 16th ACM symposium on Principles and practice
of parallel programming, ACM, New York, NY, USA, PPoPP
’11, 277–288.

KRUEGER, J. 2008. A gpu framework for interactive simulation
and rendering of fluid effects. IT - Information Technology 4,
(accepted).

KWON, T., LEE, K. H., LEE, J., AND TAKAHASHI, S. 2008.
Group motion editing. In SIGGRAPH ’08: ACM SIGGRAPH
2008 papers, ACM, New York, NY, USA, 1–8.

MICHALAKES, J., AND VACHHARAJANI, M. 2008. Gpu acceler-
ation of numerical weather prediction. IEEE International Sym-
posium on Parallel and Distributed Processing, 1–7.

MUSSE, S. R., AND THALMANN, D. 1997. A model of human
crowd behavior: Group inter-relationship and collision detection
analysis. In Workshop Computer Animation and Simulation of
Eurographics, Eurographics, 39–52.

NVIDIA, 1998. Scalable link interface. Avalible at:
http://www.nvidia.com/hardware/technology/sli.

NVIDIA, 2008. Skinned instancing. Avalible at:
http://developer.download.nvidia.com/SDK/10/
direct3d/Source/SkinnedInstancing
/doc/SkinnedInstancingWhitePaper.pdf.

NVIDIA, 2009. Nvidia cuda compute unified device ar-
chitecture documentation version 2.2. Avalible at:
http://developer.nvidia.com/object/cuda.html.

PASSOS, E., JOSELLI, M., ZAMITH, M., ROCHA, J., MONTENE-
GRO, A., CLUA, E., CONCI, A., AND FEIJÓ, B. 2008. Su-
permassive crowd simulation on gpu based on emergent behav-
ior. In Proceedings of the VII Brazilian Symposium on Computer
Games and Digital Entertainment, SBC, 81–86.

PASSOS, E. B., JOSELLI, M., ZAMITH, M., CLUA, E. W. G.,
MONTENEGRO, A., CONCI, A., AND FEIJO, B. 2010. A bidi-
mensional data structure and spatial optimization for supermas-
sive crowd simulation on gpu. Comput. Entertain. 7, 4 (Jan.),
60:1–60:15.

PELECHANO, N., ALLBECK, J. M., AND BADLER, N. I. 2007.
Controlling individual agents in high-density crowd simula-
tion. In SCA 07: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland,
SCA, 99–108.

PHARR, M., AND FERNANDO, R. 2005. GPU Gems 2: Program-
ming Techniques for High-Performance Graphics and General-
Purpose Computation (Gpu Gems). Addison-Wesley Profes-
sional.

QUINN, M. J., METOYER, R. A., AND HUNTER-ZAWORSKI, K.
2003. Parallel implementation of the social forces model. In

Proceedings of the Second International Conference in Pedes-
trian and Evacuation Dynamics, PED, 63–74.

REYNOLDS, C. W. 1987. Flocks, herds and schools: A distributed
behavioral model. In SIGGRAPH ’87: Proceedings of the 14th
annual conference on Computer graphics and interactive tech-
niques, ACM, New York, NY, USA, 25–34.

REYNOLDS, C. W. 1987. Flocks, herds and schools: A distributed
behavioral model. In SIGGRAPH ’87: Proceedings of the 14th
annual conference on Computer graphics and interactive tech-
niques, ACM, New York, NY, USA, 25–34.

REYNOLDS, C. 1999. Steering behaviors for autonomous charac-
ters. In Game Developers Conference 1999, GDC.

REYNOLDS, C. 2000. Interaction with groups of autonomous char-
acters. In Game Developers Conference 2000, GDC.

REYNOLDS, C. 2006. Big fast crowds on ps3. In Sandbox
’06: Proceedings of the 2006 ACM SIGGRAPH symposium on
Videogames, ACM, New York, NY, USA, Sandbox, 113–121.

ROCKSTAR, 2013. Grand theft auto v. [CD-ROM].

SHAO, W., AND TERZOPOULOS, D. 2005. Autonomous
pedestrians. In SCA ’05: Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
ACM, New York, NY, USA, SCA, 19–28.

SHOPF, J., BARCZAK, J., OAT, C., AND TATARCHUK, N. 2008.
March of the froblins: simulation and rendering massive crowds
of intelligent and detailed creatures on gpu. In SIGGRAPH ’08:
ACM SIGGRAPH 2008 classes, ACM, New York, NY, USA, 52–
101.

SILVA, A. R., LAGES, W. S., AND CHAIMOWICZ, L. 2008. Im-
proving boids algorithm in gpu using estimated self occlusion. In
Proceedings of SBGames’08 - VII Brazilian Symposium on Com-
puter Games and Digital Entertainment, Sociedade Brasileira de
Computação, SBC, SBC, 41–46.

STEED, A., AND ABOU-HAIDAR, R. 2003. Partitioning crowded
virtual environments. In VRST ’03: Proceedings of the ACM
symposium on Virtual reality software and technology, ACM,
New York, NY, USA, VRST, 7–14.

SUD, A., GAYLE, R., ANDERSEN, E., GUY, S., LIN, M., AND
MANOCHA, D. 2007. Real-time navigation of independent
agents using adaptive roadmaps. In VRST ’07: Proceedings of
the 2007 ACM symposium on Virtual reality software and tech-
nology, ACM, New York, NY, USA, 99–106.

TESCHNER, M., HEIDELBERGER, B., MUELLER, M., POMER-
ANETS, D., AND GROSS, M. 2003. Optimized spatial hashing
for collision detection of deformable objects. In In Proceedings
of VMV’03, 47–54.

TREUILLE, A., COOPER, S., AND POPOVIĆ, Z. 2006. Continuum
crowds. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers,
ACM, New York, NY, USA, SIGGRAPH, 1160–1168.

UFIMTSEV, I. S., AND MARTINEZ, T. J. 2008. Quantum chem-
istry on graphical processing units. 1. strategies for two-electron
integral evaluation. Journal Chemistry Theory Computation 4
(2), 222 – 231.

VAN DEN BERG, J., PATIL, S., SEWALL, J., MANOCHA, D., AND
LIN, M. 2008. Interactive navigation of multiple agents in
crowded environments. In I3D ’08: Proceedings of the 2008
symposium on Interactive 3D graphics and games, ACM, New
York, NY, USA, 139–147.

ZAMITH, M., VALENTE, L., JOSELLI, M., CLUA, E., TOLEDO,
R., MONTENEGRO, A., AND FEIJ, B. 2011. Digital games
based on cloud computing. In SBGames 2011 - X Simpsio
Brasileiro de Jogos para Computador e Entretenimento Digital.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 702

