

Generating Procedural Dungeons Using Machine

Learning Methods

Mariana Werneck

Department of Computer Science

Universidade Federal Fluminense

Niterói, Brazil
marianawerneck@id.uff.br

Esteban W. G. Clua

Department of Computer Science

Universidade Federal Fluminense

Niterói, Brazil
esteban@ic.uff.br

Abstract—Procedural content generation (PCG) is a

powerful tool to optimize creation of content in the game

industry. However, it can lead to lack of control and

mischaracterization of the game design, creating unbalanced or

undesired situations. To overcome such problems, machine

learning can be used to map important patterns of a game design

and apply them in the PCG. Considering such aspects, this

paper proposes a strategy for procedurally generating dungeons

using ML techniques. We use Unity ML-Agents tool for the

implementation, since dungeons are environments largely used

in the industry that also require more control over its creation.

The strategy used in this paper has proven to generate dungeons

that respect room positioning design choices and maintains the

game characterization. We conclude, after conducting a survey

with users, that the generated dungeons presented reliable maps

and showed to be more enjoyable and replayable than manually

generated ones following the same design principles.

Keywords—procedural generation, Machine Learning,

Dungeons, UnityML

I. INTRODUCTION

The video game industry represents nowadays, a
billionaire market with a revenue of more than $100 billion
annually [1]. Due to this market being so lucrative and ludic,
more and more developers join the independent segment, even
though the development costs have been raising through time
[2]. As an alternative to lower game production costs, free
game engines and asset stores have been taking the scene in
the last years, but even though more resources are available
for independent game production, the activity is still costly
and time-consuming.

Considering this, the procedural content generation
(PCG), which is the creation of content using an algorithm,
has the potential to become the key point for a more fluid and
sustainable game development. The main points that makes
PCG so powerful is that it allows many improvements in the
process of game creation, such as increasing the amount of
diversity in the content of a game, creating content more
rapidly and, thus, reducing costs and time in game production
[3].

Since PCG can represent such advantage to the game
development process, it has always found its way to be used
in the game industry. In 1980, the game Rogue, developed by
Michael Toy and Glenn Wichman at the University of
California became the first popular game with randomly
generated levels, population of monsters and treasures [6],
using pseudorandom number generators strategies [5]. Its
popularity made roguelike the term to designate games with
randomly generated dungeons.

With the expansion of the game market between 1990s and
2000s, a number of role-playing games inspired by Rogue
emerged. One of the most successful among them was
Blizzard’s Diablo franchise, that had premade map tiles being

randomly chosen and aggregated to form dungeon levels.
More recently, Minecraft has made huge success using
procedural algorithms to generate an open world environment.

However, when using procedural content generation, it is
easy to face problems such as lack of control and repeated
patterns over the created objects and scenarios, which can lead
to mischaracterization of the design of the game, or lack of
diversity in the generation. These problems can make game
designers refrain from the use of PCG [3].

Focusing on the procedural generation of levels, this work
aims to present a strategy for procedural generation of
dungeons, following the dungeon crawler game style, where
the player navigates through a labyrinth of rooms, organized
in levels, to fulfill an objective like save himself or a princess,
and has to defeat enemies or escape traps along the way. The
player also can find items and power ups along the way, which
contributes to the game progression. The display of the rooms
of the labyrinth is also important for the experience of the
game, since the rooms are often diversified in terms of what
challenges or rewards a player can find on them, being
categorized this way. The patterns in which the special rooms
appear on a dungeon tend to repeat on its levels [3].

 The chosen genre of scenarios has been used in extremely
successful games like The Legend of Zelda, Diablo 2, and
more recently, The Binding of Isaac, and have proven to be
able to adapt well with the diversity of content, contributing
to these games’ ability to be played many times for the same
player. This characteristic is known as replayability and is
very important for the long-term enjoyment of video games
and is a factor that procedural generation of content can add
the most [5]. Also, it is important for procedural content to
follow patterns that deliver replayability because, this way, the
generation algorithm can be responsible for generating a wider
range of content without needing further adjustment. In
addition, dungeons are an environment that needs more
control over its creation, because its design longs to have a
more controlled progress for the players and can suffer from
too much randomness. Considering this, automated dungeon
generation has similar challenges to its manual generation [3].

