
The Spatial Distribution of Agents in Virtual Terrains

through Search and Optimization Algorithms

Felipe G. Pires

Undergraduate Program in Computer Engineering

Federal University of Santa Maria – UFSM

Santa Maria – RS, Brazil

felgpires@gmail.com

Edison P. Freitas

Graduate Program in Computer Science

Federal University of Rio Grande do Sul – UFRGS

Porto Alegre – RS, Brazil

edisonpf@gmail.com

Marcos S. Morgenstern

Graduate Program in Computer Science

Federal University of Santa Maria – UFSM

Santa Maria – RS, Brazil

marcossmorgenstern@gmail.com

Luis A. L. Silva

Graduate Program in Computer Science

Federal University of Santa Maria – UFSM

Santa Maria – RS, Brazil

luisalvaro@inf.ufsm.br

Abstract– The use of meta-heuristics in the resolution of multi-

agent spatial reasoning problems is not a mature Artificial

Intelligence and Games research field. To approach the problem

of positioning agents in virtual terrains according to a required

formation pattern, this paper details how to model this problem

in a state-space search and optimization framework. With

particular attention to strict processing time and domain

constraints, then it analyzes the effectiveness of optimization

algorithms with different nature: the Simulated Annealing and

the Tabu Search algorithms. Experimental results indicate that

these methods are able to achieve high optimization rates and to

provide low error spatial agent distribution solutions.

Keywords– Spatial agent distribution, Meta-heuristics; Games

I. INTRODUCTION

Meta-heuristics include heuristic search methods used to

solve optimization problems. Based on limited processing time

and domain constraints, such optimization methods have been

studied in Real-Time Strategy games [1]. [2] uses a Declara-

tive Programming approach to optimize the construction and

location of buildings in a virtual battle scenario. [3] explores a

Genetic Algorithm that uses a battle specification as input and

optimizes the location of buildings in a virtual battle scenario.

[4] uses a Best-First Search algorithm to investigate a search-

space filled with Potential Fields as an alternative to solve the

problem of spatial arrangement of buildings. [5] explores a

local search method where the Adaptive Search algorithm is

used to solve the problem of optimizing the construction of

protecting barriers (walls). Despite such efforts, the use of

search and optimization algorithms in multi-agent game envi-

ronments is not a mature Artificial Intelligence and Games

research field. Further work is still required in different fronts.

This paper investigates the spatial distribution of terrestrial

agents in the virtual terrain environment as a problem of spatial

reasoning [6] and combinatorial optimization. To do so, the

work explores meta-heuristic algorithms of different nature: the

Simulated Annealing (SA) and the Tabu Search (TS) algorithms

[7, 8]. While the SA is a single-solution iterative stochastic

algorithm that starts with some arbitrary solution and does not

use information collected during the search, the TS is a single-

solution meta-heuristic including various types of memory

structures with the purpose of escaping from local optimum

locations. This work analyzes the effectiveness of these algo-

rithms in the resolution of a spatial agent distribution problem,

where agents need to be positioned in selected areas of the

virtual terrain according to a required formation pattern. In

addition to considering domain constraints, the algorithms were

subject to 1s and 10s strict processing time limits, where the

tests evaluated the error and the optimization rate of the gener-

ated spatial agent distributions.

II. A MODEL FOR THE AGENT DISTRIBUTION PROBLEM

A user interacting with the virtual terrain environment is

responsible for making the initial reconnaissance of the terrain

region in which agents have to be deployed. Within this user-

selected deployment area, the individual position of each agent

is determined by the presence of static terrain features of inter-

est to which the agents are positioned close to. This is a strong

constraint in this spatial reasoning problem. It is illustrated in

Fig. 1. We intentionally used the “terrain feature” term in this

paper. That is because these features can largely vary from one

application problem to another. In effect, such features can be

instantiated as buildings, mountains, roads, courses of water,

vegetation types (used in our work), and so on. From an arbi-

trary initial agent distribution in this area, combinations of

individual agent positions are evaluated during the search and

optimization process. The goal is to search for the optimal

positions for the agents as far as a targeted formation pattern is

concerned. This spatial reasoning problem is modeled as:

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Short Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 415

Fig. 1. The construction of an arbitrary initial agent distribution in the circular formation used as input for the SA and TS algorithms.

i) State structure: For n agents (Ag0, Ag1 ,, Agn) in the

virtual environment, the List<Vector2> named posAg[n] is

used. This structure records the position of each agent in the

virtual terrain. ii) State transition operator: A neighborhood

function N is a mapping N: S → 2
S
 that assigns each solution s

∈ S to a set of solutions N(s) ⊂ S. A solution s’ in the vicinity

of s (s’ ∈ N(s)) is called neighbor of s. A neighbor is generated

by the execution of a moveAg() operator that performs a small

disturbance in the current solution s. The moveAg() alters the

current Agi position to another one, where positions are deter-

mined by the terrain features in the vicinity of the current

agent position (Fig. 1). iii) Solution quality: The objective

function f(x) formulates the objective to be achieved. It asso-

ciates each solution in the search space with a real value de-

scribing the quality or suitability of the solution, f: S → R.

