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Abstract—Procedural content generation (PCG) is a 

powerful tool to optimize creation of content in the game 

industry. However, it can lead to lack of control and 

mischaracterization of the game design, creating unbalanced or 

undesired situations. To overcome such problems, machine 

learning can be used to map important patterns of a game design 

and apply them in the PCG. Considering such aspects, this 

paper proposes a strategy for procedurally generating dungeons 

using ML techniques. We use Unity ML-Agents tool for the 

implementation, since dungeons are environments largely used 

in the industry that also require more control over its creation. 

The strategy used in this paper has proven to generate dungeons 

that respect room positioning design choices and maintains the 

game characterization. We conclude, after conducting a survey 

with users, that the generated dungeons presented reliable maps 

and showed to be more enjoyable and replayable than manually 

generated ones following the same design principles. 

Keywords—procedural generation, Machine Learning, 

Dungeons, UnityML 

I. INTRODUCTION 

The video game industry represents nowadays, a 
billionaire market with a revenue of more than $100 billion 
annually [1]. Due to this market being so lucrative and ludic, 
more and more developers join the independent segment, even 
though the development costs have been raising through time 
[2]. As an alternative to lower game production costs, free 
game engines and asset stores have been taking the scene in 
the last years, but even though more resources are available 
for independent game production, the activity is still costly 
and time-consuming. 

Considering this, the procedural content generation 
(PCG), which is the creation of content using an algorithm, 
has the potential to become the key point for a more fluid and 
sustainable game development. The main points that makes 
PCG so powerful is that it allows many improvements in the 
process of game creation, such as increasing the amount of 
diversity in the content of a game, creating content more 
rapidly and, thus, reducing costs and time in game production 
[3].  

Since PCG can represent such advantage to the game 
development process, it has always found its way to be used 
in the game industry.  In 1980, the game Rogue, developed by 
Michael Toy and Glenn Wichman at the University of 
California became the first popular game with randomly 
generated levels, population of monsters and treasures [6], 
using pseudorandom number generators strategies [5]. Its 
popularity made roguelike the term to designate games with 
randomly generated dungeons.  

With the expansion of the game market between 1990s and 
2000s, a number of role-playing games inspired by Rogue 
emerged. One of the most successful among them was 
Blizzard’s Diablo franchise, that had premade map tiles being 

randomly chosen and aggregated to form dungeon levels. 
More recently, Minecraft has made huge success using 
procedural algorithms to generate an open world environment.  

However, when using procedural content generation, it is 
easy to face problems such as lack of control and repeated 
patterns over the created objects and scenarios, which can lead 
to mischaracterization of the design of the game, or lack of 
diversity in the generation. These problems can make game 
designers refrain from the use of PCG [3]. 

Focusing on the procedural generation of levels, this work 
aims to present a strategy for procedural generation of 
dungeons, following the dungeon crawler game style, where 
the player navigates through a labyrinth of rooms, organized 
in levels, to fulfill an objective like save himself or a princess, 
and has to defeat enemies or  escape traps along the way. The 
player also can find items and power ups along the way, which 
contributes to the game progression. The display of the rooms 
of the labyrinth is also important for the experience of the 
game, since the rooms are often diversified in terms of what 
challenges or rewards a player can find on them, being 
categorized this way. The patterns in which the special rooms 
appear on a dungeon tend to repeat on its levels [3]. 

  The chosen genre of scenarios has been used in extremely 
successful games like The Legend of Zelda, Diablo 2, and 
more recently, The Binding of Isaac, and have proven to be 
able to adapt well with the diversity of content, contributing 
to these games’ ability to be played many times for the same 
player. This characteristic is known as replayability and is 
very important for the long-term enjoyment of video games 
and is a factor that procedural generation of content can add 
the most [5]. Also, it is important for procedural content to 
follow patterns that deliver replayability because, this way, the 
generation algorithm can be responsible for generating a wider 
range of content without needing further adjustment. In 
addition, dungeons are an environment that needs more 
control over its creation, because its design longs to have a 
more controlled progress for the players and can suffer from 
too much randomness. Considering this, automated dungeon 
generation has similar challenges to its manual generation [3]. 

