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Abstract—Reinforcement Learning is a promising approach to
the design of Non-Player Characters (NPCs). It is challenging,
however, to design games enabled to support reinforcement
learning because, in addition to specifying the environment and
the agent that controls the character, there is the challenge of
modeling a significant reward function for the expected behavior
from a virtual character. To alleviate the challenges of this
problem, we have developed a tool that allows one to specify, in
an integrated way, the environment, the agent, and the reward
functions. The tool provides a visual and declarative specification
of the environment, providing a graphic language consistent
with game events. Besides, it supports the specification of non-
Markovian reward functions and is integrated with a game
development platform that makes it possible to specify complex
and interesting environments. An environment modeled with this
tool supports the implementation of most current state-of-the-
art reinforcement learning algorithms, such as Proximal Policy
Optimization and Soft Actor-Critic algorithms. The objective of
the developed tool is to facilitate the experimentation of learning
in games, taking advantage of the existing ecosystem around
modern game development platforms. Applications developed
with the support of this tool show the potential for specifying
game environments to experiment with reinforcement learning
algorithms.

Index Terms—Games, Reinforcement Learning, Autonomous
Non-Player Characters

I. INTRODUCTION

The field of Artificial Intelligence (AI) in games is an
established research field, which, nevertheless, is still grow-
ing and rapidly developing. There are many examples of
AI applications in games, such as state/action evaluation,
direct action selection, selection between strategies, modeling
opponent strategy, content generation, and modeling player
experience. AI techniques are commonly used to achieve the
level of human performance when playing video games [1].
Several games serve as interesting and complex problems for
AI methods, and many applications show how AI can benefit
gameplay in video games [2]–[4].

One of the open problems in this field is how to obtain com-
plex behaviors of virtual characters using end-to-end machine

learning techniques. For this, Deep Reinforcement Learn-
ing (DRL) has been explored in several problems involving
games and game development environments, and has obtained
promising results since it was first proposed. In general, at
each step of a DRL process, agents receive high-dimensional
data and perform actions in accordance with policies based on
deep neural networks. Then, a DRL-based learning mechanism
updates the policies to maximize the expected return with
an end-to-end method. Markovian Decision Problems (MDP)
can be solved by several model-free reinforcement learning
methods. The components of a MDP are the environment, the
agent (and its actions), and the reward function. Often, defining
the environment and the agent is straightforward; however,
defining a reward function that expresses the desired behavior
of an agent, especially in games, is more challenging, and can
be an exhausting trial and error process.

Forgette and Katchabaw [2] proposed the use of RL and the
concept of motivation for specifying virtual characters that are
autonomous and believable. Developers must specify a list of
motivations, which describe particular roles or characteristics
in a narrative, and map them to reward functions. Thus,
for a character to learn, it needs rewards, which, indirectly,
means it needs motivations. Although this is a promising
approach, the literature shows that the specification of reward
functions in reinforcement learning can be a process subject to
many false indications. The most interesting behaviors require
the specification of reward functions that usually cannot be
converted to a Markovian Reward Function (MRF) easily.
So, describing a Non-Markovian Reward Function (NMRF)
directly [5] can facilitate the problem specification since it is
possible to convert NMRF into MRF automatically.

Another challenging problem is getting autonomous charac-
ters to perform complex behaviors using a process in which the
modeler can control only one reward function that produces
a scalar value [6]. Thus, if describing the behavior through a
single reward function is not possible, the problem is broken
down into simpler sub-problems, repeatedly, until they can be
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described by MRFs. Nevertheless, this task is subjected to
a tiring process of trial and error. Therefore, incorporating
it into game development requires tools that facilitate the
specification of relevant reward functions, especially NMRF.

In this work, we present a tool to facilitate the preparation of
reinforcement learning experiments in games. It provides the
specification of reward functions intuitively and interactively,
thus reducing the problem of obtaining behaviors induced by
reward functions (especially NMRF). Also, it incorporates the
visual specification of reward functions, and it is integrated
with a game development platform. We show that the visual
specification of the reward function is compatible with the
formal specification of reward functions.

II. BACKGROUND

For a better understanding of the methods used in the design
of the tool presented in this work, it is important to highlight
reinforcement learning and the formal specification of the
reward generation component for the agent to learn effectively.

