
Procedural Generation of Favela Layouts on
Arbitrary Terrains

Natan Luiz Paetzhold Berwaldt
Laboratório de Computação Aplicada
Universidade Federal de Santa Maria

Santa Maria, Brazil
nlberwaldt@inf.ufsm.br

Rafael Vales Bettker
Laboratório de Computação Aplicada
Universidade Federal de Santa Maria

Santa Maria, Brazil
rvales@inf.ufsm.br

Cesar Tadeu Pozzer
Laboratório de Computação Aplicada
Universidade Federal de Santa Maria

Santa Maria, Brazil
pozzer@inf.ufsm.br

Fig. 1. A favela generated with our approach.

Abstract—The procedural generation of content for virtual
worlds is a technique widely explored by the game industry
since it allows a reduction in the development costs and time.
Procedural city generation is a very common topic, given the
growth in the size of scenarios in games and simulations.
However, traditional city-generation techniques do not represent
some particular variations found in urban spaces, such as
informal urban settlements. This paper proposes a method for
generating procedural favelas, containing its road system, division
of building lots, and alleys. The road system uses the A* algorithm
and is based on the heightmap, having the characteristics of
favelas on uneven terrains. The method allows zigzag roads to
adapt to the steep elevations, a higher number of dead ends,
and large blocks, fitting several buildings, and an alley system.
The generation of building lots and alley system is based on the
quadtree algorithm. Each block is subdivided to fit its building
lots. The buildings are positioned on their lot, leaving a free space
for the alleys. The alley system connects all the buildings that
are inside the city block to the road. Our purpose is to generate
the layout of a favela on arbitrary terrain procedurally. The
results can be used in games, animations, and different types
of simulations involving this scenario, such as traffic analysis,
natural disasters, and future urban growth.

Index Terms—procedural city, virtual terrains, favela, informal
settlements

I. INTRODUCTION

Procedural city generation is a theme explored in various
papers [1] and also with more specific features, such as road
networks [2] and land use [3]. But these works tend to make
generic cities, not representing particular varieties of urban
formation.

The Brazilian favelas are one of the places that present
a very peculiar way of land use, since these places are
densely populated, and the terrain is improper for building,
the constructions are made with an architecture that does not
follow the building rules seen in other places, generating such
different structures.

These places differ from other urban areas in many aspects.
The roads are sparse and only covers a small part of the area.
Unlike typical neighborhood where almost all houses have the
entrance facing a road, in favelas, the dwellers generally need
to cross through lots of narrow alleys in the way from the road
to their houses.

This makes a new strategy necessary for the building
distribution and alley generation not based exclusively on the

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 330

roads, but still need to be influenced by them to generate the
correct building alignment.

Another difference is the vertical expansion of the construc-
tions. Due to the constant population growth combined with
the difficulties to expand to other parts of the terrain because
of the irregularities, the expansion is obligated to be vertical,
filling all the available space without following standards or
official building rules.

Most of the time, limited resources do not allow the
construction of large buildings at once. So, the upper floors
tend to be built at different times, making them have different
styles, formats, and materials. In a procedural generation, this
must be considered, which forces the generation of each one
to be individual, not be possible to generate a whole regular
set of identical floors like can be seen in standard buildings.

Since the buildings grow on top of improper and difficult-
to-reach locations, such as hills, there is often no space to
build many roads with various paths, or corners with several
intersections, resulting in streets that are often dead ends, and
blocks that tend to be larger than city standards, with several
dozen buildings between roads.

Also, the roads adapt to the terrain on which the favela is
located, seeking the smoothest path. In cases of a steep climb
to reach over hills, an adaptation is necessary to respect the
limit angle allowed for vehicles to travel.

In this work we propose a procedural method for road
generation, building lots distribution, basic structure creation,
and alleys connecting them. It is focused on the favela layout
generation, not focusing on building modeling or realism of
facades.

Games have a special need for these kinds of procedural
generation since their worlds are getting larger and more
complex. But it does not mean that all games need scenarios
with realistic details; racing games generally only need to
focus on the scenery around the road where the competitors
are going to cross, and the racing game Descenders has a
scenario representing a shanty town, by focusing only on the
overall structures, with almost no detail.