The proposed strategy has the objective of procedurally
generating credible and reliable dungeons that preserve the
sense of belonging to a unique game. The use of machine
learning methods in the generation has the purpose of making
the generation more adaptive to a wider range of game and
level designs. For the use of machine learning methods, this
work integrates Unity ML-Agents, which is a promising and
more ready-to-use library for using machine learning to train
agents developed by Unity Technologies and that is recently
available for use in the Unity game engine [11]. Thus, being
Unity a game engine widely used for independent game and
studios developers, the proposed algorithm aims to aggregate
as a strategy for procedural dungeon generation tangible for
the independent game creators.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 284

II. RELATED WORKS

The procedural generation of levels has been approached
in many ways in the past since it represents an effective way
to lower game production costs and time. Of the known ways
of generating procedural dungeons, one traditional and
successfully used approach was made by Johnson et al. using
the cellular automata [8]. In their method, they begin with a
50 x 50 grid as the basis of their cellular automata. After
generating this first grid, other grids are generated at the
cardinal points of the initial grid with the purpose of
expanding the map. Then, each cell contained on the grid is
fulfilled with information about its position within the grid,
the state of the neighborhood cells, the type of the cells (rock,
floor or wall) and the cell’s group number. With the objective
of creating a map shape in the grid, a rule set is defined to
iterate over the grid. The rule set defined by Johnson et al.
stated that: 1) a cell is rock if the neighborhood value is greater
than or equal to 5 and floor otherwise; and 2) a rock cell that
has a neighboring floor cell is a wall cell. This rule set is
applied iteratively until shapes begin to form in the grid,
usually, these shapes tend to look like caves or forest
labyrinths, as it is shown in Fig. 1.

 The positive aspects of this method is that it can
generate levels with efficiency, being able to generate levels
in runtime, and thus is capable of generating infinite levels.
However, the cellular automata method lacks control in the
generation process, being hard to predict the results of the
generation, and it needs further treatment to guarantee that the
player will not get stuck in a floor area that does not connect
to others. For the chaotic aspect of the generated levels, this
generation method is more likely to be used in games such as
cave crawler.

Fig. 1. Gray areas are categorized as floor, red and white represent rock and
wall respectively in this map generated with the cellular automata [8].

Another interesting successful approach for dungeon
generations is the space partitioning method described by
Shaker et al. [9]. In this work, the space selected to the map is
divided recursively using a partition technique, in Shaker et al.
work, the chosen partition technique was the binary space
partition. The advantages of this method is that the partitioned
space can be represented as a binary tree, also known as BSP
tree. This offer some advantages as navigation and
manipulation of the generated map, since binary trees are
widely known and studied, and therefore there is a wide range
of optimized algorithms that deal with binary tree
manipulation and search problems. Because of this aspect, the
generated level can vary according to the implemented
algorithm to generated the BSP variant. Multiples algorithms

can be adjusted according to the game designer needs for the
generated levels.

 After the space is partitioned, a room is placed inside each
partition. This is done by randomly selecting room corners and
verifying if the chosen space is acceptable for a room area, for
example, testing if is not too small or if it has the shape of a
square. Then, corridors are placed by connecting children of
the same parent to each other. An example of the resulted
dungeons is shown in Fig. 2.

Fig. 2. A dungeon map generated by BSP special partitioning method. The
white areas represents rooms and corridors, the black ones represent walls and
rocks. The red represents the creation of a corridor [9].

 Shaker et al. also describes a way of generating
dungeons using agents, which he calls agent-based dungeon
growing. In this method the agent is generated in a random tile
through a tile grid representing the dungeon map, and then it
begins to digger through the grid, with a property that
determines the chances of spawning a room on that way. The
probability of the agent spawning a room increases as the
agents get farther away from the beginning. After a room is
spawned, the property is set to zero once more, and the
beginning point becomes the last spawned room coordinate
[9].

 The agent parameters used by Shaker et al. were simple; it
had a blind digger agent wandering in the dungeon space,
divided in grids. At every grid navigated by the agent, the
probability of the agent choosing to spawn a room increased
5%. Every time a room was spawned the probability was
reduced to 5% again. The probability for the agent making a
turn was around 25% to 30%.

