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Abstract– The use of meta-heuristics in the resolution of multi-

agent spatial reasoning problems is not a mature Artificial 

Intelligence and Games research field. To approach the problem 

of positioning agents in virtual terrains according to a required 

formation pattern, this paper details how to model this problem 

in a state-space search and optimization framework. With 

particular attention to strict processing time and domain 

constraints, then it analyzes the effectiveness of optimization 

algorithms with different nature: the Simulated Annealing and 

the Tabu Search algorithms. Experimental results indicate that 

these methods are able to achieve high optimization rates and to 

provide low error spatial agent distribution solutions. 
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I.  INTRODUCTION 

Meta-heuristics include heuristic search methods used to 

solve optimization problems. Based on limited processing time 

and domain constraints, such optimization methods have been 

studied in Real-Time Strategy games  [1]. [2] uses a Declara-

tive Programming approach to optimize the construction and 

location of buildings in a virtual battle scenario. [3] explores a 

Genetic Algorithm that uses a battle specification as input and 

optimizes the location of buildings in a virtual battle scenario. 

[4] uses a Best-First Search algorithm to investigate a search-

space filled with Potential Fields as an alternative to solve the 

problem of spatial arrangement of buildings. [5] explores a 

local search method where the Adaptive Search algorithm is 

used to solve the problem of optimizing the construction of 

protecting barriers (walls). Despite such efforts, the use of 

search and optimization algorithms in multi-agent game envi-

ronments is not a mature Artificial Intelligence and Games 

research field. Further work is still required in different fronts.  

This paper investigates the spatial distribution of terrestrial 

agents in the virtual terrain environment as a problem of spatial 

reasoning [6] and combinatorial optimization. To do so, the 

work explores meta-heuristic algorithms of different nature: the 

Simulated Annealing (SA) and the Tabu Search (TS) algorithms 

[7, 8]. While the SA is a single-solution iterative stochastic 

algorithm that starts with some arbitrary solution and does not 

use information collected during the search, the TS is a single-

solution meta-heuristic including various types of memory 

structures with the purpose of escaping from local optimum 

locations. This work analyzes the effectiveness of these algo-

rithms in the resolution of a spatial agent distribution problem, 

where agents need to be positioned in selected areas of the 

virtual terrain according to a required formation pattern. In 

addition to considering domain constraints, the algorithms were 

subject to 1s and 10s strict processing time limits, where the 

tests evaluated the error and the optimization rate of the gener-

ated spatial agent distributions. 

II. A MODEL FOR THE AGENT DISTRIBUTION PROBLEM 

A user interacting with the virtual terrain environment is 

responsible for making the initial reconnaissance of the terrain 

region in which agents have to be deployed. Within this user-

selected deployment area, the individual position of each agent 

is determined by the presence of static terrain features of inter-

est to which the agents are positioned close to. This is a strong 

constraint in this spatial reasoning problem. It is illustrated in 

Fig. 1. We intentionally used the “terrain feature” term in this 

paper. That is because these features can largely vary from one 

application problem to another. In effect, such features can be 

instantiated as buildings, mountains, roads, courses of water, 

vegetation types (used in our work), and so on. From an arbi-

trary initial agent distribution in this area, combinations of 

individual agent positions are evaluated during the search and 

optimization process. The goal is to search for the optimal 

positions for the agents as far as a targeted formation pattern is 

concerned. This spatial reasoning problem is modeled as:  
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Fig. 1. The construction of an arbitrary initial agent distribution in the circular formation used as input for the SA and TS algorithms.  

 

i) State structure: For n agents (Ag0, Ag1 , ....., Agn) in the 

virtual environment, the List<Vector2> named posAg[n] is 

used. This structure records the position of each agent in the 

virtual terrain. ii) State transition operator: A neighborhood 

function N is a mapping N: S → 2
S
 that assigns each solution s 

∈ S to a set of solutions N(s) ⊂ S. A solution s’ in the vicinity 

of s (s’ ∈ N(s)) is called neighbor of s. A neighbor is generated 

by the execution of a moveAg() operator that performs a small 

disturbance in the current solution s. The moveAg() alters the 

current Agi position to another one, where positions are deter-

mined by the terrain features in the vicinity of the current 

agent position (Fig. 1). iii) Solution quality: The objective 

function f(x) formulates the objective to be achieved. It asso-

ciates each solution in the search space with a real value de-

scribing the quality or suitability of the solution, f: S → R. 

