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Abstract—This article proposes an adaptation from the model
of Bianco for fast-forwarding agents in crowd simulation, which
enables us to accurately fast forward agents in time. Besides being
able to jump from one position to another, agents are able to stay
inside their track, it means, the new position is calculated taking
into account the original global path the agent would follow,
if not being fast-forwarded. Obstacles and other agents around
are also taken into account when calculating the new position. In
addition, we included a personality aspect on agents, which affect
their behaviors and, also, be taken into account when jumping
to a future time and space. We conducted some experiments to
validate our model, which shows that it was able to indeed fast
forward agents from a position to another, in a coherent time,
sticking to a given global path while avoiding collisions. Finally,
we present a use case, showing that our method can fit inside a
”Fog of War” system.

Index Terms—crowd simulation, virtual agents, fast forward-
ing

I. INTRODUCTION

Since the pioneer work proposed by Thalmann and
Musse [1], many other methods were proposed for crowd
simulation, each one with a significant contribution. There are
methods that deal with crowds from a microscopic point of
view [2], [3], as well methods that deal with a macroscopic
point of view [4], [5] and, even, methods which combine
both microscopic and macroscopic simulation strategies [6].
Others explored high dense crowds [2], [7], heterogeneous
behaviors [8], navigation control [9] and personality traits for
agents [10], [11].

Despite the great number of methods proposed for the most
varied range of subjects concerning crowd simulation, only
very few of them tackled the problem of fast-forwarding a
simulation or, in other words, instantly jumping agents from
a position A in time X to another position B in time Y, while
maintaining a coherent path and with a minimum error. Such
a feature is especially useful if performance is taken into
account. For example, if a simulation is fast-forwarded from
frame 200 to frame 300, this interval of 100 frames does not
need to be simulated, relieving computational resources. In

their work, Bianco et al. [12] proposed a method to estimate
the future position of agents in crowd simulations. A Pedes-
trian Dead Reckoning (PDR) method is used, evaluating the
prior positions, velocities, and goals of each agent. The final
positions are then estimated based on a global environment
complexity factor, that aims to impact the fast-forwarding
process, as well as the interaction among agents. Their model
was extended by Bianco et al. [13] to allow the inclusion of
events (e.g. adding an obstacle) during the jumping period.

In games, movement estimation of agents in virtual envi-
ronments is a common topic of research, especially regarding
computer-controlled units in Real-Time Strategy (RTS) games.
Due to ”Fog of War” systems (i.e. vision restricted to only the
player units), that estimation must be implemented considering
a partially observable environment. Hagelback and Johanso
[14] use potential fields to control a bot with imperfect
information (i.e. affected by the Fog of War) to explore
and navigate the environment. Cho et al. [15] explore the
effect of Fog of War system in predictions made by machine
learning algorithms. Another common approach includes giv-
ing perfect information about the environment to computer-
controlled units, allowing the movement estimation to deal
with obstacles and terrain deformation hidden by the Fog
of War. This approach can be combined with a fast forward
method, reducing the computational cost of units navigating
through the fog.

Although interesting, the method of Bianco et al. [12]
has space to improve. The global environment complexity
factor is too general, which means that the more complex the
environment, the more chances to have a high error rate and,
thus, agents jumping to positions far away from where they
should be. Therefore, in this work, we aim to adapt the model
of Bianco et al. [12] to make it more accurate. So, given an
initial and final time/frame, each agent is able to teleport from
its current position A to a future position B, following their
own path and time constraints. Thus, we are not only able
to teleport agents, but to avoid collision with obstacles and
maintain a coherent path based on the agent current position
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and its goal. Also, our agents can have personality traits, which
impact their behaviors and are, also, taken into account in the
fast-forwarding method. Finally, as a use case, we integrate our
adapted model with a Fog of War system, placing occluded
agents in a ”suspended” state until the estimated position is
reached or a visible area obstruct its path.

This paper is divided as follows: Section II presents the
related work regarding position estimation of agents in crowd
simulations and real-world pedestrians, along with methods
regarding crowd simulation optimizations during movement
prediction. Section III presents the methodology used for
integrating a path planning algorithm and personality traits of
agents within the fast-forwarding model, as well as how we
include personality traits to our agents. Section IV presents the
results achieved in the integration process and a use case of our
proposed method in a fog of war system. Section V presents
the final considerations and future work of our method.