This method depends on the intelligence of the agent for
choosing to dig more interesting paths, therefore forming
better dungeons. When using a blind digger agent, the
dungeons turn out to be too random and mischaracterized,
which turns this method less likely to be used since the game
designer may lose control of the result when the agent is not
well controlled. This can result in poorly developed dungeons,
since dungeons are a more sensitive environment in terms of
room arrangement and player experience. In addition, it
requires treatment to prevent generated rooms from
overlapping each other.

There are also some contributions for the generation of
levels using machine-learning algorithms, but most of them
focus on platform levels and reproduction of levels of iconic
games, such as Mario, known for the great design of their
levels. Among these works, one that is interesting and relevant
is Dahlskog and Togelius work in which they propose the
usage of patterns, categorized as micro, meso and macro-
patterns, to generate Super Mario Bros levels [10]. The
patterns are slices of Super Mario Bros platform levels, and
they use an evolutionary algorithm to recombine these slices,
forming new Super Mario levels this way. The used

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 285

evolutionary algorithm has three different fitness functions to
evaluate the generated levels.

 In their method, they noted that the used slice patterns in
the methods can affect the quantity and way that other patterns
can appear, what can result in lack of diversity of the generated
levels. The macro patterns were the ones that presented more
large-structure in the platform level, but they were also the
patterns that took the longest to generate a dungeon. However,
their method showed some efficiency considering the time of
the level generation when using micro and meso patterns,
although these patterns generated more chaotic results.

III. PROCEDURAL DUNGEON GENERATION

The dungeon generation method proposed on this paper
uses agents to create the room paths and decide on the
placement of the dungeons strategic rooms. Since procedural
level generation using agents tends to have results
proportional to the intelligence of the generating agent, this
method uses machine-learning methods available at Unity
ML-Agents library.

The proposed method can be divided in two big phases:
1) The design of the dungeon general structure and 2) The
training and implementation of the agents. The design of the
dungeon general structure is the phase where we are looking
for ways to delineate what our dungeon levels should look
like, and so, define based on what initial configuration the
agents should be trained so that they can deliver dungeons
similar to what we aspire.

In this first phase, the most important design aspect to be
considered in the presented method is the relative
configuration of the dungeon strategic rooms. In dungeon
crawler games, the events that are usually held at different
and specific rooms, such as boss fight and equipment
acquisition, like the shop where the player can buy items or a
treasure room where the player receive items as a reward,
give the player the sense of conquest progression in the level.
These types of rooms should be placed very strategically in
the dungeon and they will be referred in this paper as event
rooms.

To begin the design of the dungeon structure, it is
important to decide what kind of event rooms are better suited
for the game and level design. It is also important to define
characteristics of the positioning of the rooms that will hold
the events because they will guide the progression of the
levels. In this paper, the chosen event rooms were the boss
room, which holds boss fights, shop rooms that represent
equipment acquisition through purchase with money
acquired in the game, and the treasure room, that holds events
with acquisition of power and status. These event rooms are
present in many other dungeon crawler games, such as The
Legend of Zelda and The Biding of Isaac, and are very
characteristic of the adventure/ dungeon crawler genre. Other
kind of events, like mini games or puzzle rooms, can be
chosen without much interference to the agent generation
method. After choosing the type of the rooms, it is important
to design the map positioning of these rooms, which allows
the designers to have more control of the order the event
rooms appear in the dungeon, and thus, have more control of
the level progression. For example, it is interesting that the
player finds the equipment events before the boss fight, so he
has the feeling of getting stronger at each level and also gets
prepared to fight harder bosses. The map positioning will be
further discussed in the next subsection.

A. Map Positioning of Event Rooms

To begin the map position of the event rooms we
considered a square matrix to represent the dungeon space.
The dimensions of the initial matrix may vary according to
how big it is intended for the dungeon to be. Every cell in the
matrix is a position and represents an available room, so that
in a 3x3 matrix we have 9 available rooms that can be chosen
to form the resulting dungeon.

