
A Framework for Metroidvania Games
Bruno Pinheiro Oliveira

Federal University of Ceará
Fortaleza, Brazil

brunopo9896@gmail.com

Artur de Oliveira da Rocha Franco
Federal University of Ceará

Fortaleza, Brazil
arturoliveira@virtual.ufc.br

José Wellington Franco da Silva
Federal University of Ceará

Fortaleza, Brazil
wellington@crateus.ufc.br

Fernando Antônio de Carvalho Gomes
Federal University of Ceará

Fortaleza, Brazil
carvalho@ufc.br

José Gilvan Rodrigues Maia
Federal University of Ceará

Fortaleza, Brazil
gilvanmaia@virtual.ufc.br

Abstract—Metroidvanias feature extensive maps that require
proper exploration by reporting to skills acquired through the
game, in addition to frequent fights against enemy waves. This
gameplay style develops an enthralling experience built around
factors such as curiosity and challenge, besides the possibility
of evolving, obtaining rare items, finding unusual usage to well-
known abilities, and unprecedented encounters. Metroidvanias
are therefore fairly complex pieces of software that demand
a considerable development effort. In this paper, we propose
a framework for building Metroidvania games comprising the
following key aspects of this genre: large map navigation; battle
system; inventory; pathfinding; assistance system, allowing for
getting help from companion NPCs (Non-Player Characters);
skill tree; puzzle-solving; dynamic map loading; and recycling of
NPC instances. A prototype game was built using the proposed
framework to validate our approach. A specialized character
tagging mechanic was introduced in our prototype with the
view to demonstrate our approach is flexible enough to adapt
to different mechanics.

Keywords—metroidvania, game development, genre-specific
framework

I. INTRODUCTION

According to Silva et al. [1], games are complex software
developed under the light of multidisciplinary areas. Among
these, we can highlight artistic and communication-related
areas like game design, visual design, sound design, and
storytelling [2]. Moreover, there is plenty room for applying
background knowledge from Computer Science, especially
Computer Graphics (CG) and Artificial Intelligence (AI),
among others involved in game development [3].

From a business perspective, the gaming market holds a
prominent position in creative industry: its revenues even
exceeds those from movie market, as it continues to grow at
“Chinese” rates despite recent years of global market crisis.
At the time this paper is written, Newzoo’s market analysis1

projects a growth of about 9.6% for 2019. Metroidvanias
and similar platformer games, in their turn, are experiencing
an ever-growing interest from the player community. For
example, Celeste, a title that features many common qualities

1https://newzoo.com/insights/articles/the-global-games-market-will-
generate-152-1-billion-in-2019-as-the-u-s-overtakes-china-as-the-biggest-
market/

of a Metroidvania, was nominated in 3 categories for GDC
Choice Awards 201823, including the main category Game
of the Year. This is a major achievement for an indie game,
considering the heavyweight titles also nominated, such as
God of War and Red Dead Redemption 2.

A. Motivation
In industry, game development demands reducing produc-

tion costs by resorting to modern methodologies, techniques,
libraries, frameworks, and software tools specialized for game
productions [4] [5] [3]. This paper proposes a specific game
engine architecture for Metroidvania games. Metroidvanias are
referenced by an amalgamation coined after two well-known
franchises, Metroid and Castlevania, and comprise a sub-genre
of popular action and adventure games. A typical Metroidvania
features big level maps with non-linear exploration gameplay.
Such maps contain a myriad of items and enemies of different
levels of difficulty [6]. Specific features found in Metroivanias
are discussed later in this paper.Some academic papers aim to
explore other possible problems such as automated content
generation [7]. Some techniques such as evolutionary algo-
rithms were employed by Rodrı́guez, Cotta and Leiva [8]. That
being said, the proposed framework is specially designed to
support common gameplay elements found in Metroidvanias
titles. Moreover, our framework also presents an effective
design for the sake of convenient reuse for correlated game
projects. We also developed a working prototype game in order
to evaluate our framework in a real scenario.

Our framework also considers performance constraints we
advocate are valid for both indie and mobile platforms. So,
our game prototype is suitable for execution on affordable,
low-cost machines with low processing power by resorting to
optimization strategies in order to provide games with fluid
gameplay and execution.

For example, pathfinding [9] is a complex problem to be cir-
cumvented in the aforementioned game genre, otherwise maps
would not produce combat gameplay. However, reusing exist-
ing solutions typically implies complex reworking because of

2https://twitter.com/celeste game/status/1081313698000588806
3https://t.co/48l2OSSbt1

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Industry Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 836

the peculiarities of this game genre [10]. For example, in a
typical Metroidvania, there is a lack of total knowledge about
the scenario, which is usually very broad to fit in memory
and consequently must be loaded dynamically as the player
steers her avatar [11]. Typically resource-constrained platforms
such as game console demand map paging or procedural
generation, or even a combination of those two methods [11]
[3]. In light of what has been discussed in this paragraph, it
is valid to assume that reusing existing pathfinding solutions
into a Metroidvania game project demands, at least, integration
efforts.

