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Abstract—Among the topics that increasingly gained special
attention in Computer Science recently, the evolution of Artificial
Intelligence has been one of the most prominent subjects,
especially when related to games. In this work we developed
an intelligent agent with memory restrictions so to investigate
its ability to learn playing multiple, different games without
the need of being provided with specific details for each of
the games. As a measure of quality of the agent, we used the
difference between its score and the scores obtained by casual
human players. Aiming to address the possibilities of using Deep
Learning for General Game Playing in less powerful devices,
we explicitly limited the amount of memory available for the
agent, apart from the commonly used physical memory limit
for most works in the area. For the abstraction of machine
learning and image processing stages, we used the Keras and Gym
libraries. As a result, we obtained an agent capable of playing
multiple games without the need to provide rules in advance, but
receiving at each moment only the game video frame, the current
score and whether the current state represents an endgame.
To assess the agent effectiveness, we submitted it to a set of
Atari 2600™ games, where the scores obtained were compared
to casual human players and discussed. In the conclusion, we
show that promising results were obtained for these games even
with memory limitations and finally a few improvements are
proposed.

Index Terms—General Game Playing, Artificial Intelligence,
Atari 2600™

I. INTRODUCTION

The development of an algorithm capable of playing games
properly in a similar way to an experienced human player
is still a challenge for today’s state-of-the-art in the field of
Artificial Intelligence (Al). In the last decades, the approaches
used so that an agent could determine its next step have shown
a steady evolution, with most of this growth occurring due to
the focus on the seek for adequate test environments. Within
the area of Al, games could represent test environments for
the models developed, making it possible to carry out tests in
numerous and different situations just by changing the selected
game.

The need to provide specific, hard-coded rules and charac-
teristics of a game to an algorithm that should become able to
play it can prevent its direct reuse with other games requiring
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different rules. Even if the game style changes just slightly,
games like Chess and Checkers although being visually similar
since they occur on the same board and have a similar number
of pieces, possess differences between the appearance of the
pieces and their respective movement rules that make them
completely different games. So, providing an algorithm with
the ability to adapt to a game which the rules have never been
presented to it is a very complex and challenging task.

An agent must determine which elements of the environ-
ment are to be taken into account at each moment, thus
becoming able to select the action that will maximize its
chances of victory or progress in the game in the long term. To
bridge the gap in gaming performance between human players
and Al agents, many professionals in the field have been
making constant efforts to develop heuristic optimizations
and Machine Learning (ML) models capable of achieving
satisfactory results.

The DeepMind Group [1] develops programs that can learn
and solve many complex problems without having to be
explicitly taught about it. By implementing their research in
the field of games, an useful and flexible training ground, the
agent they developed was able to learn to play more than 40
completely different Atari 2600™ titles, just being provided
with raw input pixels for the agent. In the article published by
the AlphaStar Group [2], members of the DeepMind group,
a program is presented to play StarCraft Il with the first Al
able to defeat a top professional player. Although before that
there were significant successes in Al playing video games so
far, Al techniques have struggled to cope with some strategy
games.

The general objective of this work is, focused on the theme
of General Game Playing (GGP) and using machine learning
techniques and algorithms, to build an agent that should be
capable of determining the context of the game to which it is
submitted and develop skills to playing as good as it can. In
order to figure out its actions, this agent should receive just
the frame corresponding to the current game image and also
the numeric score, eliminating the need to develop specific
metrics for the agent to determine the core elements of the
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game, so that the agent’s focus remains on how to play the
game properly and not to extract the features.

This work is strongly inspired by the results of Mnih et al.
[3], where they present an agent model capable of obtaining
scores similar to that of an experienced human in many of the
tested games. As a specific objective, we aim at developing
an agent that demonstrates a performance similar to that of a
human in multiple games, but with more restrictions in terms
of available memory for storing its past experiences.

II. THEORETICAL REFERENCE
A. General Game Playing

The term GGP refers to algorithms that are able to play
more than one game successfully. In games like Chess, specific
algorithms are generally employed, with heuristics designed to
maximize the chances of winning using specific characteristics
of the game, thus preventing the use of such algorithms in any
other games. Unless the game is some variation of Chess, the
heuristic algorithm tends not to be able to play it properly.