The Microsoft Flight Simulator focuses on the simulation
of flying planes, which makes it unnecessary for most parts
of the map to have good quality in areas not visible from the
sky. This game uses real world data to generate its structures
to replicate the planet, but for not well-known places, such
as favelas, it could be used a procedural approach, requiring
much less effort from the development team.

This solution is also applicable for animations and different
kinds of simulations on this type of settlements, like traffic
analysis, natural disasters, and future urban growth. Fig. 1
shows a favela generated with our method.

The paper is organized as follows: Section II presents related
works involving favelas and procedural generation of cities.
An overview of the proposed method is presented in Section
III. Section IV details the road network, and in Section V the
buildings. Finally, Section VI and VII present and discuss the
results.

II. RELATED WORK

There are several procedural modeling techniques for gen-
erating cities [1], including roads, building lots, exteriors,
and furnished interiors. The methods use different aspects to
create virtual scenarios close to reality, such as the population,
environment, vegetation, architecture, elevation, geology, and
culture [4].

A method for generating cities from a single image is
presented in CityCraft [5]. Online street images are used to
train neural networks, capable of guessing the town from the
input photograph. Then, the city’s height map is obtained, and,
together with the city properties, the generation is made.

In [6], Mizdal et al. describe an approach of procedural
generation of villages based on the characteristics of the land
to construct the road system and distribute the buildings.
From an analysis of the terrain, more planar areas are defined
where the village structures will be fitted. Then, using the A*
algorithm, paths are generated connecting these villages.

Nishida et al. [7] present an interactive tool to create
realistic roads. It has a sketching step to delimit the area
and choose an example model, and then a graph is built
from the characteristics of the example, forming the road
network. This approach is based on examples, and unless there
is a large database, the algorithm may not be able to behave
correctly defining solutions for climbing steep slopes, since it
was originally designed without this objective. Besides, for a
mountain, the average height of the area is used to obtain a
corresponding pattern. The result in these areas is the same
pattern that is repeated frequently and is not likely to be used
in favelas, since in them, the pattern differs in nearby locations,
based directly on the variation of the local terrain.

To divide building lots inside city blocks, Vanegas et al.
[8] propose a method that with a road graph, two styles of
subdivisions can be made: the first uses polygon skeletons,
and ensures that all front sides are on the street, while the
rear-sides are adjacent to other lots; the other divide the lots
in quadrilateral formats with or without access to the street.

Vanegas’ strategy is very customizable and can be adapted
to different kinds of urban layout, but dedicates much effort
in the alignment of the blocks to ensure similarity with well-
designed cities. Therefore we present a similar, but simpler
solution considering that we do not focus on these detailed
constraints like homogeneous area distribution, aspect-ratio,
and easy access to the roads.

Several works focus on the generation of procedural cities
[1] [2] [3] [4] [5], but they represent more generic urban areas,
without the characteristics of the informal settlements, and [6]
focus on the specific culture of villages.

In the scope of the favelas, Gadiraju et al. [9] propose a
method for detecting informal settlements based on satellite
images. For this, per-pixel based classification methods were
used, which, combined with other features, identify the fave-
las’ location and limits. The detection of informal settlements
does not focus on procedural generation but the analysis of
these locations.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 331

Some works are based on informal settlements in South
Africa. Glass et al. [10] extract, from aerial images, features
from two urban complexes and use them as a basis, together
with techniques such as Voronoi diagrams, subdivision, and
L-system to generate procedural road patterns.

This technique does not use terrain height, only satellite
images. The use of the Voronoi diagram restricts the blocks to
patterns without straight roads, and without the possibility of
creating dead ends outside the borders. This makes its use
more specific for informal settlements like those in South
Africa.

Rautenbach et al. [11] present a process to model 3D
building for favelas. Starting from 2D building footprints data,
the facades are constructed, adding details and styles, and
producing the 3D model.

Also, Bade [12] presents a procedural environment tool
with Houdini Engine for shanty towns. The method distributes
materials on the facades according to several parameters. There
is the random creation mode and the personalized one – which
gives more control for the creation of the expected scenario
–. This is not the subject addressed in our work, but it can be
used as a complement to obtain a final model of a favela.

Finally, Buehler et al. [13] reproduce a favela within ArcGIS
CityEngine, software for modeling and generating urban envi-
ronments. The entire generation is done with the mechanisms
available in the software, being limited to it. Besides, its facade
modeling is analyzed and compared to other architectures by
Beneš [14].