Then, it allows a complete ordering of all solutions in the

search space. The objective function guides the search toward

“good” solutions.

In this work, agents are spatially distributed into the select-

ed terrain area according to a circular formation pattern. Thus,

the objective function measures the circularity of the agent

distribution solution. The circularity is such that C = 4πA/P
2
,

where C is the circularity, A is the area and P is the perimeter.

The individual position of each agent is linked to the presence

and consequent position of terrain features in the area in which

the agents have to be located. For 12 agents, for example, it is

possible to calculate the minimum radius of the circular for-

mation required to ensure that agents are, for example, at least

10m from each other, as stated by the underlying domain con-

straint (Fig. 1). A perfect arbitrary circle with two points ran-

domly positioned on the circle outline results in a triangle

(Fig. 1 (A)). In it, there are two edges with the same magni-

tude which is the minimum formation radius (minRadius); the

edge is defined by the minimum distance (10m) between adja-

cent agents. To place more points at the circle outline, it is

used a fixed angle for each additional point. This angle (e.g.

360º/(12 agents) = 30º) ensures that each agent will be at a

valid distance between each other. The tracing of a bisector at

the center of the arbitrary circle results in a triangle rectangle

(Fig. 1 (A)), allowing the use of trigonometric functions. The

minimum radius value to ensure the required distance between

the adjacent agents in this spatial distribution is such that si-

ne((angle = 30º) / 2) = ((adjacentDistance = 10m) / 2) /

minRadius, resulting on the minRadius of 19.31m.

The minimum circular formation radius and the position-

ing angle of the agents are not sufficient to build a valid initial

spatial distribution for the agents. To do this, a center point is

selected and used as a reference point in which the distance is

defined by the minimum radius. From this point, the closest

terrain feature that satisfies the domain restrictions is selected

(Fig. 1 (B). With the terrain feature, an agent is positioned at

that location. From the position of the first agent, the algo-

rithm updates the angle of the first point in order to find the

next reference point. From there, the algorithm searches for

another terrain feature that is present at the vicinity of that

location, permitting to determine a position to the second

agent. The process continues until an initial agent distribution

is found (Fig. 1 (C)). If there are no terrain features of interest

in the searched locations, the agent positioning process restarts

elsewhere in the selected virtual terrain area.

III. THE SEARCH AND OPTIMIZATION PROCESS

The SA is a heuristic for global optimization [7, 8]. From

an initial agent distribution solution, captured as a state in this

state-space search and optimization problem, a new solution in

the vicinity of the current solution is generated according to

the algorithm iteration. If the new solution is better, it replaces

the current solution. If it is worse, it will be accepted accord-

ing to a certain probability that depends on the current temper-

ature value. With the algorithm execution, the probability of

accepting such kind of state transition move (opposing the

optimization direction) decreases until the algorithm allows

substitutions only in direction to better agent distribution solu-

tion states.

In the SA (Algorithm 1), the cooling rate and temperature

parameters are adjusted. The appropriate initial temperature

(t0) is specific to the problem, and is estimated from an analy-

sis in which all solution state quality increments are accepted

permitting to calculate the average increase. Conditional vari-

ables are checked during the optimization process. If the tem-

perature variable reaches zero, the optimization is finished.

The time constraint variable guarantees that the state does not

get stuck in a solution that does not have a quality improve-

ment. From an initial solution and a list of terrain features in

the regions where agents have to be distributed, a group of

neighboring solution states is generated. Neighboring solu-

tions are formed by modifying the position of a randomly

chosen agent, which is positioned next to another terrain fea-

ture (Fig. 1). From this, all generated neighboring solutions are

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Short Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 416

evaluated individually. When one of these neighboring solu-

tions has a better quality than the initial solution, the neighbor-

ing solution is attributed to the current solution. When a se-

lected neighbor solution does not improve on the initial solu-

tion, the probability of acceptance is verified through the

Boltzmann distribution.

Algorithm 1. The Simulated Annealing algorithm.