The proposed strategy has the objective of procedurally 
generating credible and reliable dungeons that preserve the 
sense of belonging to a unique game. The use of machine 
learning methods in the generation has the purpose of making 
the generation more adaptive to a wider range of game and 
level designs. For the use of machine learning methods, this 
work integrates Unity ML-Agents, which is a promising and 
more ready-to-use library for using machine learning to train 
agents developed by Unity Technologies and that is recently 
available for use in the Unity game engine [11]. Thus, being 
Unity a game engine widely used for independent game and 
studios developers, the proposed algorithm aims to aggregate 
as a strategy for procedural dungeon generation tangible for 
the independent game creators.  
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II. RELATED WORKS 

The procedural generation of levels has been approached 
in many ways in the past since it represents an effective way 
to lower game production costs and time. Of the known ways 
of generating procedural dungeons, one traditional and 
successfully used approach was made by Johnson et al. using 
the cellular automata [8]. In their method, they begin with a 
50 x 50 grid as the basis of their cellular automata. After 
generating this first grid, other grids are generated at the 
cardinal points of the initial grid with the purpose of 
expanding the map. Then, each cell contained on the grid is 
fulfilled with information about its position within the grid, 
the state of the neighborhood cells, the type of the cells (rock, 
floor or wall) and the cell’s group number. With the objective 
of creating a map shape in the grid, a rule set is defined to 
iterate over the grid. The rule set defined by Johnson et al. 
stated that: 1) a cell is rock if the neighborhood value is greater 
than or equal to 5 and floor otherwise; and 2) a rock cell that 
has a neighboring floor cell is a wall cell. This rule set is 
applied iteratively until shapes begin to form in the grid, 
usually, these shapes tend to look like caves or forest 
labyrinths, as it is shown in Fig. 1. 

 The positive aspects of this method is that it can 
generate levels with efficiency, being able to generate levels 
in runtime, and thus is capable of generating infinite levels. 
However, the cellular automata method lacks control in the 
generation process, being hard to predict the results of the 
generation, and it needs further treatment to guarantee that the 
player will not get stuck in a floor area that does not connect 
to others. For the chaotic aspect of the generated levels, this 
generation method is more likely to be used in games such as 
cave crawler.  

 

Fig. 1. Gray areas are categorized as floor, red and white represent rock and 
wall respectively in this map generated with the cellular automata [8].  

Another interesting successful approach for dungeon 
generations is the space partitioning method described by 
Shaker et al. [9]. In this work, the space selected to the map is 
divided recursively using a partition technique, in Shaker et al. 
work, the chosen partition technique was the binary space 
partition. The advantages of this method is that the partitioned 
space can be represented as a binary tree, also known as BSP 
tree. This offer some advantages as navigation and 
manipulation of the generated map, since binary trees are 
widely known and studied, and therefore there is a wide range 
of optimized algorithms that deal with binary tree 
manipulation and search problems. Because of this aspect, the 
generated level can vary according to the implemented 
algorithm to generated the BSP variant. Multiples algorithms 

can be adjusted according to the game designer needs for the 
generated levels. 

 After the space is partitioned, a room is placed inside each 
partition. This is done by randomly selecting room corners and 
verifying if the chosen space is acceptable for a room area, for 
example, testing if is not too small or if it has the shape of a 
square. Then, corridors are placed by connecting children of 
the same parent to each other. An example of the resulted 
dungeons is shown in Fig. 2.

 

Fig. 2. A dungeon map generated by BSP special partitioning method. The 
white areas represents rooms and corridors, the black ones represent walls and 
rocks. The red represents the creation of a corridor [9]. 

 Shaker et al. also describes a way of generating 
dungeons using agents, which he calls agent-based dungeon 
growing. In this method the agent is generated in a random tile 
through a tile grid representing the dungeon map, and then it 
begins to digger through the grid, with a property that 
determines the chances of spawning a room on that way. The 
probability of the agent spawning a room increases as the 
agents get farther away from the beginning. After a room is 
spawned, the property is set to zero once more, and the 
beginning point becomes the last spawned room coordinate 
[9]. 