In addition, NPCs found in most titles usually exhibit
deterministic, predictable, and boring behavior because they
must go through a predetermined trajectory [10] [6]. Such
limited approaches usually prevent NPCs from surprising or
challenging the users [11]. On the other hand, existing steer-
ing behavior algorithms for NPCs may also display visually
unpleasant results [11] [6].

B. Contributions

As far as we know, there is no similar framework in
literature (see Section II-D). These are the main contributions
of this paper:

• Game Map Management. Avoids memory overload and
enhances reuse of common elements.

• Character recycling. Improves performance during sav-
ing, loading, restarting game zones, creating enemy
waves, and other common operations during gameplay.

• Pathfinding and basic path planning [12], which ab-
stracts the intricacies of integration with the Game Map
Manager. Moreover, this component also adapts methods
found in the literature, usually developed for 2D or 3D
case, to work in the case of side-scrollers.

• Combat System. Designed to prevent game-breaking be-
havior in terms of infinite combos [13]. In particular, we
compute damage based on data assigned to animation
frames during attacks, thus allowing for inflicting varying
damage over time. Moreover, the combat system is inte-
grated into an ability tree, so our results can generalize
to virtually any moves made available in combat.

• NPC Behavior System. We implement a combination of
outstanding characteristics found in previous models in
order to produce an adequate AI for the game genre [2]
.

• We implemented the proposed framework on top of Unity
3D.

• We present practical evaluation results by means of a
prototype game built on top of our framework. Our
prototype features mechanics such as character tagging,
skill tree, player following, and a customized combat
system. Results were evaluated by users in a focus group.

C. Paper Outline

Our work is hereby structured in six sections. First, we
address related work and theoretical background in Section
II. The proposed framework is detailed in Section III and its

implementation aspects are discussed throughout Section IV.
Section V, in its turn, is devoted to experimental evaluation and
results. The concluding remarks about our study are shown in
Section VI.

II. RELATED WORK

This section is divided in order to address the specific topics
related to study, the definition of the main related concepts and
a general survey of the requirements of a Metroidvania game.

A. Electronic Games

Schuytema [4] defines games as playful activities performed
by means of actions and decisions which lead to a final state
[10]. The act of play is limited by a set of rules governing an
usually bounded universe. In digital game context, these rules
and the many representations of the game state are controlled
by an electronic machine, the computer [4]. Moreover, rules
govern what are the consequences of actions and decisions
taken by players. Besides, rules can be seen as a central design
tool, which can provide challenge by making it difficult or
fun for a player to achieve her goals [10]. This definition
also provides a suitable setting for a gaming narrative, since
game plots usually revolve around some kind of conflict.
Finally, product quality assurance, i.e., testing and adjusting a
game title, is a difficult task that demands suitable tools for
understanding gameplay such as visualization [14] and even a
complex player experience evaluation [15].

B. The Metroidvania Genre

Some classical titles of Metroidvania games are Castleva-
nia: Symphony of the Night, Super Metroid, and Chasm or
Axiom Verge [6]. These titles are remarkable water divisors of
this genre, so it is important understanding the history behind
the birth of Metroidvania genre.

In 1986’s Metroid, the first game of the acclaimed franchise,
introduced players to the concept of a big world made of
bidimensional platforms [11]. In 1994, the Super Metroid re-
fined that gameplay immensely while increased the complexity
of their stories. Three years later, ‘Symphony of the Night’
expanded the same exploration formula in others directions,
adding complexities and depth each turn [11].

It is important to note that Metroidvania is strongly linked to
new productions, especially in indie games. This is mainly due
to the underlying game mechanics constitute a basis for new
productions, and titles make use of enthralling mechanics like:
exploration, character improvement, platforming, and combat
[11]. Koji Igarashi, known as the creator of Castelavania, was
surprised by the emergence of the term Metroidvania4. He
comments that a 2D platformer based on Zelda also refers, in
some way, to Metroid, since the intention behind Castlevania
was to produce a game that referred to the iconic Zelda.

In a typical Metroidvania, the lack of clear direction in
gameplay encourages scenario exploration and at the same
time forces the player to revisit the path she has gone through.

4https://www.usgamer.net/articles/gdc-2014-why-koji-igarashi-is-grateful-
for-the-word-metroidvania

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Industry Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 837

According to Wahlberg [16], this “kickback” offers little
variability with differences in some scenario parameters, such
as difficulty, types of enemies, and how waves of enemies
are fired. Wahlberg developed a study based on the frame-
work of the MDA Framework and its types of fun [17]. He
concluded that the concept of recurring scenario exploration,
entitled backtracking level design, is one of the pillars of the
Metroidvania genre.