Then, it allows a complete ordering of all solutions in the 

search space. The objective function guides the search toward 

“good” solutions. 

In this work, agents are spatially distributed into the select-

ed terrain area according to a circular formation pattern. Thus, 

the objective function measures the circularity of the agent 

distribution solution. The circularity is such that C = 4πA/P
2
, 

where C is the circularity, A is the area and P is the perimeter. 

The individual position of each agent is linked to the presence 

and consequent position of terrain features in the area in which 

the agents have to be located. For 12 agents, for example, it is 

possible to calculate the minimum radius of the circular for-

mation required to ensure that agents are, for example, at least 

10m from each other, as stated by the underlying domain con-

straint (Fig. 1). A perfect arbitrary circle with two points ran-

domly positioned on the circle outline results in a triangle 

(Fig. 1 (A)). In it, there are two edges with the same magni-

tude which is the minimum formation radius (minRadius); the 

edge is defined by the minimum distance (10m) between adja-

cent agents. To place more points at the circle outline, it is 

used a fixed angle for each additional point. This angle (e.g. 

360º/(12 agents) = 30º) ensures that each agent will be at a 

valid distance between each other. The tracing of a bisector at 

the center of the arbitrary circle results in a triangle rectangle 

(Fig. 1 (A)), allowing the use of trigonometric functions. The 

minimum radius value to ensure the required distance between 

the adjacent agents in this spatial distribution is such that si-

ne((angle = 30º) / 2) = ((adjacentDistance = 10m) / 2) / 

minRadius, resulting on the minRadius of 19.31m. 

The minimum circular formation radius and the position-

ing angle of the agents are not sufficient to build a valid initial 

spatial distribution for the agents. To do this, a center point is 

selected and used as a reference point in which the distance is 

defined by the minimum radius. From this point, the closest 

terrain feature that satisfies the domain restrictions is selected 

(Fig. 1 (B). With the terrain feature, an agent is positioned at 

that location. From the position of the first agent, the algo-

rithm updates the angle of the first point in order to find the 

next reference point. From there, the algorithm searches for 

another terrain feature that is present at the vicinity of that 

location, permitting to determine a position to the second 

agent. The process continues until an initial agent distribution 

is found (Fig. 1 (C)). If there are no terrain features of interest 

in the searched locations, the agent positioning process restarts 

elsewhere in the selected virtual terrain area. 

III. THE SEARCH AND OPTIMIZATION PROCESS 

The SA is a heuristic for global optimization [7, 8]. From 

an initial agent distribution solution, captured as a state in this 

state-space search and optimization problem, a new solution in 

the vicinity of the current solution is generated according to 

the algorithm iteration. If the new solution is better, it replaces 

the current solution. If it is worse, it will be accepted accord-

ing to a certain probability that depends on the current temper-

ature value. With the algorithm execution, the probability of 

accepting such kind of state transition move (opposing the 

optimization direction) decreases until the algorithm allows 

substitutions only in direction to better agent distribution solu-

tion states. 

In the SA (Algorithm 1), the cooling rate and temperature 

parameters are adjusted. The appropriate initial temperature 

(t0) is specific to the problem, and is estimated from an analy-

sis in which all solution state quality increments are accepted 

permitting to calculate the average increase. Conditional vari-

ables are checked during the optimization process. If the tem-

perature variable reaches zero, the optimization is finished. 