 The agent parameters used by Shaker et al. were simple; it 
had a blind digger agent wandering in the dungeon space, 
divided in grids. At every grid navigated by the agent, the 
probability of the agent choosing to spawn a room increased 
5%. Every time a room was spawned the probability was 
reduced to 5% again. The probability for the agent making a 
turn was around 25% to 30%.  

This method depends on the intelligence of the agent for 
choosing to dig more interesting paths, therefore forming 
better dungeons. When using a blind digger agent, the 
dungeons turn out to be too random and mischaracterized, 
which turns this method less likely to be used since the game 
designer may lose control of the result when the agent is not 
well controlled. This can result in poorly developed dungeons, 
since dungeons are a more sensitive environment in terms of 
room arrangement and player experience.  In addition, it 
requires treatment to prevent generated rooms from 
overlapping each other.  

There are also some contributions for the generation of 
levels using machine-learning algorithms, but most of them 
focus on platform levels and reproduction of levels of iconic 
games, such as Mario, known for the great design of their 
levels. Among these works, one that is interesting and relevant 
is Dahlskog and Togelius work in which they propose the 
usage of patterns, categorized as micro, meso and macro-
patterns, to generate Super Mario Bros levels [10]. The 
patterns are slices of Super Mario Bros platform levels, and 
they use an evolutionary algorithm to recombine these slices, 
forming new Super Mario levels this way. The used 
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evolutionary algorithm has three different fitness functions to 
evaluate the generated levels.  

 In their method, they noted that the used slice patterns in 
the methods can affect the quantity and way that other patterns 
can appear, what can result in lack of diversity of the generated 
levels. The macro patterns were the ones that presented more 
large-structure in the platform level, but they were also the 
patterns that took the longest to generate a dungeon. However, 
their method showed some efficiency considering the time of 
the level generation when using micro and meso patterns, 
although these patterns generated more chaotic results. 

III. PROCEDURAL DUNGEON GENERATION 

The dungeon generation method proposed on this paper 
uses agents to create the room paths and decide on the 
placement of the dungeons strategic rooms. Since procedural 
level generation using agents tends to have results 
proportional to the intelligence of the generating agent, this 
method uses machine-learning methods available at Unity 
ML-Agents library.  

The proposed method can be divided in two big phases: 
1) The design of the dungeon general structure and 2) The 
training and implementation of the agents. The design of the 
dungeon general structure is the phase where we are looking 
for ways to delineate what our dungeon levels should look 
like, and so, define based on what initial configuration the 
agents should be trained so that they can deliver dungeons 
similar to what we aspire.  

In this first phase, the most important design aspect to be 
considered in the presented method is the relative 
configuration of the dungeon strategic rooms. In dungeon 
crawler games, the events that are usually held at different 
and specific rooms, such as boss fight and equipment 
acquisition, like the shop where the player can buy items or a 
treasure room where the player receive items as a reward, 
give the player the sense of conquest progression in the level. 
These types of rooms should be placed very strategically in 
the dungeon and they will be referred in this paper as event 
rooms.  

To begin the design of the dungeon structure, it is 
important to decide what kind of event rooms are better suited 
for the game and level design. It is also important to define 
characteristics of the positioning of the rooms that will hold 
the events because they will guide the progression of the 
levels. In this paper, the chosen event rooms were the boss 
room, which holds boss fights, shop rooms that represent 
equipment acquisition through purchase with money 
acquired in the game, and the treasure room, that holds events 
with acquisition of power and status. These event rooms are 
present in many other dungeon crawler games, such as The 
Legend of Zelda and The Biding of Isaac, and are very 
characteristic of the adventure/ dungeon crawler genre. Other 
kind of events, like mini games or puzzle rooms, can be 
chosen without much interference to the agent generation 
method. After choosing the type of the rooms, it is important 
to design the map positioning of these rooms, which allows 
the designers to have more control of the order the event 
rooms appear in the dungeon, and thus, have more control of 
the level progression. For example, it is interesting that the 
player finds the equipment events before the boss fight, so he 
has the feeling of getting stronger at each level and also gets 
prepared to fight harder bosses. The map positioning will be 
further discussed in the next subsection.    