II. RELATED WORK

Due to the increasing demands of simulated environments,
such as a higher number of agents and larger scenarios, several
methods have been presented to reduce the computational
cost of agent movement, collision detection, and collision
avoidance on crowd simulations. Pettre et al. [16] presented
a method where a level of simulation (LOS), similar to a
level of detail (LOD), is given to different sections of the
navigation mesh based on the camera viewpoint. Agents closer
to the camera are updated with higher frequency. Farther
away and occluded agents are given lower priority. Osborne
and Dickinson [17] presented a similar method for grouping
agents using a hierarchical level of detail (LOD). A group
can be defined as a set of agents of the same type, goal,
and nearby positions. The LOD of a group is defined based
on its distance to the camera. Guy et al. [18] proposed a
parallel method for local collision avoidance using the concept
of velocity obstacles. Each agent takes into consideration the
current velocity of nearby agents to create a set of cones, each
containing the possible directions that will cause a collision.
After that, the direction of each agent is adjusted seeking a
point not included inside the cones, which avoids collision
between them.

Different methods and navigation techniques to estimate
the position of real-life pedestrians, which were later adapted
for virtual agents, are presented in the literature. Beaure-
gard and Haas [19] used a pedestrian dead reckoning (PDR)
method combined with acceleration sensors to estimate indoor
positions. Taia et al. [20] combines a PDR technique with
A* path planning algorithm [21] to provide a more precise
approximation of pedestrian routes. Yi et al. [22] proposed
a method for estimating the travel time for pedestrians in
crowded scenes. Their model defines a group of regions of
interest (ROI) for pairings of both sources and destinations,
calculating the traffic flow and densities for each region.
Environmental elements and stationary persons are taken into
account as obstacles. Abnormal behaviors, such as wandering

pedestrians, can be identified based on the deviation from their
estimated travel time.

Bianco et al. [12] presented a method for estimating the fu-
ture individual position of virtual agents in crowd simulations.
Their work uses a PDR method to define the prior positions
of each agent, taking into consideration their goal and speed
at the frame where the jump occurs. Future positions are
adjusted based on a global environment complexity factor and
interaction with other agents. This model was later extended
by Bianco et al. [13] to allow the inclusion of events during
the time jump period. Events are defined as changes in the
environment (i.e. adding, moving of removing obstacles and
goals). Also, a metric for comparing crowds was presented,
taking into consideration the local densities of uniform regions
in the environment to define a global error estimation.

Differing from methods that focus on collision detection
optimization or levels of detail, we propose a method that
integrates the Pedestrian Dead Reckoning (PDR) position
estimation with a global path planning algorithm, allowing us
to simulate virtual agents that are aware of obstacles in the
environment, including during the fast-forwarding. We also
included personality traits in agents that affect their behavior
during the simulation, aiming to evaluate their impact on the
path planning algorithm and the fast forward process.

III. PROPOSED MODEL

Fig. 1. Comparison between the model presented by Bianco et al [15] (left)
and our proposed method (right). An agent is placed on the bottom-left corner
of the environment, aiming to reach its goal (triangle). The square represents
an obstacle obstructing the agent’s path. The position of the agent after the
fast forward is represented by a plus sign. Our method introduces a global
path planning algorithm, that adjusts the agent’s path based on obstructing
obstacles, in order to fast forward the agent position in time and space.

The main goal of this work is to adapt the model of Bianco
et al. [12] to make it more accurate, regarding the impact of
obstacles and motion trajectories. To do so, we propose to
remove the global environment complexity factor, that was
computed taking into account the global free space to move
in the environment. Instead, we control the jumping using a
navigation method. In other words, such a navigation method
would deliver the global path each agent should follow to reach
its goal. When the agent needs to jump in time, its new position
is calculated taking such a path into account. Also, we include
a personality factor in our agents, which should influence their
behavior and be taken into account when fast-forwarding the
simulation. Section III-A presents our method to fast forward
the simulation, while Section III-B presents our method to
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include personality on agents and how we deal with it when
fast-forwarding a simulation.

A. FF Method Adaptation

As mentioned before, we chose to adapt the model proposed
by Bianco et al. [12] to make agents instantly jump from
one position to another in time. In short, their method is
comprised of four main steps: IP (Interaction with People
factor), EC (Environment Complexity factor), PDR (Pedestrian
Dead Reckoning), and Repositioning in the space. IP step
is responsible for checking how the speeds of each agent
should be affected by the presence of nearby agents. EC
step is responsible for taking into account the environment
complexity (e.g. total area of obstacles) when estimating
new positions for the agents. PDR step represents the dead
reckoning process on the position estimation, i.e. to where
agents go only based on Physics. Finally, the Repositioning
step is responsible to reallocate agents in space, following their
estimated new positions, but avoiding obstacles and occupied
spaces. Their model uses the crowd simulation method known
as BioCrowds [23] and, thus, we also do.

We made some adaptations in the method proposed by
Bianco et al. [12]. First, their model relies on an Environment
Complexity factor (EC) to comply with the free region and
the presence of obstacles in the way. However, the area of an
obstacle is taken into consideration even when not obstructing
the path of an agent. We chose to remove such a factor from
the model. Instead, we made two alterations: the inclusion of
a navigation method, and the position estimation within the
defined path.