According to [18], the term Metroidvania was coined by
Jeremy Parish and Scott Sharkey 5. These are the main are
main characteristics of this genre6 [18] [10] [16] [11] [19]:
scroll is allowed in both horizontal and vertical axes; players
are tasked with finding and pursuing in-game goals; Access
to the scenery is limited by inventory and skills, so maps are
therefore gradually and recurrently exploited until players find
items such as keys, doors, and heights, or acquire abilities such
as a high jump, flying, and gliding; the gameplay rewards
players for their creative ways of moving on the map, even if
they seem to deviate from the overall purpose of the game; the
game offers items and abilities as the player advances through
the scenarios and story. These power-ups reinforce the sense
of progress; as the player progresses in the game in terms
of options for exploration, her curiosity is poised to revisit
locations in order to try to discover secrets, passages, items,
and challenges using her newly discovered ideas; and despite
the focus on exploration, this type of game does not limit its
ability to tell a story.

C. Requirements of Metroidvania Games

Based on opinions from the critic, we can summarize the
main features of a Metroidvania: narrative; extensive and well-
designed maps; evolution of the character; and fair balance
of difficulty. Analyzing these requirements from a technical
perspective, in the process of maintaining narrative immersion
with such elements, efforts are needed to optimize key aspects
of the game. For example, all of the content in the extended
scenario may not fit at once in memory, so the genre demands
intelligent management of characters, textures, meshes, and
animations. This is much like memory paging in operating
systems.

On the other hand, scenario loading should occur in back-
ground so the impact of this on gameplay does not cause an
immersion break that harms user experience. NPCs, in their
tur, need general behaviors that work in game scenarios while
being able to react to the player’s avatar. In addition, AI
should be conveniently integrated for allowing the behavior
customization [20]. Other elements such as battle system and
alternating skills are also important for games of this genre.

D. Existing Solutions for Metroidvanias

We will now discuss the applicable solutions found through
bibliographic research. We will then relate how each solution
performs according to the previously established requirements.

5https://www.wired.com/2007/03/bonus stage deb/
6http://gaming.wikia.com/wiki/Metroidvania

1) Search Methodology: We searched for similar works
with the objective to delineate a framework for the genre
Metroidvania. Only a few scientific articles on the subject were
found even by trying several combinations of keywords in
many search engines. All attempts included the term “metroid-
vania”.

An important inclusion criterion consists of dealing with
game development from a software perspective. So, we we
hoped to identify articles addressing technologies, compo-
nents, and software architectures. Given the small contingent
of papers found, the exclusion criteria selected consisted of
not dealing with aspects of game programming. Most results
referred to game design, plus sociocultural and market ana-
lyzes.

The best results were obtained with the Google Scholar and
the combination of the terms “metroidvania” and “toolkit”,
which resulted in only one article. The combination of
“metroidvania ” and “game engine” produced 48 articles,
most of these are related to Procedural Content Generation
(PCG) such as ANGELINA [18]. Similarly, Kärkkäinen [21]
addresses the use of procedural generation of scenarios for
Metroidvanias. This dominance of the PCG theme in academia
is reasonable. given the dimensions of maps, missions, and
complexity of the genre, it is interesting that developers rely
on “automatic suggestions” when creating content [2].

2) Solutions Found: We found works that approached the
genre Metroidvania, but applied to other problems. Due to
space limitations, we will limit ourselves to discussing only
the works that most closely match the scope of our research.
Rodrı́guez [22] developed a multiplayer Metroidvania for the
Web using JavaScript on top of Clockwork.js7 engine. In
addition to the challenges faced in the genre, the game features
two characters with different control modes. She states that
the game lacked careful planning to be optimized for a better
online experience. However, this work contributes with an
elucidation of the rationale underlying the genre.

Kay and Powley [23] studied the influence of pathfinding
methods and their respective visualization on the exploratory
behavior of players. They concluded that the aspect of NPC
navigation, implicit in the implementation of a 3D Metroid-
vania, is capable of impacting the game’s visual. Therefore,
navigation can provide useful insights for game designers.
Daly [24] reports the development of a Metroidvania using the
open source engine and discusses the following game systems:
movement, slopes, animation, combat, power-ups, a custom
“sanity” system, and visual effects. Daly adopts finite state
machines for a simplistic AI, but also discusses refactoring:
he felt sabotaged by himself during implementation. This
demonstrates the importance of adopting a framework.

Büsser [25] addresses the challenge and implementation
details of a Metroidvania. Comparing the present proposal with
what this author has developed, we conclude that our algorithm
of pathfinding provides a more complex behavior than the
simple patrolling provided by Büsser’s implementation. For

7http://clockwork.js.org/

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Industry Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 838

example, our framework supports flying NPCs. Minkkinen
[26] talks about the lessons learned from the development of
platformers. The author considers his final result as a very
“raw” product and it is essential to keep the project simple,
so the author has dedicated himself to improving the central
part of the project more and more. In effect, the fluidity of the
movement of the character and the camera were prioritized
instead of adding new functionalities and mechanics to the
game.

Nakamura and Câmara [6] proposed guidelines for eval-
uating the “fun” of exploration games based on the game
design definitions of Jesse Schell [10]. These authors analyze
observation experiments and analysis reports from the player’s
experience to present suggestions on the requirements, and
what game design practices may better suit this type of
game. In her research project, Maciejewski [27] describes the
experience of creating a game of the genre Metroidvania using
Python and Pygames.