A. Map Positioning of Event Rooms 

To begin the map position of the event rooms we 
considered a square matrix to represent the dungeon space. 
The dimensions of the initial matrix may vary according to 
how big it is intended for the dungeon to be. Every cell in the 
matrix is a position and represents an available room, so that 
in a 3x3 matrix we have 9 available rooms that can be chosen 
to form the resulting dungeon. 

Following, the first chosen position represents the initial 
room of the dungeon and this position will be chosen 
randomly inside the matrix. However, the initial room position 
is never suited on the matrix border. The reason for this is that 
by not staying in the border of the matrix, the initial room can 
have more neighbor rooms and, therefore, originate more 
paths. The advantage of generating more initial paths is that it 
results in wider dungeons, since a dungeon with its initial 
room in the corner can originate only two initial paths, the 
player initial choice of how to begin the exploration of the 
level gets too simple. 

After this, random positions are chosen in the same 
amount as of the event rooms and their types are chosen based 
on the following design rule:  the boss room is chosen as the 
farthest from the initial room, because, as discussed before, it 
is more interesting if it is reached only after the equipment 
acquiring rooms are found. No distinction was made between 
the shop room and the treasure room since they were 
considered as equivalent equipment acquisition events. In Fig. 
3 there is an example of the used room positioning for a 
dungeon taking place in a 4x4 matrix. For different level 
constructions, level designers may write and define different 
rules to be followed by the framework proposed in this paper. 

After deciding what type of rooms will be generated at the 
dungeon and their relative positioning, the next step is the 
training and implementation of the dungeon generation 
agents. 

B    

   S 

  I  

 T   

Fig. 3. The event rooms positioning in a 4x4 matrix. The letter I represents the 
initial room, the letters B, S and T represent the boss room, the shop room and 
the treasure room respectively. 

B. Dungeon Generation Agent 

We define the Dungeon Generation Agent as the 
intelligent agent responsible for creating a path to a specific 
event room and choosing where the event room is going to 
stay.   

In the proposed method, the agents are specialized, 
meaning that an agent is trained to create the path and define 
the position of only one event room. To generate the whole 
dungeon, multiple agents are needed, one for every event 
room defined in the design phase. 

The specialization of the agents brings many benefits to 
the training stage; one benefit is that the agent actions and 
observations gets simpler, since they have to decide over only 
one task, this also allows easier reward mechanics. The other 
benefit is that the agents can be trained in parallel, and can 
generate the dungeon parts parallel to each other in runtime, 
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allowing faster training and faster dungeon generation in the 
runtime. The parallelization of the agents contributes to 
debugging as well, since it’s clear what part of the dungeon is 
not being generated according to expected and who is the 
agent responsible for this part. The agents responsible for 
finding the shop room and treasure room were not 
distinguished since in the room positioning stage they were 
not distinguished too.  

The agents were trained using machine learning 
algorithms available in the Unity Machine Learning Agents 
Toolkit. This library was chosen due its simplicity of 
integration with Unity Editor, the game engine where this 
project was developed. The Unity ML-Agents toolkit is an 
open source project for training intelligent agents in games or 
simulation environments. The agents can be trained using 
implementations of reinforcement learning, imitation 
learning, neuroevolution algorithms provided by the toolkit, 
or other machine learning methods through integration with 
the Python API [11]. 

The machine learning method chosen to train the dungeon 
generation agents was the reinforcement learning method 
provided by the toolkit in its off-policy option. This method 
implements the Soft Actor-Critic method [11], which is an off-
policy actor-critic deep reinforcement learning framework. In 
this framework, the agents aim to maximize possible reward 
while maximizing entropy at the same time, representing they 
try to succeed the task while acting the most random possible. 
This method has proven to achieve a very nice performance 
on a range of continuous control benchmark tasks, 
outperforming prior on-policy and off-policy methods. In 
addition, this method has proven itself to be very stable, in 
contrast to other off-policy algorithms, and is able to achieve 
very similar performance across different random seeds [12]. 
For its performance capabilities and also the fact that this 
method is easier to use, since it doesn’t require a complex pre-
built model or complicated policies to be applied, it was the 
chosen method to be applied on this project.   