A. Reinforcement Learning

Mathematically, RL is idealized as a Markov Decision
Process (MDP). As the agent interacts with the environment
at a given instant t, it perceives a state st and executes an
action at. The state st and the action at determine the next
state st+1 uniquely. For every action at, the agent receives a
reward rt ∈ R. The cycle perception-action-reward progresses
with time.

The discounted reward Rt from time t, as a measure of the
agent’s performance, is written as

Rt =
∞∑

k=0

γk rt+k, (1)

where rt is the reward received after the transition from time
step t to time step t+ 1, and γ ∈ [0, 1] is a discount term that
adjusts the importance of the long-term consequences of the
agent’s actions.

The agent’s policy consists in selecting an action, based on
a state value function V : S → R or on the (state, action)
value function Q : S ×A→ R, to maximize Rt.

In Approximate Reinforcement Learning, value functions
are approximated by parameters θ. The representation of the
value functions can be a non-linear model, as several types
of neural networks. Mnih et al. [1] shown that reinforcement
learning with deep neural networks gets a superhuman per-
formance in several Atari games. In this approach, the agent
selects actions based only on high dimensional input represen-
tations (as the pixels of video-game frames). This achievement
paved the way for the emergence of Deep Reinforcement
Learning (DRL).

In DRL, θ is a set of weights of the neural network and,
usually, gradient-based optimization is used to maximize the
objective function in (1). Therefore, in DRL, the state value
function is Vπ(s; θ), which means the expected value from
state s using the policy π based on parameters θ.

B. Formal Specifiction of Reward Functions

The component to the visual specification of reward func-
tions presented in this work has the expressive power of
a Reward Machine (RM) [5]. This component allows the
specification of reward functions as the Finite Deterministic
Automata (FDA). An RM [5] is a way to combine Markovian
reward functions to shape a non-Markovian reward function.
This composition is defined in accordance with a formal
specification, using the following definitions.

Definition II.1. Markovian Decision Process (MDP): An
MDP with an initial state is a tuple M = (S,A, s0, T, r, γ)
where S is a finite set of states, A is a finite set of actions,
s0 ∈ S is the initial state, T (st+1|st, at) is the transition
probability distribution, r : S × A × S → R is the reward
function, and γ ∈ (0, 1] is the discount factor.

Definition II.2. Vocabulary and Labeling Function: a vocab-
ulary is a set P of propositional symbols. A labeling function
is a function L : S × A × S → 2P that maps experiences to
truth assignments over the vocabulary P .

Definition II.3. A Non-Markovian Reward Function: A Non-
Markovian Reward Decision Process (NMRDP) is a tuple
(S,A, s0, T,R, γ) where S, A, s0, T and γ are defined as
in MDPs, and (unlike in MDPs), R : (S ×A)+ × S → R is a
non-Markovian reward function that maps finite state-action
histories into a real value.

Definition II.4. Mealy Machine: Mealy Machine is a tuple
(Q, q0,Σ, R, δ, ρ) where Q is the finite state set, q0 ∈ Q is
the initial state, Σ is the input symbols alphabet, R is the
finite output alphabet, δ : Q→ Q is a transition function, and
ρ : Q× Σ→ R is the output function.

Definition II.5. Setting: a setting is a tuple (S,A, P, L) where
S, A, P , and L are defined as in definitions II.1, II.2, II.3,
and II.4.

Definition II.6. Reward Machine (RM): a reward machine for
a setting (S,A, P, L) is a Mealy Machine (Q, q0,Σ, R, δ, ρ)
where the input alphabet is Σ = 2ρ, and R is a finite set where
each R ∈ R is a reward function from S ×A× S to R.

Definition II.7. Deterministic Finite Automata (DFA): A DFA
is a tuple Q, q0,Σ, δ, F ) where Q is a finite state set, q0 is the
initial state, Σ is a finite input alphabet, ∆ : Q × Σ → Q is
a transition function, and F is the set of accepting states.