Following, the first chosen position represents the initial
room of the dungeon and this position will be chosen
randomly inside the matrix. However, the initial room position
is never suited on the matrix border. The reason for this is that
by not staying in the border of the matrix, the initial room can
have more neighbor rooms and, therefore, originate more
paths. The advantage of generating more initial paths is that it
results in wider dungeons, since a dungeon with its initial
room in the corner can originate only two initial paths, the
player initial choice of how to begin the exploration of the
level gets too simple.

After this, random positions are chosen in the same
amount as of the event rooms and their types are chosen based
on the following design rule: the boss room is chosen as the
farthest from the initial room, because, as discussed before, it
is more interesting if it is reached only after the equipment
acquiring rooms are found. No distinction was made between
the shop room and the treasure room since they were
considered as equivalent equipment acquisition events. In Fig.
3 there is an example of the used room positioning for a
dungeon taking place in a 4x4 matrix. For different level
constructions, level designers may write and define different
rules to be followed by the framework proposed in this paper.

After deciding what type of rooms will be generated at the
dungeon and their relative positioning, the next step is the
training and implementation of the dungeon generation
agents.

B

 S

 I

 T

Fig. 3. The event rooms positioning in a 4x4 matrix. The letter I represents the
initial room, the letters B, S and T represent the boss room, the shop room and
the treasure room respectively.

B. Dungeon Generation Agent

We define the Dungeon Generation Agent as the
intelligent agent responsible for creating a path to a specific
event room and choosing where the event room is going to
stay.

In the proposed method, the agents are specialized,
meaning that an agent is trained to create the path and define
the position of only one event room. To generate the whole
dungeon, multiple agents are needed, one for every event
room defined in the design phase.

The specialization of the agents brings many benefits to
the training stage; one benefit is that the agent actions and
observations gets simpler, since they have to decide over only
one task, this also allows easier reward mechanics. The other
benefit is that the agents can be trained in parallel, and can
generate the dungeon parts parallel to each other in runtime,

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 286

allowing faster training and faster dungeon generation in the
runtime. The parallelization of the agents contributes to
debugging as well, since it’s clear what part of the dungeon is
not being generated according to expected and who is the
agent responsible for this part. The agents responsible for
finding the shop room and treasure room were not
distinguished since in the room positioning stage they were
not distinguished too.

The agents were trained using machine learning
algorithms available in the Unity Machine Learning Agents
Toolkit. This library was chosen due its simplicity of
integration with Unity Editor, the game engine where this
project was developed. The Unity ML-Agents toolkit is an
open source project for training intelligent agents in games or
simulation environments. The agents can be trained using
implementations of reinforcement learning, imitation
learning, neuroevolution algorithms provided by the toolkit,
or other machine learning methods through integration with
the Python API [11].

The machine learning method chosen to train the dungeon
generation agents was the reinforcement learning method
provided by the toolkit in its off-policy option. This method
implements the Soft Actor-Critic method [11], which is an off-
policy actor-critic deep reinforcement learning framework. In
this framework, the agents aim to maximize possible reward
while maximizing entropy at the same time, representing they
try to succeed the task while acting the most random possible.
This method has proven to achieve a very nice performance
on a range of continuous control benchmark tasks,
outperforming prior on-policy and off-policy methods. In
addition, this method has proven itself to be very stable, in
contrast to other off-policy algorithms, and is able to achieve
very similar performance across different random seeds [12].
For its performance capabilities and also the fact that this
method is easier to use, since it doesn’t require a complex pre-
built model or complicated policies to be applied, it was the
chosen method to be applied on this project.

The Unity Machine Learning environment has three core
entities which are Sensor, Academy and the Agents. The
sensors are pre-made components that can be used to observe
the agent environment and provide material for the learning.
The Academy is used to keep track of the steps of the
simulation and manage the agents. The Academy also has the
ability to define environment parameters, which can be used
to change the configuration of the environment at runtime.
The Agents are the main component that indicates which
objects are agents in a scene, they are responsible for
collecting observations, take actions and receive rewards, and
each agent must override these functions to customize the
learning experience, and thus, be able to train the agent to the
desired objective.

The observations methods are responsible for what an
agent is capable of perceiving about the environment, and
thus, can considerate in its action taking. The action methods
implement the actions an agent can take, like jumping,
walking or collecting items. Moreover, the reward methods
are responsible for giving rewards or punishment to the
agents. In the next subsection, we will discuss in detail the
implementation of these methods for the agents in the
procedural generation method proposed on this paper.