Our investigation on the existence of frameworks especially
designed for the development of Metroidvanias suggests a lack
or deficit of existing solutions. This finding corroborates the
motivation of the present study to propose an architecture and
its scientific contributions.

III. PROPOSED FRAMEWORK

We start this section with an overview of our framework
architecture. For a better understanding, this section was
subdivided into the main problems and the respective solutions
provided by our framework.

A. Overview

Fig. 1. Overview of the proposed framework.

Our architecture is composed by two main components:
entities and code blocks (see Fig. 1). Entities have both
attributes and codes. Code blocks, in their turn, encapsulate
the processing logic and can be subdivided into smaller
blocks responsible for specific functions. Code blocks can be

adaptable to entity attributes, so depending on the attributes, a
different processing may be triggered. Block verification is
performed in creation time. Moreover, this component can
be assigned dynamically, i.e., instances can be re-assigned to
entities at little to no cost. An optional verification may when
all blocks are loaded from a context, which gives space to more
sophisticated code blocks and entity allocation algorithms.

We also define a Global entity that has control over what
will be displayed on the screen. This entity also stores all
persistent game state variables such as life, location, and so on.
The Scenario entity is composed by Phases, so performance
improvements can be obtained by subdivision [20]. Moreover,
this approach also prevents this huge object from being totally
loaded.

Phases contain Characters, which are complex entities as-
signed to two code blocks, one for control and the other for
AI. The Character Controller is responsible for interaction of
character which is called by AI or by user inputs. Character
Controllers are instantiated according to the demand: for
example, aerial or grounded characters defines what block
will be assigned to that entity. It is worthy to observe that
this component usually serves NPCs in the game logic layer.
Moreover, since our architecture decouples entities from code
blocks, a flying character may change its type during gameplay
by assuming an alternative grounded form, for example.

The AI code block divided into Pathfinding, Combat, and
Steering blocks. The Character Controller is invoked every
time the system needs to change character behavior. The
Combat block, in its turn, is subdivided into minion and “boss”
code blocks. We adopted this approach because bosses and
secondary characters usually consume more resources since
these NPCs display a broader variety of attacks and resort to
more sophisticated AI methods.

B. Game Map Management (GMM)

We developed algorithms to avoid overloads by dividing
the map into Scenes. This process is applied recursively, thus
subdividing Scenes into Phases. Phases are loaded according
to a position of the player in the map. Moreover, we also
adjust the player position relative to the current level in order
to avoid floating point issues.

At first, we limit the loading to the characters, code blocks,
and other information that will be persistent until the player
“touches” the border of another scene. When this happens, the
framework loads metadata, characters, and code blocks of the
potentially new current scene. Phases will also be managed,
since their code blocks are responsible of puzzle management,
playing ambient sounds, triggering enemy wares, and other
specific gameplay behavior. Similar to Scenes, Phases are
loaded according to the distance traveled by the player’s avatar.
Since our focus is on platformers, we resort to an efficient
neighborhood lookup over a hierarchical grid for determining
which Scenes and Phases are in the vicinity of the current view.
Finally, Phases and Scenarios are kept in an active list, so these
unloaded when they are not reported by the hierarchical grid
search.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Industry Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 839

C. Interaction Between Characters and Environment

Interactions are divided into movement, i.e. steering, and
interactions between characters. Regarding movement, we
have the situations of collision between a character and other
entities. These can be another character or even map elements.
Detecting these combinations in terms of entity attributes
allows us to handle each type of collision properly.

For example, we first chose that protagonists would not
collide with each other in our prototype game. This behavior
was also applied to NPCs later, since users found this useful to
avoid excessive stress when controlling characters and to make
the game more fluid, despite such choice would have an impact
on the immersion. However, such loss would not be noticeable
by most users in our focus group. Moreover, we decided to
delegate the movement’s handling to specialized entities, such
as fixed and moving platforms, since this would facilitate
future maintenance and addition of new steering behaviors.

Entity interaction, in its turn, allows both entities to handle
interaction in the same event. For example, during a combat,
one character takes damage and the another increases its sum
of hits struck. It is worthy to mention that this situation
occurs as a consequence of reported collisions between pairs
of entities, therefore both will receives the contact information
and trigger their corresponding code blocks. This is essential
for effective AI programming, since such controller needs
feedback information about any decisions taken. Characters
in general also need such information to know what actions
to trigger, what animation to perform, etc.

It is important to highlight that our implementation sorts
collision handling code blocks before their execution based
on entity type and identifier. This is an essential step for ob-
taining stable code execution to avoid intricate bugs, otherwise
unpredictable behavior will be displayed during gameplay.

Finally, another important scenario regards player inputs, for
example, to push or pull a lever. The lever is an interactive
entity that does not move and then executes a specialized
code block for supposedly receiving damage: this block will
actually, trigger events and scripts responsible for managing
puzzles, quests, etc.