Biocrowds [23] is a crowd simulation model that aims to
control the local navigation of agents (i.e. define each agent’s
next position within a pre-defined radius). It can, therefore,
have problems to define such next position if an obstacle is
in the way. To solve this problem, we chose to use a global
navigation method alongside BioCrowds. We implemented the
method known as A*, proposed by Hart et al. [21], which
is a method to traverse a graph following the shortest path
available from an initial to a destiny position. This method also
considers obstacles, allowing agents the circumvent them. So,
we use A*, to calculate each agent path, and then we compute
the total magnitude of the jump in a straight line, as proposed
by Bianco et al. [12], to have a value of expected traveled
distance based on the speed and position of the agent. Then,
we simply project this distance value into the global path of the
agent, identifying the point with the same traveled distance.
As the A* method takes the obstacle into account, the future
position is guaranteed as a point out of any obstacle.

Fig. 1 presents a comparison between the method present
by Bianco et al. [12] (left) and ours (right). The previous
method establishes a straight line between an agent’s position
and its goal (triangle). When the fast-forwarding is applied,
the agent is repositioned to a target point (plus sign). If this
estimated position is inside the area of an obstacle, Bianco et
al. [12] identify a nearby available space to place the agent.
The introduction of a global path planning algorithm allows

the identification of obstacles beforehand and removes the
possibility of placing an agent inside an obstacle.

Algorithm 1 presents our Fast Forward Adaptation (FFA).
For a given simulation, a stop-frame t and a target frame t+∆t
are defined, where t represents the frame in which the contin-
uous simulation is interrupted and t+∆t represents the frame
in which the simulation is resumed after the fast-forwarding.
The first step is to estimate the “future” position of an agent
(posit+∆t) using the PDR method, taking into consideration
its current position (posit), movement direction, speed and
objective (i.e. final goal). The future position is penalized by an
IP (Interaction with People) factor, that considers the presence
of other agents. We used the Weibull distribution [12]. The
magnitude of vector between posit+∆t − posit is projected in
agent i path, identifying the point in space with the same travel
distance (following the path). The agent is repositioned at that
point and its path planning is updated, removing sub-goals
that where “skipped” during the FFA and identifying the next
immediate step towards the final goal.

Algorithm 1: Fast Forward Adaptation
Data: Stop frame (t); Target frame (t+ ∆t);
Continuous Simulation stops at frame t;
for each agent i at frame t:
posit+∆t(x

i
t+∆t, y

i
t+∆t, z

i
t+∆t)← PDR(xit, y

i
t, z

i
t),

IP(xit+∆t, y
i
t+∆t, z

i
t+∆t)

Compute(|(posit+∆t − posit)|)
Repositioning(xit+∆t, y

i
t+∆t, z

i
t+∆t);

UpdatePathPlanning(i);
Resume Continuous Simulation from frame t+ ∆t;

B. Personality Traits

In order to include personality traits to our agents, we
chose the OCEAN (Openness, Conscientiousness, Extraver-
sion, Agreeableness, Neuroticism) psychological traits model,
proposed by Goldberg [24], once it is the most accepted model
to define the personality of a person.

It is important to understand each OCEAN factor individ-
ually, so we can define its influence on agents. Therefore,
we list the definition of each factor, in short: i) Openness
(O) = [0;1]: reflects the degree of curiosity, creativity and
a preference for novelty and variety; ii) Conscientiousness
(C) = [0;1]: reflects the tendency to be organized and de-
pendable; iii) Extraversion (E) = [0;1]: reflects the sociability
and talkativeness; iv)Agreeableness (A) = [0;1]: reflects the
tendency to be cooperative and compassionate with others;
and v) Neuroticism(N) = [0;1]: reflects the degree of emotional
stability.

Following the previous definition, we defined the influence
that such traits have on the behavior of our agents, during
the FFA method. To do so, we follow the method proposed
by Knob et al. [11] to create a relationship between OCEAN
traits and behaviors, as following defined:
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• Walking Speed [1,2]: defined as a function of Extraver-
sion (E), as follows: ψ = E+ 1, where ψ is the Walking
Speed and E is the Extraversion value;

• Leadership [0,1]: defined as a function of Extraversion
(E) and Neuroticism (N), as follows: ω = (W ∗ E) +
((1−W ).(1−N)), where ω is the Leadership, W is the
weight (defined as 0.5), N is the Neuroticism value and
E is the Extraversion value;

• Impatience [0,1]: defined as a function of Conscientious-
ness (C), Agreeableness (A) and Extraversion (E), as fol-
lows: β = (WE∗fE)+(WAC∗(1−A))+(WAC∗(1−C)),
where β is the Impatience, E is the Extraversion value,
C is the Conscientiousness value, A is the Agreeableness
value, WE is a weight (defined as 0.1), WAC is another
weight (defined as 0.45) and fE can assume two different
values: if E is higher or equal 0.5, it is calculated as
follows: fE = (2 ∗ E) − 1. Otherwise, it assumes the
value 0.