III. OVERVIEW

In this section, we present an overview of the proposed
method. The process can be divided into three main steps (Fig.
2).

Fig. 2. Workflow of our approach.

First, the terrain heightmap and the favela boundaries are
loaded. The boundaries of the favela correspond to a polygon –
a list of 3D points – that will delimit the area where the favela
will be built. Additionally, some parameters can be changed,
such as the minimum size of blocks and buildings or the road’s
maximum slope.

The second step is the construction of the roads. The A*
algorithm is used with a custom cost function, influenced

by the height of the terrain (Section IV-A). The roads are
generated using the method presented in Section IV-B, which
is based on the typical characteristics of the favelas. During
generation, each new road is added to a graph structure called
a road graph.

After, the roads and sidewalks meshes are created. The ter-
rain’s height is compared to the height of the road to creating
the displacement map, which is used to adjust the meshes to
the terrain. Finally, the terrain heightmap is displaced. Details
are described in Section IV-C.

The next step is the generation of buildings. The building
blocks are explained in Section V-A. From the borders of the
road mesh, polygons are generated. The polygons are used
to limit and orient the building distribution, considering the
road meshes previously created, and the area’s limits passed
as input.

Next, inside the polygon of each building block, the building
lots will be distributed and aligned using the techniques
described in Section V-B.

The last step generates a 3D representation of the building
inside each building lot, translating it to the correct height over
the terrain and creating the structure of each building floor.

IV. ROAD NETWORK

The proposed road network generation method is based on
the differential characteristics of the layout of a real favela,
when compared to city standards previously described. The
road network has a branching pattern in which new roads are
created as the favela expands. The generation is according to
the terrain, seeking to cover less steep areas to facilitate the
transit of people and vehicles.

One approach that can be used to separate passable areas is
navmeshes. From a maximum street slope limit, it is possible
to define the areas that are likely to receive streets, then use
pathfinding algorithms, such as A*, to find paths connecting
two areas.

This technique is not effective for cases where the difference
in height between two nearby points is large – but within the
maximum slope limit –, resulting in uneven streets instead of
crossing for a nearby flat area. So, to find for the most possible
flat paths, Section IV-A presents a custom cost function for the
A* algorithm on the grid generated from the map vertices.

To generate street patterns similar to the real favelas in
arbitrary terrains, some specific characteristics are needed,
such as frequent dead end streets, and access points in elevated
areas. A street may not be able to climb a mountain, so
adaptations must be made to provide access to the buildings at
the top of a mountain. The approach used is shown in Section
IV-B. Finally, Section IV-C shows the generation of street and
sidewalk meshes.

A. A* Algorithm

The custom cost function is strongly influenced by the
elevation of the terrain. For the calculation, the first step is
to distribute n points in a straight line from the source to
the target. Each point will have its partial cost and weight –

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 332

the closer to the source point, the higher the weight – for
calculating the final cost. The value of n can be adapted
according to the terrain’s size and irregularity, using a larger
number of points for more irregular terrain.

Each point has its partial cost function Cp (1) which is the
sum of the distance between pi (position of the i-th point from
the source) and pt (position of the target) on the x and z – axes
parallel to the ground plane –, and the square of the distance
of the height y, to have an exponential disadvantage for slope
paths.

Cp(i) = |pi.x− pt.x|+ |pi.y − pt.y|2 + |pi.z − pt.z| (1)

The final cost formula Ct (2) for getting from one point
to another is given by the sum of each point’s partial cost
multiplied by its weight.

Ct =
n∑

i=1

Cp(i)

i
(2)

Thus, the algorithm advances from source to target, being
more influenced by the nearest slopes, seeking to circumvent
them before being influenced by the slopes from afar. When
the target is reached, the points that form the path are trans-
formed into edges to be added to the road graph, presented in
the next section.

B. Road Graph

The representation of the roads is made with a planar graph,
where the vertices correspond to corners or curves, and the
edges to each path of the road. The first step is to create an
initial road from the point of the border with the lowest y value
– representing an entrance to the favela – to the opposite edge,
crossing the entire area. From that road, branches will be made
to create a road network.

With the start and end points of the road in hand, the A*
algorithm searches for the most appropriate path connecting
them. The path is returned as a set of 3D points, which are
added as vertices in the road graph. Edges are also added,
connecting each vertex of the path with its successor.