In an RM, a sequence (S × A)+ × S is mapped in value
assignments to propositional symbols in P . The assignment
of values for those symbols is input to the Reward Machine,
which outputs a symbol from a Markovian Reward Function.
Camacho et al. [5] propose DFA as an intermediate language
for specifying reward functions in NMRDPs. In this way, any
language that can be translated into a DFA can be used to
specify non-Markovian reward functions.
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III. RELATED WORKS

There is a wide range of environments and platforms that
serve as simulators to evaluate the performance of Artificial
Intelligence algorithms. Juliani et al. [7] organize these tools
into four categories: Environment, Environment Suite, Do-
main Specific Platform and General Platform.

The Environment category consists of fixed, unique envi-
ronments that are black boxes from the agent’s perspective.
Examples in this category are the games: Pitfall and Space
Invaders [8]; and the environment, Obstacle Tower [7].

The Environment Suite category consists of a set of environ-
ments organized in a single package, which, in general, is used
to test the performance of an algorithm or method in some
dimensions of interest. Most environments in a suite share
similarities in their state spaces and action spaces. Besides,
they require similar (but not necessarily identical) skills to be
resolved. Examples of these environments include: ALE [8],
DMLab-30, Hard Eight [9], AI2Thor [10], OpenAI Retro [11],
DMControl [12], and ProcGite [13].

The Domain Specific Platform consists of tools that allow
the creation of sets of tasks in a specific domain, such as
locomotion or first-person navigation. These platforms are
differentiated from the final category by their narrow focus
on the types of environments. This may include limitations on
the physical properties of the environment or on the nature of
possible interactions and tasks in the environment. Examples
in this category include: Project Malmo [14], VizDoom [15],
Habitat [16], DeepMind Lab [17], PyBullet [18] and GVGAI
[19].

The General Platform includes tools that can create envi-
ronments with arbitrarily complex visual, physical, and social
interaction tasks. The set of environments that can be created
by platforms in this category is a superset of those that
can be created by (or are in) the other three categories. In
principle, General Platforms serve to define any AI research
environment of potential interest [7]. Juliani et al. [7] argue
that modern video game engines are strong candidates for
this category. Therefore, game engines like Unity [7], Unreal
Engine [20], [21] and Godot [22] can be used to define
complex AI game environments. Although any general game
development platform can be used as a general platform,
Unity took the lead by providing an open-source framework
of agents with machine learning, the ML-Agent [7]. ML-
Agent provides support for reinforcement learning, imitation
learning, curriculum learning, and other approaches related to
machine learning. It has a high-level programming interface
with standard support for PPO (Proximal Policy Optimization)
[23] and SAC (Soft Actor-Critic) [24] algorithms; and a low-
level programming interface that allows Unity environment
control from Python.

To extend the ecosystem of existing tools, we developed a
Unity plugin with an emphasis on principles of simplicity,
flexibility of choosing algorithms, and ease of specifying
reward functions. The purpose of the tool is to facilitate the
investigation of reinforcement learning applications in games.

Fig. 1. AI4U main components.

Unity was chosen as an experimentation platform because it
has rich documentation, an active development community,
and the possibility to run on different levels of hardware and
software architectures.

IV. AI4U: A TOOL FOR GAME REINFORCEMENT
LEARNING EXPERIMENTS

In this paper, we expand the ecosystem of tools for re-
inforcement learning based on the General Platform with
an emphasis on game creation tools. Thus, we named this
tool Artificial Intelligence for Unity, as it was designed on
the Unity platform. As mentioned before, AI4U is based
on three pillars: simplicity, flexibility of choosing different
implementations of RL algorithms, and ease of specifying
reward functions. Simplicity is achieved through integration
with Unity, taking advantage of its scripting system to provide
built-in functionality, such as modules that allow one to define
a reward function. The flexibility to choose implementations
of RL algorithms is obtained through the automatic generation
of code in a standard structure provided by Gym’s framework
[25]. Thus, based on provided environment specification, AI4U
automatically generates a basic training and testing loop.
The reward functions are easily specified through a visual
modeling tool, which uses blocks that associate events in the
environment with rewards assigned to agents.

Therefore, AI4U [26] is a tool for specifying game environ-
ments with features that easily integrate with reinforcement
learning algorithms. It supports declarative and visual spec-
ification of the environment and reward functions. For this,
AI4U has two main components (see Fig. 1): the server and the
client. The server allows the specification of the environment,
the agent, and the reward function. The client uses those
definitions to obtain a decision-making model capable of
leading the agent to present the behavior triggered by the
reward function.