1: algorithm Simulated Annealing()

 input:initialState(s),timeConstraint, terrainFeature(searchList)

 output:bestState(sBest)

2: sBest ← s

3: Cooling ← 0.95

4: Temperature ← SetTemperature()

5: while temperature > 0 and timeConstraint > 0 do

6: N[s]← GenerateNeighborhood(si,searchList)

7: forall s in N[s] do

8: s’ ← s

9: if f(s’) > f(sBest) then

10: sBest ← s’

11: else

12: Δ ← f(s’) - f(sBest)

13: if EΔ/k*temperature > Random(0,1) then

14: sBest ← s’

15: end if

16: end if

17: end for

18: temperature ← temperature * Cooling

19: end while

20: end algorithm

The probability of accepting a worse neighboring solution

is proportional to the temperature T. At high temperatures, the

probability of accepting worse state transition movements is

high. If T = ∞, all movements are accepted. At low tempera-

tures, the probability of accepting a worse movement decreas-

es. If T = 0, no worse movement is accepted. Therefore, the

probability of accepting a large deterioration in the solution

quality decreases exponentially towards 0. When all neighbor-

ing solutions are evaluated, the temperature is decreased. The

SA continues until the termination conditions are met.

The TS algorithm [7, 8] seeks to improve the search by ac-

cepting state transition moves that do not improve the quality

of the solution. The search space contains all the possible

solutions considered during the search. The neighborhood

structure is a set of solutions in this search space. The method

explores the solution space by moving the current solution to

another one. To do so, it uses a tabu-list to record the move-

ment of a solution examined recently. If the algorithm accepts

the solution that does not have the best quality, the tabu-list

mechanism prevents the formation of search cycles.

The initial configuration of the TS method (Algorithm 2)

assigns the initial agent distribution solution to a variable and

qualifies it to record the best found solution. Because this

initial state is visited early in the algorithm, the tabu-list is

initialized with it. The tabu-list is a short-term memory struc-

ture that records the visited states. The algorithm searches for

a solution until a specified stop condition is achieved. Neigh-

boring solutions are generated with the random repositioning

of a chosen agent to terrain feature positions near to an ideal

agent position (Fig. 1). Once the neighborhood structure is

generated, the first element of the neighborhood is assigned as

having the best quality.

Algorithm 2. The Tabu Search algorithm.

1: algorithm Tabu Search()

 input:initialState(s),timeConstraint, terrainFeature(searchList)

 output:bestState(sBest)

2: sBest ← s

3: tabuList.push(sBest)

4: while timeConstraint > 0 do

5: N[s]← GenerateNeighborhood(sBest,searchList)

6: sbestCandidate ← N.firstElement

7: forall sc in N[s] do

8: if (((not tabuList.contains(sc) and
(F(sc) > F((sbestCandidate)))) then

9: sbestCandidate ← sc

10: end if

11: end for

12: if f(sbestCandidate) > f(sBest) then

13: sBest ← sbestCandidate

14: end if

15: tabuList.push(sbestCandidate)

16: if (tabuList.Size > maxTabuSize) then

17: tabuList.RemoveFirst()

18: end if

19: end while

20: end algorithm

The tabu-list is implemented so that the search is not over-

ly restrictive in its ability of searching for better solutions. In

certain situations, the condition of belonging to the tabu-list

can prohibit state-space movements toward a global optimum.

Therefore, conditions to cancel the tabu, called as aspiration

criterion, are necessary. This criterion allows a change of the

current solution, even if it belongs to the tabu-list. For each

neighborhood solution, if these states do not belong to the

tabu-list and they have the best quality among the other neigh-

borhood solutions, they are called the best solution in that

neighborhood. According to the aspiration criterion, if the

neighborhood search has found a better solution, it is taken as

the best solution. The best local candidate is always added to

the tabu-list. If the tabu-list is full, some of its elements may

expire. Thus, the procedure selects the best local candidate

even if it has worse quality than the best found agent distribu-

tion solution.

IV. EXPERIMENTS AND RESULTS

The experiments analyze the effectiveness of the SA and

TS algorithms in the optimization of the agents’ distributions

in the virtual terrain. The tests were carried out in 500 differ-

ent virtual terrain areas. There, each algorithm executed the

search and optimization of solutions referring to different

numbers of agents.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Short Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 417

 (A) (B)

 (C) (D)
Fig. 2. The average error and optimization rate within 1s and 10s for the resulting spatial agent distribution solutions.

Within the 1s and 10s (according to [9], users will increas-

ingly feel more disconnected from the system execution if

they don’t get a response in less than 10s), starting from valid

initial agent distributions (the ones in which the domain con-

straints are satisfied – Fig. 1 (C)), the algorithms modifies the

agent positions to obtain the best possible spatial distribution.