A heuristic algorithm developed to play Chess does not
have the ability to properly play the Othello game, even if
both occur in similar environments. An algorithm proposed in
the context of GGP should display the ability of efficiently
playing similar games. Algorithms for GGP competitions are
usually tested in different games, thus proving the algorithm’s
ability to adapt efficiently to the environment in which it was
submitted.

According to Browne et al. [4], throughout most of the
history, game rules were transmitted verbally. One of the
aspects that can contribute to proving the veracity of a set
of rules for a game is the ease with which it can be explained
and understood. Games with extremely long and detailed rule
descriptions are less likely to have been played throughout
history than games with rules that can be explained easily.

According to the authors of [5], an agent for GGP is
designed to cover a wide variety of games, including single-
player games, two-player games, multiplayer games, shift
or simultaneous games, competitive or cooperative games.
Agents must automatically adapt not only to play the games
properly, but they must play them efficiently, usually exceeding
the capacity of a human player.

The authors of [6] present the development of an agent for
GGP capable of dealing with multiple different types of prob-
lems, properly interpreting the environment and automatically
determining which actions should be selected considering the
information available about the environment that are at its
disposal.

B. Artificial Intelligence

The domain of Al mainly consists of problems in which
the usual, deterministic algorithms are not generally effective
at solving, such as recognizing faces, speaking a language, or
being creative. An early example for the use of Al in action
games is Sega’s 1989 game Golden Axe™, which for its time
represented a major advance in the use of Al for that type of
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game. The game featured enemies running past the player and
then attacking him/her from behind.

According to Galway et al. [7], the Al area for games
represents the implementation of a set of algorithms and
techniques of traditional and modern AI, with the aim of
providing solutions for a series of problems depending on the
game environment.

According to Millington et al. [8], Al in most modern
games addresses three fundamental topics: the ability to move
characters, the ability to make decisions about where to move,
and the ability to think tactically or strategic in relation to the
environment in which they find themselves.

According to Yannakakis et al. [9], when most people hear
the term Al in games, the image of robots performing actions
in games is the first thought that comes to mind. This is
because the Al area is largely connected with concepts of
autonomous decisions, which make it possible to generalize
information, but it is important to emphasize that Al can also
be used to generate content, and not just to interact with it.

C. Machine Learning

Machine learning(ML) is one of many applications in the
area of Al that provide systems with the ability to automat-
ically learn and improve themselves from iteration cycles.
Through these iterations and data analysis that are supplied
to the application, it starts self-adjusting, acquiring the ability
to automatically determine which set of actions are most
appropriate to be taken at each moment.

According to Fiirnkranz et al. [10], ML has become one
of the main areas of Al where the algorithms that use ML
techniques inevitably rival and exceed human capabilities in
most games related to strategy or motor coordination.

D. Deep Learning

The definition of Deep Learning (DL) consists of an emerg-
ing theme within the field of Al It consists of a subcategory of
ML that emphasizes the possibility of learning using specially
designed Neural Networks (NN). DL performs the training of
a computational model so that it can detect patterns in the data
to which it has been submitted, thus aiming to approximate
solutions based on the generalization of these data.

According to Bengio [11], techniques linked to some model
of DL aim at learning feature hierarchies with features from
higher levels of the hierarchy formed by the composition
of lower level features. Automatically learning features at
multiple levels of abstraction allow a system to learn complex
functions mapping the input to the output directly from data,
without depending completely on human-crafted features.

According to Justesen et al. [12], the rapid evolution of DL
methods observed is due to the convention of comparing re-
sults against publicly available data sets. A similar convention
in the area of Al is to use game environments to compare
game algorithms, in which methods are classified based on
their ability to score points and win in games.
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E. Reinforcement Learning

Reinforcement Learning (RL) techniques allow the agent
to have the ability to change its behavior based on responses
obtained from the environment. In the ideal cases, the agent
can reach the global minimum for a given problem, that is,
there is the possibility to minimize the number of errors made
in a given game environment. A simple diagram of how a RL
agent works can be seen in Fig. 1.
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Fig. 1. Simplified scheme of a Reinforcement Learning model.

The Fig. 1 presents a classic scheme of RL, adapted for
digital games, where the agent is provided with a status and
a reward, which can be represented by a screen image and a
score, respectively. In response, the agent returns an action for
the game.