These behaviors (i.e. Walking Speed, Leadership, Impa-
tience) are used to define group features among agents. In
other words, such groups would present a default behavior
based on the features calculated by the OCEAN trait values.
Therefore, we define two group features:

• Cohesion (ζg) [0,3]: defines how much a group g tends to
stay together. The more cohesive the group is, the more
agents inside it tend to stay close to each other. At the
same time, the less cohesive the group is, the more spread
agents of such a group can become. It is calculated in
function of the Impatience behavior, as follows: ζg =
(1− β)× 3;

• Desired Speed (Ψg) [0,1.2]: defines the desired speed for
agents inside the group. It is calculated in function of the
Walking Speed behavior, as follows: Ψg = 1.2× (ψ−1).

Moreover, the Leadership behavior is associated with each
agent and defines a given agent that acts as a leader for
the other agents of the group. Such a decision is made as
follows: the Leadership value of each agent is tested against
a threshold (empirically defined as 0.9). If any agent is above
such threshold, it is chosen as the leader of the group. If
more than one agent surpasses the threshold, one of them
is randomly chosen. Finally, if no agent can surpass the
threshold, the group has no leader. Agents inside the group
follow the behavior of the leader if he is present. Thus, if a
strong leader is present, agents inside this group ignore their
features and assume the features of the leader. For example,
if the leader walks faster, agents of the group will also walk
faster.

In short, we link the OCEAN traits to group features which
can be easily taken into account for the FFA method. For
example, if an agent has a faster pace (defined by Extraversion
OCEAN trait), our fast-forwarding method makes this agent
”jump” a higher distance, when compared with agents with
a lower pace. It happens so because our method predicts the
next position of the agent taking into account, besides other
factors, the speed of the agent. Therefore, agents with higher

speed are going to jump farther than agents with lower speeds.

IV. RESULTS

This section presents the results achieved by our method.
For all tests, we performed five simulations of each case
and calculated the mean values of them. Then, errors were
computed as defined in (1), as follows:

n∑

a=1

d(BCa
t+∆t, FFA

a
t+∆t)

n
, (1)

where BCa and FFAa represent the positions of agent a,
respectively in the simulation, without fast forward method,
and in our method, at frame t. d stands for Euclidean distance
and n is the total number of agents in the tested case. The error
is the average distance that represents the difference between
the continuous simulation and our method, in meters.

Section IV-A shows the accuracy of the fast forward method
in a obstacles-free environment, while Section IV-B shows
how our method behave when obstacles are present in the
environment. Section IV-C shows how our the personality
traits can affect FFA, and finally, Section IV-E shows a use
case for our model.

A. Our method: Fast Forward Adaptation (FFA)

We aim to evaluate if the FFA method is working as
intended, it means, agents should be able to jump from its
positions in time X to a future position in time Y, in the most
accurate way possible. To do so, we modeled two different
scenarios. First, a 30x30 (900m2) meters scenario with just
one goal. Two simulations were run, varying the number of
agents (1 agent and 5 agents). Second, a 30x30 meters scenario
with two goals. Again, two simulations were run: first, with
two groups of 5 agents each; second, with two groups of 10
agents each. Each group wants to reach a different goal (e.g.
group 1 wants to reach goal 1 and group 2 wants to reach goal
2). Table I shows all of these simulations. Also, for all simula-
tions, in both scenarios, we ran the same experiment with and
without the FFA method. The idea is to check if our model is
working as intended (i.e. calculating valid positions for agents
in the simulation, where valid positions can be understood
as positions nearby the position the agent would be in the
simulation without the fast forward method), independently of
the number of agents/groups in the simulation and the number
of goals present in the environment (the more goals, the more
are the chances of the path of the agents to intersect each
other). It is worth mentioning that during the execution of
our tests, we define that agents should be fast-forwarded from
frame 600 to frame 1000. We chose this interval because, in
the continuous simulation with two goals, it is the range of
time where agents from different groups cross/intersect each
other.

Table II presents the results of these simulations. The
columns Time, AvgSpeed (average speed), AvgAngVar (av-
erage variation of the agent’s direction along the path), and
AvgDist (average distance between agents) are relative of the
Continuous Simulation (i.e. without out FFA method). Time
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FFA is the total time that the simulations with our FFA method
took, while Error represents the relative error between the
positioning of the agents in the Continuous Simulation and
the FFA simulations.