A square matrix is used to represent the dungeon space in
the training environment; every matrix cell represented a

possible position for a dungeon room. The actions an agent
can take were defined as navigating up, down, to the sides in
the matrix and stop creating the path. The agent could take
only one move at a time and the place where the agent stopped
creating the path was set as the event room that the agent was
specialized in.

For the observations, the coordinates of the agent in the
matrix were used along with the amount of moves made by
the agent. The agent received the biggest positive reward
every time it stopped creating the path in the exact position of
its designated kind of room or in an adjacent position. Small
positive reward was also added after the agent moved to a
position that didn’t have a room in the matrix. The biggest
punishment was added when the agent stepped outside the
borders of the matrix and when it stopped its path on a position
that was not adjacent to the position of its specialized room
nor the specialized room itself.

Each training episode consisted in the agent creating a path
of rooms, by marking in the matrix the rooms he had visited.
When the agent decided to stop, the room the agent had chosen
to stop was evaluated. If the position of the room corresponded
to the target position of the event room the agent was
specializing in or an adjacent position, then the agent received
a positive reward and the episode ended. If the chosen room
did not correspond to the target event room or was not nearby,
then the agent received a big punishment and the episode
ended. At every episode, the position of the event rooms were
generated again using the criteria defined in the map
positioning of event rooms subsection, which is essential for
the training and for the agents to be able to create useful paths
in different dungeon dimensions. The training environment
was composed solely by the data structures described above,
and thus no rendering was required.

The training of the shop/treasure room agent occurred
faster than the training of the boss room agent, as we can see
in Table 1. This may have occurred because the boss room
was always farther from the initial room than the other rooms,
so the agent had to make much more moves to arrive at the
boss room than at the treasure/shop rooms.

Fig. 4. Mean episodic reward received during training for each agent.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 287

TABLE I. TIME AND MEAN CUMULATIVE REWARD OF AGENT

TRAINING

Agent
Mean Cumulative

Reward
Training Time

Shop/Treasure Room 1.001 23m 42s

Boss Room 1.772 43m 9s

The total training time for the agents can be considered to
be quite satisfactory too. We believe this occurred because the
training was structured in a way it was not necessary to render
anything on the screen, and thus, not necessary to check for
collisions and other costing computing 3D rendering demand,
because we were able to instantiate and navigate our agents
in simple data structures, such as matrix. As stated in the
subsection above, this aspect increases the speeding up
implemented in the Unity machine learning agent toolkit used,
what makes it possible to run more episodes in less time. This
configuration performed better and was easier to be
parallelized since lighter environments support multiple agent
training at the same time better, which sped up the process. In
addition, the final cumulative reward for the boss room was
greater than the one for the shop/treasure room, as can be seen
in Fig. 4, since the agent was rewarded for every move made
to an empty matrix position, and the path length influenced
this aspect as well.

The last step is the rendering of the generated dungeon
represented in the matrix into a 3D game dungeon. This stage
integrate the agents’ matrix in a final consolidated matrix, and
render the level based on the generated matrix. This can be
done by marking every empty room chosen by the agents,
represented by the matrix cells, and then copying them to an
empty matrix that represents the map to be rendered, using
methods to prevent a room marked by an agent to overwrite a
room marked by other agent. The 3D rooms that will be
rendered in the position of the marked rooms are chosen from
an array of pre-made 3D rooms, according to their types, so
boss rooms are chosen from an array of pre-made boss rooms,
as well as common rooms and all the other types. The doors
are positioned at every intersection between two rooms, so
between two adjacent rooms there will always be a door.

IV. RESULTS AND DISCUSSION

After analyzing the dungeons generated by the agent
generation method proposed by this paper, we could observe
that the design choices regarding the positioning of the event
rooms were respected, since the boss room is always the

farthest when comparing the event room’s position with the
initial room position, as can be seen in Fig. 5. This
conformation forces the player to explore more the dungeon
before arriving at the peak of the level progression flow, and
thus, delivering a better experience. It is also possible to
observe that the shop room and treasure room are often in a
path for the boss room, which is positive because it allows the
player to equip before fighting the boss of the level, giving a
better sense of character development. This configuration can
be found in other dungeons crawlers that have its dungeons
handmade, such as The Legend of Zelda.