The authors of [8] present that RL is the name given
to a variety of learning techniques based on experience. A
reinforcement-based algorithm has three fundamental compo-
nents, which are an exploration strategy to test different actions
linked to the game, a reinforcement function that determines
how much is the reward for a given action, and a learning rule
that unites the first two characteristics.

As shown by the authors of [13], RL is a class of ML models
where the learning process is based on evaluative responses
without any supervised signals. RL aims to create human-like
agents who learn by trial and error, using only rewards or
punishments to develop successful strategies that eventually
lead to the greatest long-term rewards.

F. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) models consist of
combinations of traditional models such as RL and DL,
providing networks with DL capabilities, but with scoring
characteristics. Fig. 2 shows that the only difference between a
traditional DRL and RL agent is in the presence of a network
used in the agent’s own learning.

According to Torrado et al. [14] an agent of DRL learns
through interactions with a dynamic environment and balances
the exchange of rewards between long-term and short-term
planning, that is, it determines which actions are advantageous
in the short term and long term. DRL agents are essentially
made up of the combination of RL and DL models.

According to Lample et al. [15], DRL allows the agent to
interact autonomously with the environment. At each interac-
tion with the environment, the agent seeks to observe what
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Fig. 2. Simplified scheme of a Deep Reinforcement Learning model.

is happening at the moment, and through this observation,
according to its reward policy, the next movement that it will
execute is decided, always aiming to maximize the best result.

According to Narasimhan et al. [16], DRL is generally used
to infer the meaning of a state of the game, so that it can learn
to play the games in which it is being submitted. Therefore,
DRL is often used as a form of training for agents.

G. Q-Learning

The model of Q-Learning (QL) is a reinforcement model
enhanced with policies that seek to find the best action to
be taken in relation to the current state of the provided
environment. The learning function uses random actions and
therefore looks for actions that maximize the total reward.
QL models value the quality of the solution, even if the time
spent searching to obtain higher quality solution is greater. A
QL agent stores the states found and their best response in a
table so to allow comparisons between states, which can be
seen in the Fig. 3.

State

Action

Agent Q Table

Fig. 3. Functioning of a Q-Learning agent.

According to Millington et al. [8], QL techniques depend on
having the problem represented in a particular way. With that
representation, it could store and update relevant information
as it explores possible actions. QL models treat the game world
as a state machine. At any time, the algorithm is in some state,
which must encode all relevant details about the environment
and the character’s internal data. Thus, if the character’s health
is significant for learning, and if the character is in two
identical situations with two different health levels, then it
will consider them as different states. Any information not
included in the state cannot be learned.
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According to Hu et al. [17], a problem where the agent
does not have full knowledge of the possible states or possible
rewards of the environment, where the agent has to learn
based on observations, gives rise to a model-free reinforcement
learning system, being QL one example of these situations.

According to Hasselt et al. [18], interesting problems are
usually large and extensive, making learning all states of
the environment a complex task. But these problems can
usually be described using parameterizable functions. A QL
based agent uses the available parameters of the functions to
maximize the reward it may receive.

H. Games and Machine Learning

Determining the effectiveness of a specific AI model is a
complex task since the degree of difficulty involved in creating
and validating tests is not trivial. Video games provide an
environment free of external influence, being promising for
the validation of the effectiveness of a model by allowing
the developed agent to be submitted to multiple, isolated test
environments with different contexts and objectives. Perform-
ing benchmarks with games make it possible to detect points
of improvement or corrections that may be necessary for a
machine learning model.

According to Bowling et al. [19], games are created for
entertainment, simulation, or education, although they provide
great opportunities for ML algorithm applications. The variety
of possible contexts and the problems arising from them are
limited only by the implementation of each game, and it
is clear that the games industry is in a state of constant
evolution. Consequently, games using ML techniques would
attract attention to the field.

According to Serafim et al. [20], games are often used
as environments to test different algorithms and techniques.
Some characteristics that contribute to the popularity of these
environments are linked to complexity, determinism, limited
data entry, the number of pixels present on the screen and the
great impact when doing a public presentation, resulting in an
increase of interest and importance of research using digital
games as testing environments.