AI4U was integrated into the Unity game development
platform, taking advantage of the flexibility provided by the
platform’s scripting system. For a better understanding of
how AI4U can be used, next, we present the environment’s
specification components, a visual component for specifying
reward functions, and the code generation to ease the flexible
implementation of training and testing loops of reinforcement
learning agents.

A. Environment’s Specification Component

The environment’s specification consists in determining the
environment’s properties, programming the objects’ behaviors
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with which the agents interact, and defining the reward func-
tions.

1) Definition of the Environment’s Properties: A widely
used specification for environments is given by Gym’s frame-
work [25]. Gym is very handy because many useful algorithms
that are implemented and made available in open-source
repositories are based on it. Thus, little adaptation is necessary
to use those algorithms in new environments that follow Gym’s
environment format. Every environment modeled with AI4U is
automatically associated with a configurable structure, which
is compatible with that framework. For this, the developer
only needs to use AI4U’s Application Programming Interface
(API), whose class diagram is partially shown in Fig. 2.

2) Programming Objects’ Behaviors: There are two types
of Brain objects available to each agent: an object that inherits
from the RemoteBrain class and an object that inherits from
the LocalBrain class. A RemoteBrain object allows control of
the virtual character by a model being trained using some API
(Application Programming Interface) external to AI4U. An
object of the LocalBrain type allows the agent to be controlled
by a decision-making model already trained and compiled to
work locally, but it also allows control of the agent through
external devices, such as mice, keyboards and joysticks. This
functionality is important for debugging the game environment
during development when the developer can test the game
mechanics manually.

Agents implementing the RLAgent class have an associated
reward that is affected by programming commands or events
that occur automatically during the game and that are associ-
ated with objects of the type RewardFunc. An object of type
RewardFunc is associated with one or more agents and an
event in the environment. Fig. 3 shows the association of the
modules LocalBrain and RemoteBrain with an object governed
by the Unity physics engine.

A script containing the class DPRLAgent was also associ-
ated with the object. The class DPRLAgent is a specialization
of the class RLAgent. With an associated DPRLAgent, an
object can undergo physical control (application of force). To
define the origin of the physical force, a controller WASD
(class WASDPRLController) was associated with the object
receiving the force.

The controller WASDPRLController allows applying phys-
ical force on target object employing the keyboard’s W, A, S,
and D keys. For the WASD controller to work, the object must
be associated with a script named LocalBrain. For external
remote control to work, the object must be associated with a
script of the type RemoteBrain.

3) Reward Function Specification Component: When the
game event occurs, a reward is calculated and assigned to
agents associated with the corresponding reward function.
The reward function specification tool allows the specification
of Markovian and non-Markovian reward functions and is
equivalent to a Reward Machine (RM). However, the visual
specification takes advantage of the visual appeal and creative
power of the modern game engines. The visual specification is
usual practice in game development, for example, the compo-

sition of properties in materials through shaders, and virtual
characters animation. Thus, in section IV-B, we present the
visual specification of reward functions and their equivalence
with the RM concept.

B. Visual Reward Function Specification

In general, the goals of NPCs in games consist of capturing
items, reaching a certain region or area, touching objects
(levers or crates, for example), and other game events. So, it is
possible to assign rewards associated to these events. In this
way, collisions and ray casting can be captured to produce
rewards. For every event in a game, there is an associated
reward function Re. The reward generation is subject to one
or more preconditions. The function Re is represented by
an object of type RewardFunc. For analysis purposes, the
function Re is associated with a propositional symbol g, which
is evaluated as true, if the event associated with the symbol
occurs; and it is evaluated as false, otherwise. Considering a
set of logical functions S, it is possible to define propositions
such as: gj is true only if any function of S is true. Thus, it is
possible to associate the occurrence of logical combinations of
events as if they were combinations of propositional symbols.
However, we use the visual specification instead of supplying
a logical language for specifying reward functions.