TABLE I
SCENARIOS OF THE SIMULATIONS OF THE FFA METHOD. WE VARY THE
AMOUNT OF AGENTS, THE AMOUNT OF GROUPS AND THE AMOUNT OF

GOALS. TO COMPARE THE RESULTS, WE ALSO RUN THE FOUR SCENARIOS
WITHOUT OUR FFA METHOD (CONTINUOUS SIMULATION).

Simulation ID #Agents #Groups #Goals
1 1 1 1
2 5 1 1
3 10 2 2
4 20 2 2

TABLE II
RESULTS OF THE FFA METHOD SCENARIOS. THE COLUMNS TIME,
AVGSPEED, AVGANGVAR, AND AVGDIST ARE RELATIVE OF THE

CONTINUOUS SIMULATION (I.E. WITHOUT OUT FFA METHOD). TIME FFA
IS THE TOTAL TIME THAT THE SIMULATIONS WITH OUR FFA METHOD

TOOK, WHILE ERROR REPRESENTS THE RELATIVE ERROR BETWEEN THE
POSITIONING OF THE AGENTS IN THE CONTINUOUS SIMULATION AND

THE FFA SIMULATIONS.

Continuous Simulation

Sim Time
(s)

AvgSpeed
(m/s)

AvgAngVar
(º)

AvgDist
(m)

Time FFA
(s)

Avg Error
(m)

1 8.26 1.49 3.24 - 6.77 1.85
2 13.73 1.37 19.75 0.41 11.32 1.96
3 15.53 1.13 2.64 0.54 12.03 1.17
4 24.84 1.26 16.98 0.44 19.56 1.20

As presented in Table II, it can be observed a difference
between the times of the simulations with and without the
FFA method. Continuous simulations presented higher values
of Time than simulations with the FFA method, it means, when
using the FFA method, simulations were able to finish faster.
It leads to the belief that the FFA method can, indeed, help
simulations to run faster by avoiding to simulate a defined
interval of frames/time. Besides that, the average error between
the positioning of agents in the Continuous Simulation and the
FFA method is lower than 2 meters for all cases. Such error
is calculated as an average displacement in the positioning of
all agents present in the simulation, when compared with a
continuous simulation. It means that in our 900m2 environ-
ment, agents presented, when fast forwarded, a displacement
in their positioning below 2 meters. This demonstrates that our
method is capable to reduce simulation time without needing
to compensate with a big loss in precision.

B. Fast Forward with Obstacles

In this section, we aim to evaluate how our fast forward
method behaves with the presence of obstacles in the environ-
ment. To do so, we modeled the same two scenarios presented
in Table I, but with one difference: we added three obstacles
in the environment. The environment setup is shown in Fig. 2.
We expect that agents are able to jump following their own
paths (as defined by the path planning model, explained in
Section III-A) and avoiding collision with obstacles in such
path, as explained in Section III-A.

Fig. 2. Scenario used for the simulations presented in Table I. Obstacles
are represented by gray polygon. Goals are represented by flags. Agents are
initially place at the bottom-left corner. The agents inside the highlighted
circles aims for the goals highlighted in the same color. The goal highlighted
in orange was used for the simulations containing only one goal.

TABLE III
RESULTS OF SIMULATIONS WITH OBSTACLES. METRICS ARE THE SAME

AS PRESENTED IN TABLE II.

Continuous Simulation

Sim Time
(s)

Avg
Speed
(m/s)

Avg
AngVar

(º)

Avg
Dist
(m)

Time FFA
(s)

Error
(m)

1 5.32 1.31 13.81 - 4.12 0.25
2 9.16 1.49 11.29 0.36 9.01 1.18
3 11.89 1.37 7.92 0.45 10.44 1.23
4 27.51 1.36 11.22 1.36 18.92 1.87

Table III shows the results achieved in the simulations with
obstacles. As it was already observed in Table II, continuous
simulations presented higher values of Time than simulations
with the FFA method. It shows that obstacles are having little
or no impact on the behavior of the FFA method. Moreover,
Error values were kept below 2 meters, as it was already
observed in Table II. It is another evidence that the FFA
method can deal with obstacles with little or no impact on
the path of the agents.

C. Fast Forward with Personality Traits

In this section, we aim to evaluate if the fast forward method
is being influenced by the personality of the agents. To do
so, we modeled the scenario of Simulation 3 presented in
Table I, with the three obstacles used in Section IV-B. We
ran four simulations with fast forward to check for personality
variations in groups and we add to our tests the difference data
(Diff) in relation to the FFA method with obstacles on the same
scenario of simulation, so that we can see the differences in
the positions of the agents in the simulations and demonstrate
the effect of personalities within the proposed model, as
presented in Table IV. In simulations 1 and 2, we tested the
Leadership behavior of the group, while in simulations 3 and
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4 we tested the Impatience behavior. OCEAN traits values
were defined following the behavior definitions explained in
Section III-B. For simulations 1 and 2, we expect that groups
with a strong leader (Simulation 1) are able to reach their goals
faster when compared with groups without a strong leader
(Simulation 2), because all agents of the group should follow
the leader. Also, since Extraversion OCEAN trait is important
to define the mean speed of the agents of a group, high
values of this trait reflect in higher velocities as seen in III-B.
For simulations 3 and 4, we expect that groups with higher
levels of Impatience (Simulation 3) present a more disordered
behavior when compared with groups with lower levels of
Impatience (Simulation 4). Besides that, we expect that groups
with high Impatience present slightly higher speeds.