According to the AlphaStar Group [2], games have been
used for decades as an important way to test and evaluate
the performance of artificial intelligence systems. As the algo-
rithms’ capacities grow, the academic community seeks games
with increasing complexity that incorporate more challenging
aspects such as artificial intelligence elements of greater com-
plexity, necessary to solve scientific and real-world problems.

1. Gym

According to the authors of [21], Gym is a toolkit for devel-
oping and comparing RL algorithms. It makes no assumptions
about its agent’s structure and is compatible with any numer-
ical computing library, such as TensorFlow or Theano. The
library is a collection of test problems and environments that
one can use to design his or her own RL algorithms. These
environments have a shared interface, allowing the writing of
general algorithms.

XIX SBGames — Recife — PE — Brazil, November 7th — 10th, 2020

Computing Track — Full Papers

The Gym library has emulation environments that allow
developers to test their RL algorithms. Among these environ-
ments, there is an Atari 2600™ emulator. Fig. 4 shows the
Space Invaders™ and Kung Fu Master™ games as emulated
in the Gym library.

1908
200

PLAYER mu—
ENENY

Fig. 4. Space Invaders™ and Kung Fu Master™ games running in the Gym
library.

Because it is a library focused on testing RL algorithms, the
Gym library makes it easy to obtain information that is present
in multiple games. Whenever an agent submits an action to the
library, it receives the screen image, the reward, confirmation
that the game is not over, and specific information about the
game in progress.

J. Keras

For the implementation of the necessary networks in this
work, the Keras library was selected based on the ease of
use and diversity of networks available for use, enabling tests
with multiple types of models and frameworks without major
changes in agent code.

Keras is a high-level open-source neural network API,
written in Python, and able to run on top of TensorFlow,
CNTK, or Theano. It was developed with a focus on enabling
rapid experimentation. Being able to get from idea to result
with the shortest possible delay is the key to doing good
research according to the authors of [22].

III. DEVELOPMENT
A. Operation of the Proposed Agent

As previously mentioned, the main objective of this work
is to develop a software agent within the context of GGP
that could be further improved and used with different ML
algorithms. For this, an agent was developed using Gym
communication and ML methods from Keras, only receiving
the game frames and score. In Fig. 5, the position of the agent
with relation to the other tools is shown.

A considerable part of the related works used techniques
based on Deep Reinforcement Learning and Double Q-
learning (DRL and DQL), suggesting the effectiveness of these
two models in the context of GGP. As it can be seen in Fig. 6,
the proposed agent uses the Gym library to obtain the frames
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Fig. 5. Location of the proposed agent.

and their respective information and, in response, provides the
library with the action it decided to take.
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Fig. 6. Communication between the agent and the Gym library.

The communication model presented in the Fig. 6 provides
the agent with the ability to play any game, as long as the
correct information is provided. Therefore, the standardization
of the data format received by the agent allows testing with
games without the need to adapt the agent’s source code.

B. Definition of the Neural Network used in the Agent

The Neural Network(NN) model implemented is based on
the fact that the input provided is a frame previously prepared,
that is, the capture of the current visual output of the game,
which is delivered to the network as a gray scale image. In
addition to the current frame of the game, the network is
provided also with information obtained from the Gym library,
these being the number of lives remaining and whether the
current frame represents a state of the game over or not.

The proposed and developed agent consists primarily of
the insertion of processing layers from the Keras library. The
layers used were essentially:

« Convolution layers: responsible for creating a convo-
Iution Kernel that is convoluted with the layer input to
produce an output tensor

« Leveling layers: which are responsible for leveling the
input, without affecting its size

o Fully connected layers: all neurons in these layers are
connected with all neurons in the next layers

The representation of these layers can be seen in Fig. 7,
which presents the layers with the same names found in the
Keras library.
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Fig. 7. Definition of the neural network used.

The origin of this layer configuration is based on the system
used by the authors of [3], with the difference that, in this
work, adaptations were used allowing the implementation of
the network in the Keras library, together with the possibility
of changing the number of neurons present in the output
layer. That allows one to dynamically control the amount of
movement of each game.

C. Agent Phases

In order to offer the developed agent experiences that allow
it to understand how the game it was subjected to works,
the agent’s training function has a system of phases, enabling
training without defining game rules. The system consists of
three phases, which are:

« Note: The agent performs random actions to observe its
consequences, filling its memory with the results of its
first learned experiences.