After adding the first road, each vertex of the graph is visited
and has a given possibility of branching. The chance for the
first road vertices should be higher than the others since it is
the main road that crosses the entire favela. The percentage can
vary depending on the desired complexity of the road network,
a higher probability represents a favela with a higher density
of streets. In general, the appropriate values are around 0.3
and 0.15 for, respectively, the main road and the others.

If a vertex is branched, it is checked which side the
branch will be made, with equal chances for both. During
the branching of a vertex, it is not possible to branch to both
sides. Thus, a four-way intersection only occurs when a road
is built crossing an existing one.

When a branch occurs, a line perpendicular to the vertex’s
road segment is calculated, extending to the border of the
favela. A random point from the middle onwards of that line

is selected to be the end of the new road, and then sent to the
A* algorithm to generate its path. As new roads are created,
their vertices are added to the queue to possibly branch. The
process ends after all vertices are verified. Fig. 3 shows the
steps of the generation.

a. b. c.

d. e. f.

Fig. 3. (a) Points for the first road are defined from the border of the favela.
(b) The path is created. (c) A vertex is chosen to branch. (d) A perpendicular
line (grey) is created from the vertex. (e) The end point of the new road is
defined. (f) The path is created.

When adding a new vertex, it is checked if there is already a
vertex next to the location that can be reused. In this way, the
vertex to be added is compared with all those already existing.
If there is one at a distance less than α (value defined as a
parameter), it is used as the vertex to connect the new edges;
otherwise, the new vertex is added to the graph. This reduces
the number of vertices in the graph and to avoid very short
edges, which must be α as the minimum size.

When adding a new edge, Breadth-First Search is used
to check whether adding it will result in a cycle with a
circumference less than a given value of β, received as a
parameter, preventing very small blocks from being created.
If this occurs, the edges belonging to the cycle are checked,
and the one with the largest size is removed. Additionally, if
an edge crosses with an existing one, a vertex is created at the
crossing point, ensuring the planar graph.

With each new road created, before being added to the
graph, the slope of each edge is checked to ensure that the
road is within a given maximum allowed slope. If the angle
of the edge is greater than a θ angle, given as a parameter, it
is removed along with any subsequent ones that also inflate
the limit, until an edge below the maximum angle is found,
or until the end of the road. The start and end points of the
removed sequence are used to build a new path.

To generate the new path respecting the angle limit, several
segments of varying sizes between α and 2α are created,
rotated from −75◦ to 75◦ in front of the starting point. Those
segments with an angle higher than the limit, or that increase
the distance to the end, are ignored. Among the others, the

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 333

segment with the smallest angle of inclination must be chosen
to be created, is the basis for creating the next, and so on.

If all segments are ignored at some stage, the generation is
interrupted, and the final road becomes the path built until the
interruption. If there is more road beside the segment removed,
it is also removed to avoid roads without connections. When
any segment reaches a distance less than α to the end point, it
is connected, and the process is completed. Examples of road
patterns obtained are seen in Fig. 4.

Fig. 4. Examples of road patterns with our approach. The first half (left
to right) of each pattern represents a more planar area, while the other half
represents a steep area.

C. Mesh

After the road graph is generated, it is necessary to create
the road and sidewalk meshes and adapt the terrain to match
them. The meshes are created from the graph, where each
vertex is used as a base to create the triangles of the road
mesh, and then the sidewalk mesh is built around it.

Since the roads are flat, displacement mapping must be
made to adapt the terrain to the road. For that, all the triangles
of the meshes are traversed and checked which vertices of the
terrain are within those triangles. For optimization purposes,
only the terrain vertices between the minimum and maximum
points of each triangle’s edges are traversed.

The verification is made from barycentric coordinates,
which indicate whether each vertex of the terrain is within
the mesh triangle. If so, the height difference between the
y value of the triangle and the heightmap for the vertex
position is calculated. If the vertex is not under the mesh,
the displacement value is zero. The resulting values form
the displacement map that is used to model the terrain when
adding the meshes.

V. BUILDING

A. Blocks

Each region (area bounded by edges) of the road graph
represents a city block that must be divided into building
lots. The buildings, in the real favelas, follow the orientation
of the others that are nearby. This means that the structures
in an inner layer of the block will face a nearby road. For
our approach, each block is divided into several pieces, each
influenced by the orientation of a nearby road.