It can also be noticed that the dungeons are not sparse, the
pattern where we have direct paths formed by one room
following the other until we arrive at the destined room are not
likely to occur. This dungeon conformation happens because
our agents received a small reward for every empty room they
occupied, so, to maximize the reward, the agents ended up also
maximizing the number of rooms used to form the dungeon.
Because of this aspect, dungeons generated in matrix with
small ranges, like 4 or smaller as dimensions of the generation
matrix, tend to look a lot alike, since the dungeon is filled with
rooms almost to its maximum capacity.

We can also observe that the dungeons follow a
characteristic design pattern among them, which is positive
since mischaracterization gets far from occurring. This also
gives the designer more control of what to expect of the
content generated procedurally, being an alternative for the
common problem for procedurally generated content, which
is lack of control.

 The proposed algorithm also showed itself to be very
adaptive. The dungeons it generates respect the map
positioning of event rooms step, which is responsible for
delineating the progression flow of the generated levels, and
can be changed according to the game objectives, mechanics
or history.

This became possible because of the use of the machine
learning agents, which can be trained to a large range of map
positionings according to the game designer’s needs. In
addition, this also contributes to adjust the similarity between
dungeons, making it more or less similar according to the
designer choices. Therefore, if the game designers are willing
to have more diversity in the game, using this generation
method, it can be achieved by adding more event rooms or
more diverse game rooms positionings and varying them
according to the level of the game the player is at.

Fig. 5. Dungeons generated with the agents. A represents a 4x4 dungeon, B represents a 6x6 dungeon and C represents a 9x9 dungeon.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 288

In addition, diversity can be achieved by adding different
bosses, enemies and special events held at specific phases, as
is done in many dungeon crawler titles. This way, the levels
can withstand strong characterization together with diversity
in the game.

However, the proposed algorithm demands the agents to
be trained with several matrix dimensions for being able to
generate dungeons with any dimensions. In the generated
dungeons, we could observe that an agent trained in a 5x5
matrix could generate dungeons respecting the design choices
up until 10x10 matrix dimensions, for more broader dungeons,
it was necessary to retrain the agents in larger matrix so it
could still respect the design choices in the generation.

V. EVALUATION

To evaluate the generated dungeon, we conducted a survey
with 15 users. In this survey, users were asked to play a simple
game where the objective was to find a princess and free her
from the cage. In the game, the player had to explore the
dungeon searching for the princess and fight enemies that
spawned at every common room. The princess was spawned
at the boss room, and the shop and treasure rooms were also
present. The users were asked to play two versions of this
game, one implemented the agent dungeon generation and the
other implemented a more manually generated dungeon
method where the generation matrix were manually made and
were randomly chosen for each level.

The game had infinite agent generated levels, after the
player finished a level, the next level was generated adding
more one dimension to the generation matrix. So if the player
cleared the level generated in a 4x4 matrix, the next one would
have a 5x5 matrix as its generation matrix. The levels begin
being generated in a 4x4 matrix for both versions. The 4x4
dimension was chosen because the agent generated dungeons
were not sparse, so for smaller generation matrix the agent
generation method tends to use every possible room, shaping
the dungeons as a square.

The survey questions about their experience are shown in
Table 2, where version 1 represents the manual version, and
version 2 represents the agent version. According to the
responses, we can conclude that the dungeons generated by
the agents were rated as funnier, with better maps and more
replayability values, which is a very positive result since
replayability is an important factor for procedurally generated
content. The results also showed that there was better user
acceptance to the agent generated dungeons.

However, users could guess what dungeon was
procedurally generated. This may have occurred because,
although they played the same game with only different
generated dungeons, the dungeon design is crucial for level
balancing in dungeon crawler games. Because of this, the
game versions were not equally balanced. This caused the
agent generated dungeons to deliver a game experience that
was more challenging than the manually generated, which
may have lead the users to guess this was the machine learning
generated dungeon.

TABLE II. SURVEY QUESTIONS AND RESPONSES

Version 1 Version 2 Indiscriminate

What game version was funnier?