D. Character Recycling

To improve performance, characters keep their global posi-
tion even in loading time. This simple information is sufficient
for our recycling algorithm. Characters discarded due to death
or even leaving the borders of the screen view area are not
unloaded immediately, but left disabled and collected into a
list. So, these resources do not demand a new verification step
and can be reused in the future. It is worthy to mention that
any persistent information about these characters are saved to
Scenes, Phases, and Global scope before actual recycling. This
happens because such entities’ attributes must be reset to their
default values. In the case of restarting a map region, Scenes
and Phases are responsible for return any “living” characters to
their standard position and restore their initial state attributes,
when necessary.

Fig. 2. Character recycling diagram.

E. Pathfinding

When faced with the problem of moving NPCs in a scenario,
oneself should think of trying to produce a balance between
the best and faster paths [12]. This is because, unfortunately,
this problem has a tendency to arrive at unacceptable response
time scales for a game, especially when a large number of
possible routes are found [28].

It is difficult to devise an algorithm that can fully understand
the trade-off between these two goals, so the most reasonable
option is to define which aspects are the most important at the
context. Starting from this assumption, we must define how
to represent the environment to be used in the pathfinding
algorithm. A full grid of NPC routes can be prepared be-
forehand [12] [28]. However, this means additional work for
level designers. PCG methods may also present problems and
limitations in this regard [19].

According to Michael Cook [19] PCG for video games is a
crucial area of research and development in the industry. As-
sorted, high-quality materials are required in large quantities,
which continues to pressure content developers. At the same
time, PCG is gaining important influence on the culture of
video games. Games that explore such ideas and adopt some
kind of PCG are usually well-received by critics [19]. Thus, the
use of pathfinding that does not use a preproduced grid goes
beyond diminishing the work of the level designer, and can
even adapt to procedural systems and influence the satisfaction
of the final user.

Adopting collision sensors is another, feasible option avail-
able and related to level design. According to [29], Point
Content sensors can mark points in the environment and verify
the collision. From that, it is possible to identify objects in the
scenario near the area around the character. The Line Trace
sensor, in its turn, the NPC produces lines to determine its
position from collisions with other the objects. This technique
ends up creating an arc, i.e., it is tries to move around
obstacles. This sensor can be used to identify collision only
on objects in the character’s field of view.

Finally, Collision Detection sensors [29] identifies contacts
in the character’s body, so that the character position is only
identified when there is a collision. Another possibility, which
is not being mentioned Champandard’s book [29], resorts
to area collision: all the elements colliding with a rectangle
comprising the camera are reported.

Starting from these initial options, those that best fit the

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Industry Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 840

Fig. 3. Line traced between a character and his enemy (target). The algorithm
considers the existence of platforms for navigation.

aspects of the Metroidvania genre were selected. Point Content
is not considered suitable. First, there is the possibility of not
finding some platforms, which can cause unexpected behavior
of the NPC. Second, it may incur an unnecessary overload
because many scene objects that would not be used for the
pathfinding algorithm are returned. Collision Detection was
also discarded since the sensor area only considers the char-
acters’ bodies, which ends up returning useless objects. So,
we found Line Trace is the most appropriate sensor because it
contains only the objects that are between the character and its
target, thus avoiding both processing and memory overheads.

After the environment mapping is performed, we should
use an algorithm that uses these objects not as obstacles, but
as a support that helps to bring the NPC closer to its goal.
Therefore, this object must not be avoided. Another important
aspect is that not all supporting objects need to be used: there
would be extra of effort for a simple jump, for example.

Our pathfinding algorithm receives as parameters the phys-
ical limits applicable to the character to seek. Whenever
possible, the platforms closest to its target are found. In this
way, it is possible to make the most of the energy at each
jump. This, also makes it easier for the character to reach his
destination in less time. This approach has technical advantage
and also extrapolates the best use of the resources: the visual
result is more pleasant to players; there is a greater “sense
of intelligence’ by avoiding very segmented routes; and it
abstracts grids of colliders loaded dynamically.

F. Combat System

The combat system is responsible for managing the battle
actions of players and NPCs. Each attack, defense, and reac-
tion is implemented at the frame level, much like traditional
fighting games. This decision was made to allow a fine-
grained control of the behavior of the characters while the
battle unfolds. Such granularity is important for applying any
balancing fixes or even fixing bugs. In addition, this system

Fig. 4. Line traced based on points returned by pathfinding.

allows to form produce combos, i.e., assembling combinations
of attacks in the same sequence.

Each character has a list of possible actions, chosen accord-
ing to the player’s controls and current ability tree. The dam-
age is computed on a per-frame basis to prevent loops, which
may lead to infinite combos, and to allow damage scaling as
the combination progresses. This opens up possibilities for
more elaborate combat strategies, such as applying counters,
resets, and setups. We adopt combos trees for the sake of
diversity: the combat system should looks for valid sequences
instead of repetitive and boring fixed sequences.

G. Character Tagging

Tagging mechanics allows character control to act on an
auxiliary character and creating strategies for differentiated
game experiences. This mechanic requires an AI capable of
possessing 2 entity groups: allies and enemies. When character
meets one of the groups and attack the other. Given our
code blocks approach, a single AI instance can deal with
both groups. In addition, this mechanism is also aware of the
options of the opposing group.