For this stage, a new graph structure – called block graph –
is created. Vertices have two additional attributes; one indicates
whether it is near the road (inner) or away from the road
(outer), and another to show to which vertex of the road graph
it is related. Edges have an attribute to indicate whether it is
connecting inner-inner, inner-outer, or outer-outer vertices.

Initially, each vertex of the road graph has its edges num-
bered according to its angle (Fig. 5a). Then, each pair of
neighboring edges is used to create a vector with their average
angle. There will be a vector for each edge, as shown in Fig.
5b.

a. b. c.

1
2

3
4

Fig. 5. (a) The road graph edges are numbered according to their angle. (b)
Middle vectors (red) are created with the average angle of each corner. (c)
The inner (yellow) and outer (blue) vertices are positioned, and an inner-outer
edge (grey) connecting them.

The middle vector starts from the connection of two streets
and divides the block into two parts. A building positioned to
the left of the vector is closer to the left street, and vice versa.
Thus, it is possible to divide the block into several parts, each
oriented by a nearby street.

A polygon represents each part of the block. Every building
within a polygon receives the same orientation, facing the
nearest street. For this, the block graph is constructed, and
then each region becomes a polygon.

Initially, the middle vectors are used to create the first
vertices and edges of the block graph. An inner and an
outer vertex are positioned over each middle vector. The inner
vertex is added at a distance equal to the width of the road
and sidewalk meshes, to start positioning the buildings after
the sidewalk. The outer vertex is positioned at a distance α
equal to the minimum size of a road segment, which prevents
vertices from being placed outside its block. An edge connects
the created vertices. Fig. 5c shows the vertices and the edge
connecting each pair.

The next step creates edges to connect vertices, inner with
inner and outer with outer. For each vertex of the block graph,
edges are generated connecting them with all vertices of the
same type (inner or outer) of the neighboring road vertex to

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 334

which is related. Those edges that collide with any road are
removed, while the others are added to the block graph, as
shown in Fig. 6.

Fig. 6. The black line representing the road, with the inners (yellow) and
outers (blue) vertices, positioned previously. The example shows the process
of an outer vertex connecting with the outers of neighboring road segments.
The red lines are unsuccessful connections, as they cannot collide with the
road. The green lines are successful connections, which are added to the block
graph.

Vertices of the road graph that have only one edge have a
special treatment. Two middle vectors are created, displaced
135 and -135 degrees, from the edge (Fig. 7a). Then, the
vertices on each middle vector are created, and the edge
connecting them, as shown in Fig. 7b. These will be connected
with the neighboring vertices, in the same way as previously
presented, to create a polygon for the buildings at the end of
the street, ensuring that they face the road.

Also, the end of the street can cause an unwanted connection
of outer-outer edges – represented by the red line in Fig. 7c –,
since the condition of their creation is based on the collision
or not with a street. To avoid this, the road edge is extended
with a value equal to half the distance of the outer vertex.
This extension only prevents the crossing of outer-outer edges,
therefore inner-inner are not affected.

a. b. c.

Fig. 7. (a) Middle vectors are created. (b) The vertices are created, and the
edge connecting them. (c) From the upper outer vertex, edges with neighboring
outer vertex are created. The red edge is not expected. A street segment
(yellow) is added to ensure collision so that it is not considered.

If a new edge intersects with an existing one, a vertex of
each must be moved to the point of intersection. If it is an
inner-inner edge, the chosen vertex is the closest to the point
of intersection. If it is an inner-outer edge, the inner vertex is
selected. Outer-outer edges must not intersect.

The result of the block graph is shown in Fig. 8. The
constructions between the contour of the graph and the favela
border are randomly oriented.

Fig. 8. Example of a block graph (blue) based on a simple road (black). Each
region of the graph is transformed into a polygon, where the constructions
will be built. The orientation of the buildings is the same as the edge of
the polygon parallel to the street. The area outside the block graph is not
influenced by any street, so assumes random orientation.

The final step generates the polygons that will be used
for the distribution of building lots. Each inner-inner edge
is used for creating a four-point polygon. Each of the two
inner vertices of this edge is connected to exactly one outer
vertex, so the two inners and two outers are used to form the
polygon. The orientation of the buildings within that polygon
is the same as the inner-inner edge.