« Exploration: After carrying out the observation phase,
the agent starts to explore actions that are not in memory,
aiming to fill the gaps created by bifurcations in the
choices of past matches.

o Selection: In the last stage, the agent starts to select the
actions better, aiming at those that offer the best reward.

D. Agent Training

For the developed network to have any real impact on the
way the agent interacts with the environment, a training phase
is necessary, which can be seen in the Algorithm 1.

The agent training phase consists of a cycle of iterations
in which random actions are initially tested. As the number
of episodes progresses and the number of states saved in
memory increases, the agent’s decisions start to present a more
intelligent and consistent behavior.

E. Memory Optimization

Agent training requires a history of actions and results,
enabling the agent to learn from mistakes and achievements
made in previous iterations. However, the problem appears
when the memory spent by this history starts to represent the
highest cost of the agent. To solve this problem, a parameter
was added to allow controlling the number of iterations that
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Algorithm 1: Training phase.

Algorithm 3: Agent operation.

number of episodes < zero;
maximum number of episodes < n;
while number of episodes < the maximum number of
episodes do
restart the game environment;
while did not die in the game do
check for possible action;
send action to the game;
check the result of this action;
save the result of the action in memory;
end
increase the number of episodes;

end

the agent can store in its memory. We have chosen a scrolling
windows approach, as can be seen in the Algorithm 2.

Algorithm 2: Scrolling window memory optimization.

if history size == maximum history size then
remove the oldest state from history;
add the new state to the history;

end

Using this optimization during the training, we expect that
only the most recent of the advantageous actions will remain in
memory. As the agent selects its actions, the memory replaces
the oldest actions. Therefore, when the agent starts to choose
the best actions based in the maximum score that can be
obtained, the worst ones are erased from memory freeing up
more space.

F. Agent Operation

After defining how each part of the agent should work
and how all of the parts connect together, an agent with the
structure seen in Algorithm 3 was developed.

The agent was developed aiming at the context of GGP,
that is, the possibility of submitting it to learn to play any
game, as long as the correct information is provided. To submit
the agent to any test environment, it is only necessary to
provide the current frame of the game in the form of an image
represented by shades of gray and the score. To optimize the
agent’s learning process, the number of possible actions of
the game is provided, allowing the narrowing of the agent’s
decision options.

IV. GAMES SELECTED FOR TESTING

Using the Gym Library, four Atari 2600™ games with
distinct mechanics were selected based on their characteristics,
namely Space Invaders™, Breakout™, Demon Attack™, and
Kung Fu Master™. The main reason for the selection of those
games was the standardization of the information provided
by the emulation environment, wherein each game it was
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receive the training environment;

extract the number of actions;

declare the neural network;

receive the maximum number of episodes;

episode number < zero;

while number of episodes < maximum number of
episodes do

restart the game environment;

define the current phase;

while did not die in the game do

get the screen image;

get the reward;

provide the screen image and the reward for
the neural network;

save the screen image and the reward in
memorys;

if current observation phase then
‘ select a random action;

else if current exploration phase then
select an action that has not yet been

explored;
else
‘ select the best memory-based action;
end
send action to the game;

end

get the score;

display the score;
increment episode number;

end
save neural network parameters;

possible to obtain the screen image, the current score, and
the information corresponding to the game over state.

The proposed agent aims at the possibility of running in a
simple computational environment, such as a home computer
or smartphone. What the current state of the art corresponds
is that most of the existing agents end up undergoing previous
training, which makes it possible to obtain excellent scores
in the games. However, this work aims at implementing an
agent capable of autonomously learning game rules in less
robust environments, enabling the use of the same agent in
the role of the main player, or even the opponent of the player
for different types of games.

V. RESULTS AND DISCUSSION

For the simulations we made tests with a laptop equipped
with an Intel i5-5200U processor with 2.20 GHz of clock and
8GB of DDR3L RAM. In order to measure improvements
throughout the training of the proposed agent the obtained
scores for each game were saved, generating a set of time
series. Considering that the agent behaves randomly at the
beginning of the training, and at the end it chooses its actions
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more accurately, the average initial and final scores obtained
at each of the games are presented in the table I.