The Unity Machine Learning environment has three core 
entities which are Sensor, Academy and the Agents. The 
sensors are pre-made components that can be used to observe 
the agent environment and provide material for the learning.    
The Academy is used to keep track of the steps of the 
simulation and manage the agents. The Academy also has the 
ability to define environment parameters, which can be used 
to change the configuration of the environment at runtime.   
The Agents are the main component that indicates which 
objects are agents in a scene, they are responsible for 
collecting observations, take actions and receive rewards, and 
each agent must override these functions to customize the 
learning experience, and thus, be able to train the agent to the 
desired objective.  

The observations methods are responsible for what an 
agent is capable of perceiving about the environment, and 
thus, can considerate in its action taking. The action methods 
implement the actions an agent can take, like jumping, 
walking or collecting items. Moreover, the reward methods 
are responsible for giving rewards or punishment to the 
agents. In the next subsection, we will discuss in detail the 
implementation of these methods for the agents in the 
procedural generation method proposed on this paper. 

A square matrix is used to represent the dungeon space in 
the training environment; every matrix cell represented a 

possible position for a dungeon room. The actions an agent 
can take were defined as navigating up, down, to the sides in 
the matrix and stop creating the path. The agent could take 
only one move at a time and the place where the agent stopped 
creating the path was set as the event room that the agent was 
specialized in.  

For the observations, the coordinates of the agent in the 
matrix were used along with the amount of moves made by 
the agent. The agent received the biggest positive reward 
every time it stopped creating the path in the exact position of 
its designated kind of room or in an adjacent position. Small 
positive reward was also added after the agent moved to a 
position that didn’t have a room in the matrix. The biggest 
punishment was added when the agent stepped outside the 
borders of the matrix and when it stopped its path on a position 
that was not adjacent to the position of its specialized room 
nor the specialized room itself.  

Each training episode consisted in the agent creating a path 
of rooms, by marking in the matrix the rooms he had visited. 
When the agent decided to stop, the room the agent had chosen 
to stop was evaluated. If the position of the room corresponded 
to the target position of the event room the agent was 
specializing in or an adjacent position, then the agent received 
a positive reward and the episode ended. If the chosen room 
did not correspond to the target event room or was not nearby, 
then the agent received a big punishment and the episode 
ended. At every episode, the position of the event rooms were 
generated again using the criteria defined in the map 
positioning of event rooms subsection, which is essential for 
the training and for the agents to be able to create useful paths 
in different dungeon dimensions. The training environment 
was composed solely by the data structures described above, 
and thus no rendering was required. 

The training of the shop/treasure room agent occurred 
faster than the training of the boss room agent, as we can see 
in Table 1. This may have occurred because the boss room 
was always farther from the initial room than the other rooms, 
so the agent had to make much more moves to arrive at the 
boss room than at the treasure/shop rooms. 

Fig. 4. Mean episodic reward received during training for each agent. 
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TABLE I.  TIME AND MEAN CUMULATIVE REWARD OF AGENT 

TRAINING 

Agent 
Mean Cumulative 

Reward 
Training Time 

Shop/Treasure Room  1.001 23m 42s 

Boss Room 1.772 43m 9s 

 

The total training time for the agents can be considered to 
be quite satisfactory too. We believe this occurred because the 
training was structured in a way it was not necessary to render 
anything on the screen, and thus, not necessary to check for 
collisions and other costing computing 3D rendering demand, 
because  we were able to instantiate and navigate our agents 
in simple data structures, such as matrix. As stated in the 
subsection above, this aspect increases the speeding up 
implemented in the Unity machine learning agent toolkit used, 
what makes it possible to run more episodes in less time. This 
configuration performed better and was easier to be 
parallelized since lighter environments support multiple agent 
training at the same time better, which sped up the process. In 
addition, the final cumulative reward for the boss room was 
greater than the one for the shop/treasure room, as can be seen 
in Fig. 4, since the agent was rewarded for every move made 
to an empty matrix position, and the path length influenced 
this aspect as well.  