TABLE IV
SCENARIOS FOR THE SIMULATIONS WITH PERSONALITY TRAITS. O, C, E,

A AND N REPRESENT THE FIVE TRAITS OF OCEAN.

Simulation O C E A N Test
1 0.5 0.5 0.8 0.5 0.8 Leadership
2 0.5 0.5 0.2 0.5 0.8 W/o Leadership
3 0.5 0.8 0.2 0.8 0.5 Impatient
4 0.5 0.2 0.8 0.2 0.5 Patient

Table V shows the total simulation times for all four
simulations. It is possible to notice that the total time of the
simulation with a high value of Leadership (Sim 1) is slighter
lower than the total time of the simulation with a low value
of Leadership (Sim 2). It seems to confirm what we expected:
agents inside a group with a strong leader tend to follow its
lead and walk at a quicker pace, arriving at their goals faster.
Moreover, it can be seen that the total time of the simulation
with a high value of Impatient (Sim 3) is greatly lower than the
total time of the simulation with a low value of Impatient (Sim
4). Although we did not expect to find so great of a difference,
it also seems to confirm what we expected: impatient agents
walked at a quicker pace than patient agents, trying to arrive
at their respective goals as soon as possible.

TABLE V
RESULTS OF THE SIMULATIONS WITH PERSONALITY TRAITS. METRICS
ARE THE SAME AS PRESENTED IN TABLE II, EXCEPT FOR DIFF, WHICH

REPRESENTS THE DIFFERENCE IN AGENTS’ POSITION BETWEEN THE
SIMULATIONS WITH ONLY THE FFA METHOD, AND SIMULATION WITH

THE FFA METHOD ALONG WITH PERSONALITY TRAITS.

Simulation with OCEAN

Sim Time
(s)

Avg
Speed
(m/s)

Avg
AngVar

(º)

Avg
Dist
(m)

Time FFA
(s)

Diff
(m)

1 42.56 0.44 10.59 - 4.12 6.00
2 151.49 0.22 24.90 0.82 9.01 10.62
3 21.76 1.03 30.05 1.24 10.44 2.24
4 107.92 0.25 27.58 0.71 18.92 11.07

It is important to highlight that simulations 2 and 4 of
Table V takes more than double the execution time (i.e.
number of frames required for every agent achieve their goal)
of simulations 1 and 3 of the same table. In the case of
simulation 2, with the aim of the groups to not have a

strong leader it is necessary to lower the expressiveness of the
OCEAN status, in this case, 0.2 out of 1.0, simultaneously
this affects the walking speed characteristic of the agents
which influence their mean speed. This can be seen when we
compare simulation 1 with simulation 2, in the first agents
follow the velocity of it strong leader, this makes the agents
at this simulation twice as fast second one, as can been seen
in table V, therefore taking more time to reach each group
destination goal and increasing simulation time.

In the case of simulation 3 and 4, the degree of impatience
of a group determines its cohesion as a group. A high impa-
tience degree culminates in a low cohesion value (i. e a high
average distance between agents as seen in simulation 3). The
impatience of the agents makes them give more importance
for positions near its goal then close from its original group.
Furthermore, in order to simulate an impatient behavior, we
have to increase the expressiveness of the agents. Mutually,
this increases it’s walking speed, and hence increasing agents
mean velocity. Simulation 4 has a patience behavior, so
with more cohesion, which is visible because has the lowest
average distance between all tests, and less walking speed, also
detectable with a low average speed, this results in a more
simulation time for the same reasons as simulation 2. The
gaps in time between tests also present in the fast-forwarding
method, due to it be coherent with the influences of personality
behaviors. An example is that agent 0 in the simulation 1, with
a strong leader, in the moment of the fast forward is in the
mean position (6.62,4.32), while in simulation 2, without a
strong leader, the same agent, in the same frame, does the
fast forward and get the position (3.05,3.05). This coherence
demonstrates the efficiency of the fast forward method coexists
with the effects of personality behavior, through adapting the
fast forward for each personality.