TABLE I
COMPARISON OF AVERAGE SCORES BETWEEN THE AGENT AND HUMAN
PLAYERS.
Game Initial Score | Final Score | Human Player
Spacelnvaders™ 75 580 1200
Breakout™ 2 24 26
Demon Attack™ 100 640 1440
Kung Fu Master™ 400 7500 3400

The data presented in Table I were obtained by submitting
the agent to training of 1000 episodes in each game, with the
size of the memory vector set to 80000 positions, where each
position occupies the space of 88 bytes. It took approximately
20 hours of training for each of the games. To properly
compare the performance of the agent in each of the games,
Fig. 8 shows the percentage of performance gain at each of
the games, where the human score is represented by the value
of 100% and the initial and final scores are represented by the
percentage improvement in relation to the human score.
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Fig. 8. Comparison of scores obtained for the agent and human players.

The score of the human player presented in the Table I was
obtained from fifteen casual players who allowed the collection
of their scores and use of it in this work. The value in the
table is the average score obtained by the players in each of
the selected games. All human player scores were obtained
using the MAME™ [23] emulator.

Fig. 8 shows an interesting pattern, considering the selection
criteria of each game, observing the agent’s score in the Space
Invaders™ and Demon Attack™ games, which have similar
mechanics. These are games in which the player controls a
ship and must destroy the opponents found at the top of the
screen. In these games, if we compare the score obtained by
the agent to that of a human, we will see that both games
reached a similar percentage in the scores. In the Breakout™
game in which the proposal is different from previous games,
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the agent almost reached the human score. Finally, in the game
Kung Fu Master™, the game selected for almost not sharing
similarities with the other games, the score reached by the
agent was higher than that of a human player.

The scores obtained in all games in this work could be
compared with those obtained by the authors of [3]. However,
unlike the present work, the work of the DeepMind group
does not have a low memory limiter, which would require
the proposed agent demanding a machine with approximately
80GB of RAM to be able to store the full history containing
the states and rewards experienced by our agent. In addition to
the large amount of memory needed, it would be necessary to
increase the number of episodes in the training phase, which
would result in a considerably larger amount of training time.

According to the information presented in the Table I, even
with such restrictions the agent was able to determine what
actions it should take in each game and learn to improve its
score. Fig. 8 shows that in all games tested, the scores obtained
at the end of the training improved significantly compared to
the beginning of the training. Even though it did not obtain the
same score as a human player in most tested games, the agent
was able to infer useful information about the environment in
which it is found.

The evolution of the agent was observed by selecting the
game Kung Fu Master™ for a more detailed analysis, as it is
the most complex of the tested games, and raw score data was
logged along the playing episodes, as it can be seen in Fig. 9.

14000 T T T

== Game0 == Game?9
12000 =™ Game 1 "'* Game 10
"'t Game 2 " Game 11
10000 """ Game 3 == Game 12
== Game4 " Game13
o 8000 == Game5 "' Game 14
§ "' Game6 " Game 15
8000 i Game 7 == Game 16
Game 17
4000

2000 |-

Episode

Fig. 9. Evolution of the scores in the game Kung Fu Master™. Raw score
data from 17 games played shown. A tendency for improvement is observable,
but not much more information can be obtained by visually inspecting the raw
data.

Because the raw scores data is too noisy for visual interpre-
tation, we filtered it with a sliding average for high frequency
noise removal and better visual analysis, as it can be seen in
Fig. 10.

From a closer analysis of Fig. 10, it is possible to notice
that sixteen of the eighteen runs show the scores obtained by
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Fig. 10. Evolution of the agent scores in the game Kung Fu Master™,
smoothed using sliding averages with first neighbours for better visualization,
1000 passes.

the agent growing up in a similar way along the episodes.
What provides this feature is one of the key points of the
game Kung Fu Master™: as the game consists of attacking
opponents that emerge from the sides of the screen, strikes in
the wrong direction do not affect the opponents and also leave
the player vulnerable.