If a block is large, the central area will be far from all roads,
so its polygon will not be obtained with the method described
above. To get around this, a search is done for cycles in the
block graph. Cycles that have only outer-outer edges form an
n-point polygon with a random orientation. Afterward, all the
polygons obtained are sent to distribute the building lots.

B. Distribution

The algorithm for generating the building lots is a 2D
process, ignoring the terrain and building height. For this,
some parameters have to be previously set:

• Minimum and average building size;
• Minimum alley width;
• Maximum building floor height.
The first step generates a bounding rectangle from the

polygon received from the division of the blocks. The first
two points of the polygon determine its orientation. For most
polygons, it is the line that matches with the road. Those
who do not collide with the road – are within a block – are
independent and therefore have a random orientation. See Fig.
9a.

The bounding rectangle is subdivided using an irregular
Point Quadtree algorithm [15]. A point is randomly selected
inside the area, with a distance from the borders of, at least,
the average size of a building. This point then turns to be the
vertex on which the rectangle will divide itself into four new
nodes of the quadtree. The process is recursively applied until
the point cannot be generated anymore without disrespecting
the minimum distance to fit a building and alley.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 335

a. b.

c. d.

Fig. 9. (a) The polygon in blue and the bounding rectangle in black where
the red line defines its orientation. (b) Quadtree subdivision (in orange) and
node refinement (dashed green line). (c) The gray areas have the center point
outside the polygon and are not used. (d) 2D building area constructed inside
the lot limits.

In sequence, the nodes undergo a refinement process. If a
node’s size in an axis is much greater than the other – e.g., the
x being 2.5 times larger than the z size – the area is subdivided
into smaller equal areas respecting the minimum building size
(Fig. 9b).

Each center point of these nodes is added to a hash table
[16] that covers the whole map and undergoes a test to check
if its center lies inside the polygon. If so, all its nodes are
too. If the cell is partially inside, each node needs to have its
position checked. Those that have their area inside the polygon
are collected and used as building delimiter to the construction.
See Fig. 9c.

To construct the base of the building, a rectangle is gen-
erated inside the area, with random dimensions limited by
minimum building size and maximum percentage occupation.
The percentage is obtained subtracting the area size by the
minimum alley width. This building base is aligned to one of
the area’s corner to add more randomness to the distribution.
The result is seen in Fig. 9d.

The unused space serves as an alley to access the buildings
and needs to be large enough for people to transit, as set in
the alley width parameter. Since the building is always aligned
to a corner, and its size never reaches the whole space, the
other three corners of the rectangle are vacant, which increases
the possibility of an alley to connect with the adjacent ones
without the need to adjust it manually.

Finally, the central points of the areas with buildings are
updated in the hash table for the construction center. Then, it
is compared with all buildings present in the same or adjacent
cells of the hash. Constructions that collide with the ones
created by another polygon are discarded.

C. Construction

Once generated the structure’s base in 2D, the 3D buildings
need to be constructed. A box is created based on the rectangle
dimensions and a height set as a parameter for the first floor.
This box is translated to its correct world position sampled
from the terrain.

In the favelas, the buildings can have multiple floors, based
on the number of family members, financial conditions, and
space available. Since it is common to build a new story after
a long time the house already exists, it is usual that each floor
has different dimensions, materials, and styles.

Some favelas have buildings with a high number of floors,
while in others, the buildings do not have more than 2 stories.
In this way, parameters are used to define the maximum
number of floors, and their distribution across buildings.

Each building height is randomly selected between one and
the maximum number of floors, whose probabilities are set as
parameters, as this work does not consider the characteristics
of the dwellers. As the new floor is generated, it has a
probability of having dimensions slightly different from the
lower floor, but still respecting the max build area for that
construction.

Since we do not make the displacement of the terrain to
align with buildings, the first floor can be partially under-
ground or floating over the terrain, so a foundation is created
under the structure to keep the whole building over the map
surface.

In the end, an entrance is made for each building, repre-
sented by a model of a door. This entrance is preferably facing
the road if the construction is adjacent to the sidewalk, or an
alley in other cases. An example of the resulting building can
be seen in Fig. 10. The visual is not meant to be realistic or
detailed, but to highlight the building distribution efficiently.

Fig. 10. Example of generated building. In green unoccupied space of the
individual building area (also alley space), red the building first floor box,
blue the second floor, and yellow the building entrance.