The last step is the rendering of the generated dungeon 
represented in the matrix into a 3D game dungeon. This stage 
integrate the agents’ matrix in a final consolidated matrix, and 
render the level based on the generated matrix. This can be 
done by marking every empty room chosen by the agents, 
represented by the matrix cells, and then copying them to an 
empty matrix that represents the map to be rendered, using 
methods to prevent a room marked by an agent to overwrite a 
room marked by other agent. The 3D rooms that will be 
rendered in the position of the marked rooms are chosen from 
an array of pre-made 3D rooms, according to their types, so 
boss rooms are chosen from an array of pre-made boss rooms, 
as well as common rooms and all the other types. The doors 
are positioned at every intersection between two rooms, so 
between two adjacent rooms there will always be a door.  

IV. RESULTS AND DISCUSSION 

After analyzing the dungeons generated by the agent 
generation method proposed by this paper, we could observe 
that the design choices regarding the positioning of the event 
rooms were respected, since the boss room is always the  

farthest when comparing the event room’s position with the 
initial room position, as can be seen in Fig. 5. This 
conformation forces the player to explore more the dungeon 
before arriving at the peak of the level progression flow, and 
thus, delivering a better experience. It is also possible to 
observe that the shop room and treasure room are often in a 
path for the boss room, which is positive because it allows the 
player to equip before fighting the boss of the level, giving a 
better sense of character development. This configuration can 
be found in other dungeons crawlers that have its dungeons 
handmade, such as The Legend of Zelda. 

It can also be noticed that the dungeons are not sparse, the 
pattern where we have direct paths formed by one room 
following the other until we arrive at the destined room are not 
likely to occur. This dungeon conformation happens because 
our agents received a small reward for every empty room they 
occupied, so, to maximize the reward, the agents ended up also 
maximizing the number of rooms used to form the dungeon. 
Because of this aspect, dungeons generated in matrix with 
small ranges, like 4 or smaller as dimensions of the generation 
matrix, tend to look a lot alike, since the dungeon is filled with 
rooms almost to its maximum capacity. 

We can also observe that the dungeons follow a 
characteristic design pattern among them, which is positive 
since mischaracterization gets far from occurring. This also 
gives the designer more control of what to expect of the 
content generated procedurally, being an alternative for the 
common problem for procedurally generated content, which 
is lack of control. 

 The proposed algorithm also showed itself to be very 
adaptive. The dungeons it generates respect the map 
positioning of event rooms step, which is responsible for 
delineating the progression flow of the generated levels, and 
can be changed according to the game objectives, mechanics 
or history.  

This became possible because of the use of the machine 
learning agents, which can be trained to a large range of map 
positionings according to the game designer’s needs. In 
addition, this also contributes to adjust the similarity between 
dungeons, making it more or less similar according to the 
designer choices. Therefore, if the game designers are willing 
to have more diversity in the game, using this generation 
method, it can be achieved by adding more event rooms or 
more diverse game rooms positionings and varying them 
according to the level of the game the player is at.  

Fig. 5. Dungeons generated with the agents. A represents a 4x4 dungeon, B represents a 6x6 dungeon and C represents a 9x9 dungeon. 
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In addition, diversity can be achieved by adding different 
bosses, enemies and special events held at specific phases, as 
is done in many dungeon crawler titles. This way, the levels 
can withstand strong characterization together with diversity 
in the game. 

However, the proposed algorithm demands the agents to 
be trained with several matrix dimensions for being able to 
generate dungeons with any dimensions. In the generated 
dungeons, we could observe that an agent trained in a 5x5 
matrix could generate dungeons respecting the design choices 
up until 10x10 matrix dimensions, for more broader dungeons, 
it was necessary to retrain the agents in larger matrix so it 
could still respect the design choices in the generation. 