For the exchange to be activated, the character A that is
being controlled by the player will have its AI turned on,
while its companion character B will have its AI enabled. The
player activates the switch by commanding B and deactivating
its AI as the opposite is done for character A. Another way
of doing the exchange consists of, starting from the previous
situation where A has AI activated and when called through
a global command, B keeps its AI disabled and A, which
previously had AI activated, changes to off and then starts
receiving commands. In this way, character B stands still.

Tagging characters increases the chances of playing in
different situations. Each character may have unique abilities
to be explored both in combat and in puzzles. For example, a
puzzle may require to keep a character stopped or activating a
given ability, which in turn increases the depth of gameplay.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Industry Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 841

H. NPC Behavior System

Tagging characters demands AI-controlled behaviors, which
must be created in order not to interact directly with the char-
acter, but to constitute an outer layer that calls the interaction
methods found in code blocks assigned to that character. This
process of abstraction depends on action ids, so normal player
commands are also given to characters in this same way. We
decided to split AI into combat and movement aspects to
simplify the creation of behavior for NPCs.

1) Movement Control: To better understand movement, it
is necessary to plan how the environment is populated. As
the interaction with the scenario will also be provided as a
feature, this requires the creation of platforms. In this genre,
it is convenient to have two types: the ground type and the
aerial type.

Platforms can be accessed by jumping over them, because
their physics do not allow the character to cross and fall.
However, there are differences between aerial and grounded
platforms. Air platforms allow characters to trigger defensive
and jump actions simultaneously when the character leaves
that platform. This is not allowed for grounded platforms.
A similar difference occurs for flying characters, since no
interaction is required with aerial platforms in this case.

Therefore, the steering algorithm presents a division be-
tween terrestrial and aerial characters. This is necessary since
there are different interpretations of obstacles and these are
used. Aerial steering interprets ground platforms as obstacles
that must be diverted or circumvented. This happens because
grounded platforms do not allow flying characters to move
freely within it. Conversely, aerial steering do not interpreted
aerial platforms as obstacles. In grounded steering, in its turn,
aerial platforms are interpreted as obstacles that are possible
part of a route. This allows movement in all directions.
Regarding the ground type platforms, it is not possible to move
down across.

The steering behavior is computed based on the points
returned by the pathfinding algorithm. So, the resulting be-
havior contains target navigation points that must be traced,
besides the set of instructions indicating which commands
the character must receive so that, from the environment in
which it is placed, it is able to reach the goal by restricting
its movement towards the target. Once the first target point is
reached, the global coordinates for the next navigation point
should be removed from the list. This process is repeated
until the list is empty or the global target is reached. This
last condition is determined by a minimum distance, which
will be similar to the distance required for the NPC to attack.

Moreover, the coordinates must also be translated into
directions for the sake of animation. If the target is to the left
or right of the character, it must change, pass as parameter the
changed horizontal directional to the move function. For the
vertical direction, if the target is positioned above the character
he should jump and if he is below should put in a position of
defense and jump thus making the character descend from the
platform.

Fig. 5. State machine describing, at high level, how the combat system works.

2) Combat Control: The combat system provides two types
of AI for battles, one being simpler and the other more
advanced, so these mechanisms can be used in different NPCs.
The simple AI is used for ordinary minions and the more
advanced is better suited for bosses and players’ companion
NPCs. Bosses and special NCPs display a greater variety of
combos and attacks, in addition to having a more elaborate
combat strategy.

For the intelligence of the minion, the combat AI behavior
comes down to sending the information to the code block
responsible for the interaction of the character. An attack will
be thrown whenever a target is within range. The actual attack
and the corresponding animation depends on the character
being controlled, plus its ability tree. The boss AI is far more
complex. First of all, this happens because two different types
of attacks must be managed during combat, i.e., light and
heavy blows. In addition, it must properly handle animation
when receiving damaging attacks. Moreover, bosses can also
resort to defense.

In both AIs, the overall combat algorithm should cause
NPCs to take actions according to the effectiveness of previous
actions. That is, it should obtain a good combination of moves
so that it has a greater effectiveness in its attacks.

Such verification is obtained by a sum representing a score
of 0 to 7 of the effectiveness of the action. Each factor in this
sum is not cumulative. The damage is counted as follows.
When the character receives no damage, the sum will be
incremented by 5. Another increment will be given to hit an
enemy. Two points can be obtained by hitting the target with
the open defense or hitting it in defense with a heavy blow.
This adds pressure to the attacked character. One point may
be obtained by hitting an enemy who is not the target with the
open defense or hitting him in defense with a heavy blow. If
the hit does not hit or is reflected, no point will be received.

From the result of this sum we can get a suitable reaction.
If the sum is 6 or 7, the stroke will be maintained until the
3rd round of the same stroke, in which case the action will be
modified if the action in question is a light blow. In that case
it will be a heavy blow, but if it is the defense action then it
will be the light blow. If the sum is less than 6 the action will
be modified if it is the heavy blow it will be the light blow,
if it is the light blow then it will be the defense, and if it is
the defense then it will be the slight blow.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Industry Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 842

IV. IMPLEMENTATION ASPECTS

The Unity 3D game engine and the C# language were
chosen for the implementation of the framework. C# is a
powerful, expressive language which supports reflection and
other sophisticated features of object-oriented programming.
Unity 3D was chosen due to its learning curve, documentation,
community support, and free license. Development took 2
months. We resorted to Unity’s debugging console, visual
editor, and game preview mode during development.