D. Comparison with the state-of-the-art

In order to validate the accuracy of our model, we per-
formed a comparison with the model we based our work,
which means, the model proposed by Bianco et al. [12]. To
do so, we ran the experiments presented in [12] with a
similar setup, using a single environment of 40x23 meters
(920m2) containing the following obstacle configurations: no
obstacles; 2 obstacles with 109.71m2 total area; 7 obstacles
with 128.68m2 total area; and 4 obstacles with 582.22m2 total
area. Also, simulations were run with 8, 80, and 160 agents
in total.

Fig. 3(a) presents the environment used in the 7-obstacle
configuration. Agents are initially placed in the horizontal
extremities, needing to cross the environment horizontally to
achieve their goals (flags). The same setup for agents and goals
were used in the simulations containing 2 and no obstacles.
Obstacles were intentionally placed in positions where they
would obstruct the direct path (i.e. straight line towards the
goal) of agents, converging different groups toward similar
areas. This setup creates a higher density of agents, especially
during moments where opposing groups intersect each other’s
paths. Fig. 3(b) presents the environment for the simulation
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containing 4 obstacles, where the free space is highly reduced.
Also, agents are placed in four cardinal extremities of the
environment, aiming to reach the opposite extremity.

(a) Scenario containing 7 obstacles.

(b) Scenario containing 4 large obstacles.

Fig. 3. Scenarios used for comparison with the method presented by Bianco
et al. [12]. Obstacles are represented by gray rectangles. Goals are represented
by flags. In (b), the paths defined for each agent in highlighted in red lines.
White lines represent a connection between the center of an agent to their
auxins (as presented in the BioCrowds [23] model).

Similar to previous simulations, each scenario was executed
five times. Then, we calculate the relative error in position
(difference) for each agent, in meters, using the same definition
as presented by Bianco et al. [12]. The difference formula is
defined in (2) as follows:

Difat→t+∆t =
d(BCa

t+∆t, FFA
a
t+∆t)

d(BCa
t , BC

a
t+∆t)

, (2)

where BCa is the position of agent a at a given frame of
the continuous simulation. FFAa

t+∆t represents the estimated
position of agent a at the target frame using our proposed
method. d stands for Euclidean distance. The main distinction
from (1) is the inclusion of the distance between the positions
of an agent a at the stop frame and the target frame of the
simulation.

Following the definitions of Bianco et al. [12], the contin-
uous simulation in all scenarios where stopped at frame 200
(t = 200) and resumed at frame 400 (t + ∆t = 400). The
4-obstacle setup is an exception due to its goal definition. In
this scenario, the values t = 200 and t + ∆t = 370 were
used. The relative error in position (m) for a single execution
is defined by the average Dif of all agents in the simulation.

An average between the five executions is presented in Fig. 4
in comparison with the results achieved by Bianco et al. [12].

It can be observed that our proposed FFA method achieved
a similar error in most scenarios, indicating that the precision
of position estimation is maintained with the integration of a
global path planning algorithm. The error increases according
to the number of agents in the simulation due to the local
movement of an agent being affected by nearby agents, making
it harder to correctly predict the future position in scenarios
with large intersecting groups. Our method maintained this
increasing error behavior in all scenarios, differing from
Bianco et al. [12] in the 7-obstacle setup with 8 and 80 agents.
We believe that due to the high number of obstacles in this
setup, our path planning algorithm was able to better identify
immediate obstructions in the agent’s routes, allowing a more
precise estimation when compared to Bianco et al. [12].

E. Use Case: Fog of War

As a use case, we integrated our method with a simple Fog
of War system. In this system, a “CPU Player” controls the
movement of a set of enemy units (i.e agents) in the environ-
ment. The “Human Player” (i.e. user) is then presented with a
scenario containing a set of obstacles. Also, the environment
is covered in fog, hiding enemy units from the user. The
user is also presented with a set of “watch towers” placed
in the environment, revealing areas in the fog. We simulated
the behavior of “CPU” controlled units using our proposed
method. The A* algorithm [21] was used to calculate the path
of a unit towards a selected goal, and the FFA model was
used to estimate the unit’s positions within the path at a set
of future frames.

The BioCrowds [23] model uses a grid of cells to represent
the space subdivision of the environment. Based on these cells,
we create a set of “fog cells” that cover the environment. Each
fog cell hides any enemy unit contained inside its area from
the user. Also, a subdivision value (s) was used to allow a fog
of higher density, therefore, each BioCrowd’s cell contained a
total of s2 fog cells. A fog cell contains a state that indicates
if it is inside the vision range of a “watch tower” or a dynamic
vision area. Watch towers represent stationary elements (e.g.
structures and building of the player) that provides vision of
a defined area and reveal a set of fog cells. Dynamic vision
areas represent any element that provides vision at different
moments of the simulation, also being able to move within
the environment (e.g player units). CPU units concealed by
the fog (i.e. inside a fog cell that is outside vision) are placed
in a “suspension” state, where no additional calculations are
required until this agent leaves such state.