VI. RESULTS

The presented method was implemented in C# language
using Unity Engine, however, it is generic and can be im-
plemented on any development platform. To evaluate the
performance, the time for each stage was computed, which can
be seen in Tables I and II. The experiments were performed
on an Intel Core i5-7200U 2.50 GHz processor with 8 GB
DDR4 RAM.

For the tests, 10 runs were made, and then an average of
the times was calculated. The buildings were created with a

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 336

TABLE I
GENERATION TIME ON SMOOTH TERRAIN

Stage Area size
25,000 m2 50,000 m2 100,000 m2

Road Network 4.21s 5.54s 7.60s
Buildings 1.95s 4.88s 16.09s
Total 6.16s 10.42s 23.69s

TABLE II
GENERATION TIME ON STEEP TERRAIN

Stage Area size
10,000 m2 50,000 m2 100,000 m2

Road Network 5.10s 6.42s 9.24s
Buildings 2.18s 5.96s 21.20s
Total 7.28s 12.38s 30.44s

minimum size of 2.5 meters in all 3 axis and alleys with a
minimum width of 0.5 meters. A scale of 1 pixel per square
meter was used.

For smaller favelas, the road network time is longer than
the building generation, while it is practically the same for
a 50,000 m2 favela. In larger favelas, the time to generate
buildings grows faster than to generate roads.

The accelerated growth in the time of construction gener-
ation happens because as the construction area increases, the
number of constructions also grows. The buildings generated
are about 1,400, 2,500, and 4,200 for 10,000, 50,000 and
100,000 square meters, respectively. Besides, the building
generation time is greatly affected by the number of road
segments, which means more building blocks, causing the
whole building generation process and collision detection to
be executed more times.

In turn, the road network has the growth in time caused by
the longer roads in the larger favelas, making it take longer
to find the way. One option to decrease this time is to make
the A* algorithm skip very close pixels since, in most cases,
there is no relevant difference in height in neighboring pixels.

When comparing the generation time between favelas on
smooth and steep terrains, steeps tends to take slightly longer.
The time of the road network is affected because it searches
for paths with the lowest number of elevations, thus having to
pass through more points until reaching the destination. This
search results in more irregular paths and with more curves,
increasing the number of building lot polygons generated and,
consequently, the generation time of the constructions.

To evaluate the visual aspect of the generation, favelas were
created on different types of terrain. Fig. 11 shows a favela
generated in a smooth terrain, with straight roads and more
planar alleys. Fig. 1 and Fig. 12, on the other hand, show a
generation on steep terrain, with zigzag streets to circumvent
the elevation of the terrain, and buildings with foundations to
adapt to the inclination.

Fig. 13 shows a view of the street with the buildings and
the entrance to an alley, and a view from within.

The resulting scenarios still need lots of features to be a real-
istic representation of the favelas, but what was proposed here

Fig. 11. Favela on smooth terrain.

Fig. 12. Favela on steep terrain.

is not a faithful representation, which would need profound
studies about sociology, geography, and architecture. Instead,
we focus on a simple building and road distribution method

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 337

Fig. 13. The entrance and inside of an alley.

to be used in applications that do not demand this level of
realism.

VII. CONCLUSION AND FUTURE WORK

From an analysis of aerial images and videos recorded
inside real favelas, a method was proposed with a focus on
generating the layout of a favela procedurally on arbitrary
terrain. A road network has been created, taking into account
the characteristics that differentiate it from a standard city road
network, such as huge blocks, adaptations to the terrain with
the A* algorithm, and zigzag method to allow roads in steep
areas.

The building blocks generated around the roads serve well
as position limits and orientation for the displacement of
building slots. The point quadtree algorithm proved to be a
simple and efficient way to distribute the buildings without
requiring lots of exception treatments like buildings generated
over the streets or smaller than the minimum size.

The method is suitable to be used in games, animations, and
different types of simulations, such as traffic analysis, urban
growth, and natural disasters, such as landslides since it has
mostly buildings in inappropriate locations.

Finally, the method is not concerned with making models
with detailed textures and realistic scenarios. Our focus is to
deliver the layout of a favela based on a heightmap, making the
distribution of streets and buildings according to real favelas.
The generated buildings floors have a simplified form of boxes
that can be used as simple structures or as bounding boxes for
more detailed construction shapes.