In the two executions of the training phase (Games 2 and 3
in Fig. 10) where the agent failed to realize that it should not
deliver blows with its back to the opponent, the scores did not
grow as much as it did in the other executions. When this char-
acteristic was captured by the agent, the scores progressed in
each subsequent episode. An important characteristic present
in this game is that, at the ending of each stage it is necessary
to defeat a boss, but instead the agent learned that staying
at the beginning of the game just attacking opponents and
obtaining points, without actually advancing in the game, still
allows the obtaining of high scores without the need to face
bigger challenges during the current match. That is a problem
that could be addressed by specifying and properly weighting
a global objective of advancing whenever possible and going
through all stages and bosses, but doing so for such specific
game would violate the main purpose of this work that is
allowing the agent to learn as much as possible about the
game by itself.

One important highlight is that, despite the apparent varia-
tion in the final scores for the curves presented in Fig. 10, there
is no difference in initial conditions for each simulation other
than the random initialization of the game parameters (these
are hard-coded) as well as the weights in the neural network.
So, multiple instances of the simulation could be executed in
parallel and at the end the best outcome could be chosen as
the final result.
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VI. CONCLUSION

In agreement with the reviewed literature, we found that
the combination of ML techniques such as Reinforcement
Learning, Q-learning and Deep neural networks for the im-
plementation of agents intended for GGP is feasible and
provides promising results. We also noticed in the literature
the constant appearance of agents linked to Reinforcement
Learning techniques, so it suggests that this is an important
topic to keep being investigated.

We also noticed that the number of games (runs) played in
each game directly impacts its learned ability to play. However,
the factor that had the greatest impact on game performance
was the size of the memory available for storing the events.
The greater the number of past events that the agent can recall,
the sooner it reached a high score in the game. The problem
with this approach is that, by largely increasing the size of
the available memory, we start demanding too much of the
space used in the temporary memory of the computer on which
the agent is running and this could slow down the training.
The optimization of memory allows the use of the agent in
environments that need a considerable part of its computing
power destined to the execution of the game.

By using a less robust environment than the one used
by Mnih et al. [3], we noticed that it is still possible to
obtain satisfactory results even with restricted resources. This
suggests the possibility of using the proposed agent in a wider
range of scenarios such as games on portable devices, where
the processing capacity is usually more limited. From this,
we can foresee a practical use for the combination of TA and
ML techniques for GGP since many users own portable de-
vices as platforms for personal entertainment through games.
Although the playing skills learned by our agent don’t seem
to be as good as the ones in the aforementioned work, it is
interesting to observe that the environment used in that work is
comprised of machines with resources way beyond the reality
of the common user. So, a model using a large amount of
physical memory as the upper limit for training would make
it impossible for the common user to train agents in casual
games, where the player in many cases only has a smartphone
or a personal computer.

Due to the fact that the agent was developed with a focus
on playing multiple games with the ability to identify which
is the one it is submitted to, the environment in which it finds
itself may eventually change after the learning process and the
agent showed the ability to learn the characteristics of the new
game.

As it was seen in the presented results, each agent obtained
scores superior to those of a casual human player in all of
the tested games. However these agents faced situations in
which they were unable to properly understand the games
and consequently were unable to obtain satisfactory results.
Without being forced to pursue a global objective, we can
consider that the agent, although obtaining a better score,
“cheated” to get these scores and isn’t yet acceptable as a
good opponent for a real game scenario.
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So, it might be important providing the agent with ways
to avoid just keeping increasing the score by making points
locally (as it happened with the Kung Fu Master™ game), but
instead seeking for a global objective that will also provide
a higher score. This should be implemented keeping in mind
that is should count for all games whether a global or more
intermediate objectives exist or not.

For a future work, it is also intended to adapt the agent to
perform as part of an actual game, such as an opponent or
second player, instead of just the main player. In this way,
the agent will have the opportunity to learn not only how to
overcome the algorithms of the game agents, but the style of
the human player with whom it is interacting.

ACKNOWLEDGMENT

The authors would like to thank Universidade Federal do
Pampa through the AGP financial support for part of this work.