V. EVALUATION 

To evaluate the generated dungeon, we conducted a survey 
with 15 users. In this survey, users were asked to play a simple 
game where the objective was to find a princess and free her 
from the cage. In the game, the player had to explore the 
dungeon searching for the princess and fight enemies that 
spawned at every common room. The princess was spawned 
at the boss room, and the shop and treasure rooms were also 
present. The users were asked to play two versions of this 
game, one implemented the agent dungeon generation and the 
other implemented a more manually generated dungeon 
method where the generation matrix were manually made and  
were randomly chosen for each level.  

The game had infinite agent generated levels, after the 
player finished a level, the next level was generated adding 
more one dimension to the generation matrix. So if the player 
cleared the level generated in a 4x4 matrix, the next one would 
have a 5x5 matrix as its generation matrix. The levels begin 
being generated in a 4x4 matrix for both versions. The 4x4 
dimension was chosen because the agent generated dungeons 
were not sparse, so for smaller generation matrix the agent 
generation method tends to use every possible room, shaping 
the dungeons as a square. 

The survey questions about their experience are shown in 
Table 2, where version 1 represents the manual version, and 
version 2 represents the agent version. According to the 
responses, we can conclude that the dungeons generated by 
the agents were rated as funnier, with better maps and more 
replayability values, which is a very positive result since 
replayability is an important factor for procedurally generated 
content. The results also showed that there was better user 
acceptance to the agent generated dungeons.  

However, users could guess what dungeon was 
procedurally generated. This may have occurred because, 
although they played the same game with only different 
generated dungeons, the dungeon design is crucial for level 
balancing in dungeon crawler games. Because of this, the 
game versions were not equally balanced. This caused the 
agent generated dungeons to deliver a game experience that 
was more challenging than the manually generated, which 
may have lead the users to guess this was the machine learning 
generated dungeon.  

 

 

 

 

TABLE II.  SURVEY QUESTIONS AND RESPONSES 

Version 1 Version 2 Indiscriminate 

What game version was funnier? 

26,7% 60% 13,3% 

In which game version do you think the maps are better? 

20% 53,3% 26,7% 

What game version would play more times? 

26,7% 53,3% 20% 

What game version do you believe was generated by an AI? 

6,7% 73,3% 20% 

 

VI. CONCLUSION 

This paper presented an alternative for generating 
dungeons using intelligent agents trained with machine 
learning, a different approach of the use of agent generation 
methods found in related works, where the agents were not 
intelligent and because of it generated poorer dungeons. The 
proposed method was capable of generating dungeons 
following the style of iconic games, such as The Legend of 
Zelda and The Binding of Isaac, but unlike the mentioned 
games, the proposed method implements machine learning in 
the generation. This contributed for the adaptability of the 
method since the use of machine learning in the agent training 
made it possible to generate different dungeons designs.  

The dungeons generated by this work can adapt to 
different dimensions, being able to create endless levels, but 
for this behavior, agents need to be trained for different level 
dimensions, what increases the time of training. Likewise, 
because of the choice of rewarding the agents for occupying 
an empty room, the generated dungeons have a tendency to 
have many rooms and occupy the majority of the available 
space. The use of pre-made rooms is also a limitation of the 
method, since it requires a wide number of manually made 
rooms to add diversity in games with a vast number of levels. 

In addition, the generated dungeons have proven to have 
more replayability and be more enjoyable than manual ones, 
although users could guess an artificial intelligence (AI) 
generated them. The incorporation of machine learning in the 
procedural generation is a powerful tool and Unity ML-
Agents is a new and simple resource for game developers to 
use and improve their content generation capabilities. In 
addition, the use of machine learning in the procedural 
generation method improved its versatility and reuse, because 
it made it possible to adapt the method for various dungeons 
designs without much effort. For future work, we intend to 
search possibilities of procedurally placing enemies to balance 
player progression in dungeons and create robust procedural 
level generation. 
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