The next step of the work is to procedurally generate models
of houses and stores, with particular textures from favelas,

such as exposed brick and concrete walls, roofs, windows, and
balconies. The interiors for buildings can also be explored to
increase the immersion in the scenario.

Beyond that, the generation of exterior objects must be
exploited to obtain a favela rich in detail. Generation of vege-
tation, streetlights with their wiring, irregularities in streets and
sidewalks, and other properties of cities, must be considered.

The parallelism of the GPUs can be used to increase the
algorithm’s performance, making real-time generation possi-
ble. With this, the presented techniques can be used together
with tools to provide the users with the possibility of making
adjustments to the generated features, adapting the scene to
the desired results.

REFERENCES

[1] E. Cogo, I. Prazina, K. Hodžić, H. Haseljic, and S. Rizvić, “Survey
of integrability of procedural modeling techniques for generating a
complete city,” in 2019 XXVII International Conference on Information,
Communication and Automation Technologies (ICAT), 2019.

[2] J. Beneš, A. Wilkie, and J. Krivanek, “Procedural modelling of urban
road networks,” Computer Graphics Forum, vol. 33, no. 6, pp. 132–142,
2014.

[3] T. Lechner, B. Watson, P. Ren, U. Wilensky, S. Tisue, and M. Felsen,
“Procedural modeling of land use in cities,” pp. 1–11, 2006.

[4] D. Carli, F. Bevilacqua, C. T. Pozzer, and M. d’Ornellas, “A survey of
procedural content generation techniques suitable to game development,”
in Proceedings of SBGames 2011, pp. 26–35, 2011.

[5] S. Kim, D. Kim, and S. Choi, “Citycraft: 3d virtual city creation from
a single image,” The Visual Computer, 2019.

[6] T. B. Mizdal and C. T. Pozzer, “Procedural content generation of villages
and road system on arbitrary terrains,” in Proceedings of SBGames 2018,
pp. 556–562, 2018.

[7] G. Nishida, I. Garcia-Dorado, and D. Aliaga, “Example-driven procedu-
ral urban roads,” Computer Graphics Forum, vol. 35, no. 6, pp. 1–13,
2015.

[8] C. Vanegas, T. Kelly, B. Weber, J. Halatsch, D. Aliaga, and P. Müller,
“Procedural generation of parcels in urban modeling,” Computer Graph-
ics Forum, vol. 31, no. 2, pp. 681–690, 2012.

[9] K. Gadiraju, R. Vatsavai, N. Kaza, E. Wibbels, and A. Krishna, “Ma-
chine learning approaches for slum detection using very high resolution
satellite images,” in 2018 IEEE International Conference on data Mining
Workshops (ICDMW), pp. 1397–1404, 2018.

[10] K. Glass, C. Morkel, and S. Bangay, “Duplicating road patterns in
south african informal settlements using procedural techniques,” in
Proceedings of the 4th International Conference on Computer Graphics,
Virtual Reality, Visualisation and Interaction in Africa - Afrigaph ’06,
vol. 2006, pp. 161–169, 2006.

[11] V. Rautenbach, Y. Bevis, S. Coetzee, and C. Combrinck, “Evaluating
procedural modelling for 3d models of informal settlements in urban
design activities,” South African Journal of Science, vol. 111, no. 11/12,
2015.

[12] M. A. Bade, “Procedural environment for unity with houdini.”
https://80.lv/articles/procedural-environment-for-unity-with-houdini/,
2018. Accessed on: Aug. 12, 2020. [Online].

[13] M. Buehler, “Making of favela.” https://www.ronenbekerman.com/making-
favela/, 2014. Accessed on: Aug. 12, 2020. [Online].

[14] J. Beneš, T. Kelly, F. Děchtěrenko, J. Krivanek, and P. Müller, “On
realism of architectural procedural models,” Computer Graphics Forum,
vol. 36, pp. 225–234, 2017.

[15] H. Samet, “The quadtree and related hierarchical data structures,” ACM
Computing Surveys, vol. 16, no. 2, p. 187–260, 1984.

[16] C. T. Pozzer, C. A. de Lara Pahins, and I. Heldal, “A hash table
construction algorithm for spatial hashing based on linear memory,”
in Proceedings of the 11th Conference on Advances in Computer
Entertainment Technology, p. 35, 2014.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 338