Some serious limitations were found and resolved in the
early stages implementation. For example, jumping was han-
dling collisions in the character entity. We limited user tests
before presentation to the focus groups. For example, our
estimate of the time required for solving the puzzle was based
on our own knowledge of this mechanic.

It is necessary to emphasize that the parts that consumed
the most time of implementation were pathfinding and artifi-
cial intelligence, plus debugging. Both aspects have to solve
complex problems with generic algorithms for the sake of
reuse. We found it difficult to analyze results we obtained.
For example, after some tests the tester IA starts to get used
of the strategies displayed by NPCs. Consequently, the game
seems to be simpler and easier than it actually is for the
general audience. In the case of pathfinding, we resorted to
visualization in order to understand each pathological case
of our algorithms. We decided to endow entities with visual
elements, i.e., gizmos in Unity 3D, by including their steering
path and then tracing lines with the route points that were
obtained with the algorithm. This information was gathered
across frames, so we could effectively analyze it.

Regarding AI, we had to keep a lot of visual elements
available in the screen besides the colliders. We also resort
to video recordings of the interaction and frame-to-frame
playback for more effective debugging. Certain situations
demanded magnification of specific object and gizmo parts
in the recorded videos. These were played in slow motion, in
addition to put a key to adjust the speed between slow and
normal. Moreover, testing time also demanded visualization
of the variables and their behavior over time.

V. EVALUATION

The prototype was evaluated by resorting to both experi-
mental performance evaluation and a focus group.

A. User Evaluation

Participants introduced to general information about the
prototype and played a test map. Some participants were
developers which were surprised by the time spent in both
prototype and framework development. When asked about the
performance and the overall score of the game, the participants
assigned a maximum score on a scale ranging from 0 to 10.
We also collected improvement suggestions.

Players were invited to reassess the game once these
changes were incorporated. This procedure helped us to spot
and fix bugs in character movement: avatars could cross walls
during some jump situations. This particular bugfix provided

us with new ideas to increase the game logic layer. Initially,
we calculated that players would take around 10 minutes
completing the map. However, all players ended up spending
more time because of the challenge found in the puzzle.
According to players’ comments, the worst part was the
unbalanced, hard to fight boss AI and the time to master the
character tagging mechanic. We studied the hypothesis of a
controller based on the boss’s life. This the combat AI block
can be configured or swapped to make more “smart” decisions,
thus enabling programmers to change the pace of the battle.
We advocate this sophisticated behavior helps to reinforce the
emotions transmitted by game lore on the boss.

B. Performance Evaluation

Tests were carried out in a computer with i5 3330, 6GB
RAM, and XFX AMD Radeon R7750 1 GB DDR5 GPU
running Ubuntu 17.04. First we tested the game using all
possible resolutions. The prototype game kept running at
60fps.

We performed stress tests on the average FPS versus the
number of active NPCs and interacting constantly (see Fig.
6). Up to 50 NPCs do not cause any overhead in our prototype.
Then, the FPS drop rate remains constant up to a total
of 125 NPCs, where we have approximately 20fps. Similar
behavior is obtained from 175 to 200 NPCs when average FPS
stabilizes around 10. Metroidvania titles rarely display more
than 30 active enemies, thus our prototype game achieved very
satisfactory performance.

Fig. 6. Enemies versus frames per second.

We tested the GMM by traversing the 4 Phases of a Scene.
We collected the RAM used by the game with GMM turned
on and off (see Fig. 7). GMM displays lower initial RAM
usage, which is even lower in the second phase, but increases
decreases in the third phase and is lowered again as we move
to the fourth phase. This decrease makes sense since there are
three parts loaded at that point. Consequently, our framework
can fulfill the purpose of reducing memory consumption.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Industry Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 843

Fig. 7. RAM memory, in MB, used during gameplay over 4 Phases. Better
viewed in color.

VI. CONCLUSION

In this work, we proposed programming framework for
supporting the development Metroidvanias. We implemented
a framework prototype that abstracts many complexities found
in real world projects by proposing solutions to common
problems found in this genre. We developed a game proto-
type with the purpose of verifying our framework prototype.
Experimental evaluation demonstrate that our framework is
both feasible, useful, and efficient.

Future research opportunities starting from this work in-
cludes: adding support for item dropping and pickup; incor-
porate procedural content generation techniques; adopting AI
with a predefined sequence of actions to increase the range
of implementation options; and improving AI for finer control
over bosses, for example, reinforcing their emotions and roles
in the narrative.

REFERENCES

[1] J. P. d. P. R. d. Silva, J. Veiga, and C. V. d. A. Carvalho, “Desenvolvi-
mento de jogos utilizando xna: um exemplo com o jogo spacex,” Revista
Eletrônica TECCEN, vol. 5, pp. 59–70, 2012.