The evaluation metrics used in the tests are: i) the average

agent distribution error and (ii) the average optimization rate

for the algorithms (i.e. mean values computed from the best

results obtained in each one of the 500 terrain areas). The tests

were executed on the Unity Engine version® 2019.2.2f1,

running on the Intel Core i7 6700 HQ CPU @2.60Ghz proces-

sor, 16GB, and Windows 10. Fig. 2 presents test results. With-

in 1s, the TS error decreased with the increase of the number

of agents. It was not possible to observe similar behavior (de-

crease / increase) on the SA error. Up to 30 agents, the TS

error was higher than the SA one. For 40-50 agents, this TS

error was lower than the SA one. Within 10s, the SA error

decreased up to 40 agents, where it remained stable with 40-50

agents. The TS error had a small decrease in relation to the

increase of the number of agents. Within 1s, the SA optimiza-

tion rate for 10 agents was slightly reduced, while it increased

and then remained constant with 20-50 agents. Similar reduc-

tion was observed with the execution of the TS with 10-20

agents, and a constant higher optimization rate for the TS was

observed with 20-50 agents. Up to 30 agents, the SA optimiza-

tion rate was higher than the TS rate, while it was lower than

the TS with 40-50 agents. Within 10s, the optimization rate for

both algorithms increased with the increase of the number of

agents. In conclusion, both algorithms presented satisfactory

agent distribution results within 1s and 10s. Both SA and TS

errors diminished with the increase of the processing time

limit. The TS presented a high error decrease from 1s to 10s.

For all number of agents, the TS optimization rate was higher

than the SA optimization rate. From 1s to 10s, there was an

improvement on the TS optimization rate, while similar SA

improvement was only observed with 40-50 agents.

V. FINAL REMARKS

This paper investigates the effectiveness of meta-heuristics

in the resolution of a multi-agent spatial distribution problem.

It details how to model this state-space search and optimiza-

tion problem in order to obtain solutions with the SA and TS

algorithms. With strict processing time limits, the tested algo-

rithms achieved spatial distributions for the agents in different

virtual terrain scenarios, where the solutions were close to the

ideal formation pattern. All in all, this work so far presents

promising results in our project, where a deeper experimental

analysis of this research problem is still under-investigation. In

addition, future work will approach similar spatial reasoning

problems with: the combined use of static and dynamic terrain

features, the analysis of other kinds of formation patterns and

the exploration of hybrid meta-heuristic approaches.

REFERENCES

[1] S. Ontanón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M.

Preuss, "A survey of real-time strategy game ai research and competition
in starcraft," IEEE Trans. on Computational Intelligence and AI in

games, vol. 5, pp. 293-311, 2013.

[2] M. Certicky, "Implementing a Wall-In Building Placement in StarCraft
with Declarative Programming," arXiv:1306.44602013.

[3] N. A. Barriga, M. Stanescu, and M. Buro, "Building placement

optimization in real-time strategy games," in Conf. on AI and Interactive
Digital Entertainment (AIIDE 2014), Raleigh, NC, USA, 2014, pp. 2-7.

[4] C. F. Oliveira and C. A. G. Madeira, "Creating efficient walls using

potential fields in real-time strategy games," in Comp. Intelligence and
Games (CIG 2015), Tainan, Taiwan, 2015, pp. 138-145.

[5] F. Richoux, A. Uriarte, and S. Ontanón, "Walling in Strategy Games via

Constraint Optimization," in Conf. on AI and Interactive Digital
Entertainment (AIIDE 2014), Raleigh, NC, USA, 2014, pp. 52-58.

[6] K. D. Forbus, J. V. Mahoney, and K. Dill, "How qualitative spatial

reasoning can improve strategy game AIs," IEEE Intelligent Systems,
vol. 17, 2002.

[7] I. BoussaïD, J. Lepagnot, and P. Siarry, "A survey on optimization

metaheuristics," Information sciences, vol. 237, pp. 82-117, 2013.
[8] E.-G. Talbi, Metaheuristics: from design to implementation vol. 74: John

Wiley & Sons, 2009.

[9] J. Nielsen, Usability engineering: Elsevier, 1994.

0

0.005

0.01

0.015

0.02

0.025

0.03

10 agents 20 agents 30 agents 40 agents 50 agents

E
r
r
o
r

SA

TS

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

10 agents 20 agents 30 agents 40 agents 50 agents

O
p

ti
m

iz
a

ti
o

n
 r

a
te

SA

TS

0

0.005

0.01

0.015

0.02

0.025

0.03

10 agents 20 agents 30 agents 40 agents 50 agents

E
r
r
o
r

SA

TS

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

10 agents 20 agents 30 agents 40 agents 50 agents

O
p

ti
m

iz
a

ti
o

n
 r

a
te

SA

TS

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Short Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 418