26,7% 60% 13,3%

In which game version do you think the maps are better?

20% 53,3% 26,7%

What game version would play more times?

26,7% 53,3% 20%

What game version do you believe was generated by an AI?

6,7% 73,3% 20%

VI. CONCLUSION

This paper presented an alternative for generating
dungeons using intelligent agents trained with machine
learning, a different approach of the use of agent generation
methods found in related works, where the agents were not
intelligent and because of it generated poorer dungeons. The
proposed method was capable of generating dungeons
following the style of iconic games, such as The Legend of
Zelda and The Binding of Isaac, but unlike the mentioned
games, the proposed method implements machine learning in
the generation. This contributed for the adaptability of the
method since the use of machine learning in the agent training
made it possible to generate different dungeons designs.

The dungeons generated by this work can adapt to
different dimensions, being able to create endless levels, but
for this behavior, agents need to be trained for different level
dimensions, what increases the time of training. Likewise,
because of the choice of rewarding the agents for occupying
an empty room, the generated dungeons have a tendency to
have many rooms and occupy the majority of the available
space. The use of pre-made rooms is also a limitation of the
method, since it requires a wide number of manually made
rooms to add diversity in games with a vast number of levels.

In addition, the generated dungeons have proven to have
more replayability and be more enjoyable than manual ones,
although users could guess an artificial intelligence (AI)
generated them. The incorporation of machine learning in the
procedural generation is a powerful tool and Unity ML-
Agents is a new and simple resource for game developers to
use and improve their content generation capabilities. In
addition, the use of machine learning in the procedural
generation method improved its versatility and reuse, because
it made it possible to adapt the method for various dungeons
designs without much effort. For future work, we intend to
search possibilities of procedurally placing enemies to balance
player progression in dungeons and create robust procedural
level generation.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 289

REFERENCES

[1] Mercado de games deve gerar receita de US$ 152 bilhões em 2019.
https://epocanegocios.globo.com/Empresa/noticia/2019/06/mercado-
de-games-devegerar-receita-de-us-152-bilhoes-em-2019.html. Access
in December 2019.

[2] R. Koster, “The cost of games”,
https://www.raphkoster.com/2018/01/17/the-cost-of-games/. Access
in July 2020.

[3] R. van der Linden, R. Lopes, R. Bidarra “Procedural generation of
dungeons,” in IEEE transactions on computational intelligence and ai
in games, vol. 6, no. 1, pp. 78-89, March 2014.

[4] “ML-Agents toolkit overview”, https://github.com/Unity-
Technologies/ml-agents/blob/master/docs/ML-Agents-Overview.md.
Access in August 2020.

[5] N. Brewer, “Computerized dungeons and randomly generated worlds:
from rogue to minecraft,” in Proceedings of the IEEE , vol. 105, No.
5, pp. 970-977, May 2017.

[6] G. Smith, “An analog history of procedural content generation,” in
Proc. 10th Int. Conf. Found. Digit. Games, Pacific Grove, CA, USA,
2015, pp. 1–6.

[7] G. Smith, E. Gan, A. Othenin-Girard, and J. Whitehead, “PCG-based
game design: Enabling new play experiences through procedural
content generation,” in Proc. 2nd Int. Workshop Procedural Content
Generat. Games, Bordeaux, France. June 2011.

[8] L Johnson, G.N.Yannakakis,andJ.Togelius, “Cellularautomatafor real-
time generation of infinite cave levels,” in Proc. Workshop Procedural
Content Generat. Games, New York, NY, USA, 2010, DOI:
10.1145/1814256.1814266.

[9] N. Shaker, A. Liapis, J. Togelius, R. Lopes, R. Bidarra, “Procedural
content generation in games”, Chapter 3, Springer International
Publishing, 2016.

[10] S. Dahlskog, J. Togelius, “A multi-level level generator” in
Proceedings of the IEEE Conference on Computational Intelligence
and Games, 2014.

[11] A. Juliani et al. Unity: A General Platform for Intelligent Agents. arXiv
preprint arXiv:1809.02627, 2020.

[12] T. Haarnoja et al. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. arXiv preprint.
arXiv:1801.01290. 2018.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 290