[2] A. d. O. d. R. Franco, J. A. de Mesquita Neto, J. G. R. Maia, and
F. A. d. C. Gomes, “An interactive storytelling model for non-player
characters on electronic rpgs,” in Proceedings of SBGames 2015, 2015,
pp. 33–41.

[3] J. Gregory, Game engine architecture. AK Peters/CRC Press, 2017.
[4] P. Schuytema, Design de games: uma abordagem prática. Cengage

Learning, 2008.
[5] F. Boaventura and V. T. Sarinho, “Mendiga: A minimal engine for

digital games,” International Journal of Computer Games Technology,
vol. 2017, 2017.

[6] R. Nakamura and P. G. Câmara, “Design de jogos ea experiência de
exploraçao de espaços,” Obra digital: revista de comunicación, no. 5,
pp. 20–35, 2013.

[7] T. W. Stalnaker, “Procedural generation of metroidvania style levels
(thesis),” 2020.

[8] A. G. Rodrı́guez, C. Cotta, and A. J. F. Leiva, “An evolutionary
approach to metroidvania videogame design,” in XVIII Conferencia de la
Asociacion Española para la Inteligencia Artificial, 2018, pp. 518–523.

[9] Z. A. Algfoor, M. S. Sunar, and H. Kolivand, “A comprehensive study
on pathfinding techniques for robotics and video games,” International
Journal of Computer Games Technology, vol. 2015, p. 7, 2015.

[10] J. Schell, The Art of Game Design: A book of lenses. CRC Press, 2014.
[11] C. Nutt. (2015) The undying allure of the metroidvania. [Online].

Available: http://www.gamasutra.com/view/news/236410/The undying
allure of the Metroidvania.php

[12] G. S. David M. Bourg, AI for Game Developers. “O’Reilly Media,
Inc.”, 2004.

[13] G. L. Zuin, Y. Macedo, L. Chaimowicz, and G. L. Pappa, “Discovering
combos in fighting games with evolutionary algorithms,” in Proceedings
of the 2016 on Genetic and Evolutionary Computation Conference.
ACM, 2016, pp. 277–284.

[14] V. R. Feitosa, J. G. Maia, L. O. Moreira, and G. A. Gomes, “Gamevis:
Game data visualization for the web,” in 2015 14th Brazilian Symposium
on Computer Games and Digital Entertainment (SBGames), SBC.
IEEE, 2015, pp. 70–79.

[15] A. S. Bastos, R. F. Gomes, C. C. Dos Santos, and J. G. R. Maia,
“Assessing the experience of immersion in electronic games,” in 19th
Symposium on Virtual and Augmented Reality (SVR), SBC. IEEE, 2017,
pp. 146–154.

[16] T. Wahlberg, “Blockades in the metroidvania genre of games: A exam-
ination of backtracking,” 2015.

[17] R. Hunicke, M. LeBlanc, and R. Zubek, “Mda: A formal approach to
game design and game research,” in Proceedings of the AAAI Workshop
on Challenges in Game AI, vol. 4, no. 1, 2004, p. 1722.

[18] M. Cook, S. Colton, and J. Gow, “Initial results from co-operative co-
evolution for automated platformer design,” in European Conference on
the Applications of Evolutionary Computation. Springer, 2012, pp.
194–203.

[19] ——, “The angelina videogame design system—part i,” IEEE Transac-
tions on Computational Intelligence and AI in Games, vol. 9, no. 2, pp.
192–203, 2016.

[20] R. Nystrom, Game programming patterns. Genever Benning, 2014.
[21] J. Kärkkäinen, “Proseduraalisesti generoidut metroidvania-kentÄt,” Mas-

ter’s thesis, Tietojenkäsittelyn koulutusohjelma, 2016.
[22] S. Barbero Rodrı́guez et al., “Desarrollo de un videojuego sobre un

motor javascript,” B.S. thesis, Escuela Politécnica Superior, Mayo 2017.
[23] M. Kay and E. J. Powley, “The effect of visualising npc pathfinding on

player exploration,” in Proceedings of the 13th International Conference
on the Foundations of Digital Games. ACM, 2018, p. 60.

[24] C. DALY, “Utilizing modern game design practices in a solo-dev
environment,” Ph.D. dissertation, Stetson University, 2016.

[25] T. Büsser, “Creation of a video game the intricacies of game develop-
ment,” Master’s thesis, Kantonsschule Sargans, 2018.

[26] T. Minkkinen et al., Basics of Platform Games. Kajaanin ammattiko-
rkeakoulu, 2016.

[27] S. D. Maciejewski, “Shapeshifter of py,” in SUNY Undergraduate
Research Conference, 2015.

[28] A. U. ARAMINI, “An ai assisted framework for the design of 2d
platformers,” Master’s thesis, Politecnico di Milano, 2017.

[29] A. J. Champandard, AI Game Development: Synthetic Creatures with
Learning and Reactive Behaviors. New Riders, 2003.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Industry Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 844