Each fog cell belonging in the agent’s path receives a
callback that contains the estimated frame where the unit will
enter and leave the cell, along with the respective positions
at these frames. A callback is activated when the fog cell is
within the vision range and the current simulation frame is
within the estimated range. Whenever a callback is activated,
the agent leaves the suspension state and is placed back in the
environment within the limits of the fog cell. That position is
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Fig. 4. Comparison of relative error in position (m) between the model presented by Bianco et al. [12] and our proposed FFA method. Values presented are
an average between five executions. The value of a single execution is defined by the average Dif of all agents in the simulation, as defined by (2). The
number of frames affected by the FFA for each scenario is described in Section IV-D.

defined using a interpolation between the minimum and maxi-
mum estimated position for that cell, taking into consideration
the frame of the activation. All remaining callbacks for that
agent are deactivated at that point. If the agent leaves vision, it
is possible to repeat the process, sending it to the suspension
state, and reactivating the callbacks. If the target frame (∆t)
of the FFA is reached without a callback activation, the agent
is placed at the final estimated position.

Fig. 5(a) presents the setup for the environment, containing
30 x 30 meters (900m2). An agent was placed at the bottom
of the scene, aiming to reach a goal (flag) at the top. The path
defined by the A* algorithm is highlighted in red, connecting
a set of cell centers towards the goal. Two “watch towers”
were placed near the corners of the obstacle: one revealing
a circular area; one revealing a square area. The continuous
simulation is interrupted at frame 100 (t = 100) and the final
position is predicted with target frame 3500 (t+ ∆t = 3500).
Differing from our standard method, the simulation continues
from frame 100 onwards. The agent is placed in a suspended
state until the frame 3500 is reached or a callback is activated.

In Fig. 5(b), the agent is removed from the suspension state
due to a fog cell, that belongs to the path (i.e. contains a
callback), being in view-range. The agent is placed in an
estimated position for that cell at the current simulation frame,
which is around frame 1650 for that environment. At that
point, the agent returns to the continuous simulation until it
leaves the revealed area, when it enters into suspension state
again. In Fig. 5(c), the “watch towers” are removed and no
dynamic vision areas are used. Therefore, all the environment
is concealed by the fog of war, and the agent suspension
state is not interrupted. In that scenario, the agent enters the
suspension state at frame 100 and leaves at frame 3500, close
to its goal.

V. FINAL CONSIDERATIONS

This work proposed an adaptation from the model of Bianco
for fast-forwarding agents in crowd simulation, which enables
us to accurately fast forward agents in time. The future
positions of the agents are calculated taking into account the
original global path the agent would follow, if not being fast-
forwarded. This way, obstacles and other agents around are
also taken into account when calculating the new position.
Besides that, we included a personality aspect on agents which
is taken into account when jumping to a future position.

We ran several tests with our model. The results achieved
show that our fast-forwarding method can be a valuable
asset for crowd simulation, especially in some given domains.
Most notable is the gain in time and resources: since the
interval of frames/time where agents are being fast-forwarded
does not need to be simulated, the simulation is faster and
computational resources can be relieved or spent in other tasks.
Also, we integrated our model with a Fog of War system,
showing an example of how our model could be allocated in
a game.

As for future work, there are several avenues to be followed.
We can modify our path planning method (i.e. A*) to consider
the number of agents in each cell present in the path of a given
agent. It could be used to avoid jams, where a great number
of agents become locked by each other. In this case, lanes
could be formed by the paths to avoid such jams. Also, in
the same way Bianco uses a complexity factor to ”punish” the
jumping in their method, we could use the complexity of the
path to ”punish” the jumping in our method. It would help
agents to avoid eventual deviation from their original routes
(for example, when recalculating their path after the jump).
To do both of the cited future works, D* algorithm could
be used instead of A*, since it allows dynamic weights for

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 327



(a) Defined path before suspension.

(b) Suspension interrupted by a revealed
area.

(c) Suspension not interrupted.

Fig. 5. FFA integration with a Fog of War system. In (a), the defined path
of an agent is highlight int red. In (b), the suspension is interrupted due to
a “watch tower” revealing a segment of the path. The agent continues within
the path until he leaves vision, entering in another state of suspension. In
(c), the set of “watch towers” is removed, allowing the entire section to be
skipped. The agent is then positioned at the predicted point when the target
frame is reached.

each node of the path. Finally, in our model, we adopted the
group behavior from the work of Knob. Although, we did not
simulate the fast forward method for groups of agents. Such a
feature would allow us to fast forward entire groups of agents
(e.g. armies in a game), which would cost less computational
resources than to fast forward each agent separately.
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