The time constraint variable guarantees that the state does not 

get stuck in a solution that does not have a quality improve-

ment. From an initial solution and a list of terrain features in 

the regions where agents have to be distributed, a group of 

neighboring solution states is generated. Neighboring solu-

tions are formed by modifying the position of a randomly 

chosen agent, which is positioned next to another terrain fea-

ture (Fig. 1). From this, all generated neighboring solutions are 
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evaluated individually. When one of these neighboring solu-

tions has a better quality than the initial solution, the neighbor-

ing solution is attributed to the current solution. When a se-

lected neighbor solution does not improve on the initial solu-

tion, the probability of acceptance is verified through the 

Boltzmann distribution. 

Algorithm 1. The Simulated Annealing algorithm. 

1: algorithm Simulated Annealing() 

 input:initialState(s),timeConstraint, terrainFeature(searchList) 

 output:bestState(sBest) 

2: sBest ← s 

3: Cooling ← 0.95 

4: Temperature ← SetTemperature()  

5: while temperature > 0 and timeConstraint > 0 do 

6:         N[s]← GenerateNeighborhood(si,searchList)  

7: forall s in N[s] do 

8:                 s’ ← s 

9:                 if f(s’) > f(sBest) then 

10:                         sBest ← s’ 

11:                 else 

12:                         Δ ← f(s’) - f(sBest) 

13:                         if EΔ/k*temperature > Random(0,1) then 

14:                                 sBest ← s’ 

15:                         end if 

16:                 end if 

17: end for 

18: temperature ← temperature * Cooling 

19:  end while 

20: end algorithm 

The probability of accepting a worse neighboring solution 

is proportional to the temperature T. At high temperatures, the 

probability of accepting worse state transition movements is 

high. If T = ∞, all movements are accepted. At low tempera-

tures, the probability of accepting a worse movement decreas-

es. If T = 0, no worse movement is accepted. Therefore, the 

probability of accepting a large deterioration in the solution 

quality decreases exponentially towards 0. When all neighbor-

ing solutions are evaluated, the temperature is decreased. The 

SA continues until the termination conditions are met. 

The TS algorithm [7, 8] seeks to improve the search by ac-

cepting state transition moves that do not improve the quality 

of the solution. The search space contains all the possible 

solutions considered during the search. The neighborhood 

structure is a set of solutions in this search space. The method 

explores the solution space by moving the current solution to 

another one. To do so, it uses a tabu-list to record the move-

ment of a solution examined recently. If the algorithm accepts 

the solution that does not have the best quality, the tabu-list 

mechanism prevents the formation of search cycles. 

The initial configuration of the TS method (Algorithm 2) 

assigns the initial agent distribution solution to a variable and 

qualifies it to record the best found solution. Because this 

initial state is visited early in the algorithm, the tabu-list is 

initialized with it. The tabu-list is a short-term memory struc-

ture that records the visited states. The algorithm searches for 

a solution until a specified stop condition is achieved. Neigh-

boring solutions are generated with the random repositioning 

of a chosen agent to terrain feature positions near to an ideal 

agent position (Fig. 1). Once the neighborhood structure is 

generated, the first element of the neighborhood is assigned as 

having the best quality. 

Algorithm 2. The Tabu Search algorithm. 

1: algorithm Tabu Search() 

 input:initialState(s),timeConstraint, terrainFeature(searchList) 

 output:bestState(sBest) 

2: sBest ← s 

3: tabuList.push(sBest) 

4: while timeConstraint > 0 do 

5:         N[s]← GenerateNeighborhood(sBest,searchList) 

6:        sbestCandidate ← N.firstElement 

7:        forall sc in N[s] do 

8:                 if ((( not tabuList.contains(sc) and  
(F(sc) > F((sbestCandidate)))) then 

9:                         sbestCandidate ← sc 

10:                 end if 

11:        end for 

12:        if f(sbestCandidate) > f(sBest) then 

13:               sBest ← sbestCandidate 

14:        end if 

15:        tabuList.push(sbestCandidate) 

16:        if (tabuList.Size > maxTabuSize) then 

17:        tabuList.RemoveFirst() 

18: end if 

19:  end while 

20: end algorithm 

The tabu-list is implemented so that the search is not over-

ly restrictive in its ability of searching for better solutions. In 

certain situations, the condition of belonging to the tabu-list 

can prohibit state-space movements toward a global optimum. 