REFERENCES

[1] DeepMind, 2019. [Online]. Available: https://deepmind.com/about/

[2] AlphaStar,  “Alphastar: ~ Mastering the  real-time  strategy
game starcraft ii,” DeepMind, 2019. [Online]. Avail-
able: https://deepmind.com/blog/alphastar-mastering-real-time-strategy-
game-starcraft-ii/

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529 EP —, Feb
2015. [Online]. Available: https://doi.org/10.1038/nature14236

[4] C. Browne, D. Soemers, E. Piette, M. Stephenson, M. Conrad,
W. Crist III, T. Depaulis, E. Duggan, F. Horn, S. Kelk, S. Lucas,
J. Neto, D. Parlett, A. Saffidine, U. Schadler, J. Silva, A. Voogt,
and M. Winands, “Foundations of digital archaoludology,” May 2019.
[Online]. Available: https://arxiv.org/pdf/1905.13516.pdf

[5] X. Sheng and D. Thuente, “Contextual decision making in general game
playing,” in 2011 IEEE 23rd International Conference on Tools with
Artificial Intelligence, Nov 2011, pp. 679-684.

[6] A.Dockhorn and D. Apeldoorn, “Forward model approximation for gen-
eral video game learning,” in 2018 IEEE Conference on Computational
Intelligence and Games (CIG), Aug 2018, pp. 1-8.

[7]1 L. Galway, D. Charles, and M. Black, “Machine learning in digital
games: a survey,” Artificial Intelligence Review, vol. 29, no. 2, pp.
123-161, Apr 2008. [Online]. Available: https://doi.org/10.1007/s10462-
009-9112-y

[8] I. Millington and J. Funge, Artificial Intelligence for Games, Second
Edition, 2nd ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2009.

[9]1 G. N. Yannakakis and J. Togelius, Artificial intelligence and games.

Springer, 2018, vol. 2.

J. Fiirnkranz, “Machine learning in games: A survey,” Machines that

learn to play games, pp. 11-59, 2001.

Y. Bengio, “Learning deep architectures for ai,” Foundations and

trends® in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.

N. Justesen, P. Bontrager, J. Togelius, and S. Risi, “Deep learning for

video game playing,” IEEE Transactions on Games, pp. 1-1, 2019.

A. Jeerige, D. Bein, and A. Verma, “Comparison of deep reinforce-

ment learning approaches for intelligent game playing,” in 2019 IEEE

9th Annual Computing and Communication Workshop and Conference

(CCWC), Jan 2019, pp. 0366-0371.

R. R. Torrado, P. Bontrager, J. Togelius, J. Liu, and D. Perez-Liebana,

“Deep reinforcement learning for general video game ai,” in 20/8 IEEE

Conference on Computational Intelligence and Games (CIG), Aug 2018,

pp. 1-8.

G. Lample and D. S. Chaplot, “Playing fps games with deep reinforce-

ment learning,” in Proceedings of the Thirty-First AAAI Conference on

Artificial Intelligence, ser. AAAI'17. AAAI Press, 2017, p. 2140-2146.

(10]
[11]
[12]

[13]

[14]

[15]

XIX SBGames — Recife — PE — Brazil, November 7th — 10th, 2020

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

Computing Track — Full Papers

K. Narasimhan, T. Kulkarni, and R. Barzilay, “Language understanding
for text-based games wusing deep reinforcement learning,” in
Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing. Lisbon, Portugal: Association for
Computational Linguistics, Sep. 2015, pp. 1-11. [Online]. Available:
https://www.aclweb.org/anthology/D15-1001

J. Hu and M. P. Wellman, “Nash g-learning for general-sum stochastic
games,” Journal of machine learning research, vol. 4, no. Nov, pp. 1039—
1069, 2003.

H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double g-learning,” in Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, ser. AAAI’16. AAAI Press, 2016, p. 2094-2100.
M. Bowling, J. Fiirnkranz, T. Graepel, and R. Musick, “Machine
learning and games,” Machine Learning, vol. 63, no. 3, pp. 211-215, Jun
2006. [Online]. Available: https://doi.org/10.1007/s10994-006-8919-x
P. B. S. Serafim, Y. L. B. Nogueira, C. A. Vidal, and J. B. Cavalcante-
Neto, “Towards playing a 3d first-person shooter game using a classi-
fication deep neural network architecture,” in 2017 19th Symposium on
Virtual and Augmented Reality (SVR), Nov 2017, pp. 120-126.

Gym Documentation, 2019. [Online]. Available:
https://gym.openai.com/docs/

Keras Documentation, 2019. [Online]. Available: https://keras.io/
Multi  Arcade Machine Emulator, 2020. [Online]. Available:
https://www.mamedev.org/

231