Therefore, conditions to cancel the tabu, called as aspiration 

criterion, are necessary. This criterion allows a change of the 

current solution, even if it belongs to the tabu-list. For each 

neighborhood solution, if these states do not belong to the 

tabu-list and they have the best quality among the other neigh-

borhood solutions, they are called the best solution in that 

neighborhood. According to the aspiration criterion, if the 

neighborhood search has found a better solution, it is taken as 

the best solution. The best local candidate is always added to 

the tabu-list. If the tabu-list is full, some of its elements may 

expire. Thus, the procedure selects the best local candidate 

even if it has worse quality than the best found agent distribu-

tion solution. 

IV. EXPERIMENTS AND RESULTS 

The experiments analyze the effectiveness of the SA and 

TS algorithms in the optimization of the agents’ distributions 

in the virtual terrain. The tests were carried out in 500 differ-

ent virtual terrain areas. There, each algorithm executed the 

search and optimization of solutions referring to different 

numbers of agents.  
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 (A)  (B) 

 (C)  (D) 
Fig. 2. The average error and optimization rate within 1s and 10s for the resulting spatial agent distribution solutions. 

 

Within the 1s and 10s (according to [9], users will increas-

ingly feel more disconnected from the system execution if 

they don’t get a response in less than 10s), starting from valid 

initial agent distributions (the ones in which the domain con-

straints are satisfied – Fig. 1 (C)), the algorithms modifies the 

agent positions to obtain the best possible spatial distribution. 

The evaluation metrics used in the tests are: i) the average 

agent distribution error and (ii) the average optimization rate 

for the algorithms (i.e. mean values computed from the best 

results obtained in each one of the 500 terrain areas). The tests 

were executed on the Unity Engine version® 2019.2.2f1, 

running on the Intel Core i7 6700 HQ CPU @2.60Ghz proces-

sor, 16GB, and Windows 10. Fig. 2 presents test results. With-

in 1s, the TS error decreased with the increase of the number 

of agents. It was not possible to observe similar behavior (de-

crease / increase) on the SA error. Up to 30 agents, the TS 

error was higher than the SA one. For 40-50 agents, this TS 

error was lower than the SA one. Within 10s, the SA error 

decreased up to 40 agents, where it remained stable with 40-50 

agents. The TS error had a small decrease in relation to the 

increase of the number of agents. Within 1s, the SA optimiza-

tion rate for 10 agents was slightly reduced, while it increased 

and then remained constant with 20-50 agents. Similar reduc-

tion was observed with the execution of the TS with 10-20 

agents, and a constant higher optimization rate for the TS was 

observed with 20-50 agents. Up to 30 agents, the SA optimiza-

tion rate was higher than the TS rate, while it was lower than 

the TS with 40-50 agents. Within 10s, the optimization rate for 

both algorithms increased with the increase of the number of 

agents. In conclusion, both algorithms presented satisfactory 

agent distribution results within 1s and 10s. Both SA and TS 

errors diminished with the increase of the processing time 

limit. The TS presented a high error decrease from 1s to 10s. 

For all number of agents, the TS optimization rate was higher 

than the SA optimization rate. From 1s to 10s, there was an 

improvement on the TS optimization rate, while similar SA 

improvement was only observed with 40-50 agents. 

V. FINAL REMARKS 

This paper investigates the effectiveness of meta-heuristics 

in the resolution of a multi-agent spatial distribution problem. 

It details how to model this state-space search and optimiza-

tion problem in order to obtain solutions with the SA and TS 

algorithms. With strict processing time limits, the tested algo-

rithms achieved spatial distributions for the agents in different 

virtual terrain scenarios, where the solutions were close to the 

ideal formation pattern. All in all, this work so far presents 

promising results in our project, where a deeper experimental 

analysis of this research problem is still under-investigation. In 

addition, future work will approach similar spatial reasoning 

problems with: the combined use of static and dynamic terrain 

features, the analysis of other kinds of formation patterns and 

the exploration of hybrid meta-heuristic approaches. 
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