Therefore, instead of a propositional symbol g, AI4U uses
a graphical symbol G, which is associated with: an event in
the game, a reward assignment rule, and a list of agents. Thus,
if the event associated with G occurs, the reward generation
rule is used, then the reward produced is attributed to agents
linked to G. Besides, the component G can be related to
other components, making up relationships that last over
time. This property is essential for specifying non-Markovian
reward functions [5]. There is an equivalence between formal
specification and visual specification of reward functions. The
state of a DFA can be associated with a sequence of events.
Thus, each state in the set of states represents the occurrence
of events in a sequence. For example, consider the problem
of an agent who must touch all objects of the same color
scattered randomly in a rectangular region. Consider that a =
touch the red object, b = touch the blue object, and ab means
that the agent first must touch the red object, then the blue
object. Fig. 5 shows DFA for this problem. Since the agent
must touch a sequence of objects of the same color, applying
DFA to the input symbols results in δ(b, δ(a, q0)) = q1. The
initial state represents the start of the game if no event has
occurred. The transition function determined that a given event
(represented by the input symbol) combined with the sequence
that has occurred so far (current state) results in a state. When
the machine is applied to all symbols in the sequence and
the final state produced is not in F, the produced sequence
does not result in a reward. Fig. 6 partially shows a structure
produced using the tool developed in this work. This structure
is equivalent to the DFA shown in Fig. 5, however instead
of a sequence of symbols that represent states, what is being
evaluated are sequences of events of the same nature (touch
objects of the same color). In Fig. 6, objects of the same
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Fig. 2. AI4U API classes.

Fig. 3. Configuration of the agent to control a sphere.

color are connected by lines, indicating that rewards will
only be given when the object is touched for the first time
(indicated by an attribute not shown) or when a touch on an
object of the same color has occurred. The line coming out
of the open circle imposes restrictions to the reward given for
touching the related object. The line arriving at a closed circle
indicates that touching the arrival object is a prerequisite or
one of the prerequisites for awarding a reward to the agent
who touches the exit object. An attribute called ”at least one”
indicates whether the reward is released when at least one of
the preconditions is met. Various specifications of this type
can be given to various objects in the environment.

The final modeling of a reward function produces several
configurations. Fig. 6 shows an example of a single reward
function specification. The set of these configurations consists
of a disjunction of functions. In a disjunction of the reward

Fig. 4. Code of a random Agent generated from the specification given to
AI4U.

Fig. 5. Deterministic Finite Automata that accepts sequence of identical
symbols.
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Fig. 6. Modeling so that a sequence of two or more touches on different green
objects generates a reward. Lines coming out of the open circle indicate that
the event associated with that box only generates a reward if one of the events
represented by the connected boxes in the closed circle occurs.

functions, the final reward is the sum of the rewards produced
by each function. Fig. 6 shows a reward function specification
equivalent to a logical Q = q :- p1, p2, ..., pn where q, and pi
for i ∈ {1, 2, ..., n} are logical symbols. The rule Q defines a
conjunction of events for event q to occur. Observe that q is
true only if the precondition p1, p2, ..., pn is true. The sentence
true:-p1, p2, ..., pn indicates that the agent only receives a
reward if the events p1, p2, ..., pn occur. AI4U specification
uses graphical modules to indicate events in the environment.
A graphical module has attributes that allow one to define
preconditions and requirements for the produced reward. For
example, Fig. 7 shows a setting that defines a reward of value
1 (attribute Reward Value) every time the agent touches the
selected cube (cube with orange edges). The field Element 0
of the attribute Agents defines the agent that will receive the
reward. The result of a rewarding event can be attributed to
one or more agents. The field Precondition defines a necessary
precondition for the reward to be produced. A disjunction of
reward events has no precondition for the events assigned to
the object.

In this way, we show that the AI4U’s specification of
reward functions is equivalent to an RM since each modeled
reward function is equivalent to a DFA. Therefore, one can
specify both Markovian and non-Markovian reward functions.
A contribution of this tool is that each occurrence of an
event produces an output value concatenated with other output
values, showing the sequence of events that occurred. Thus,
the reward function is exposed as an input to the decision-
making model, which can take advantage of this structure to
maximize the agent’s learning, as shown by Camacho et al.
[5]. In the configuration shown in Fig. 7, during an episode,
a sequence (ei : vi, ej : vj) will be produced, indicating the
sequence of events (in this case, touches) that occurred, where
ei and ej are symbols that identify the events, and vi and vj are
values that indicate whether the associated event occurred or
not. These values can be concatenated as observations captured
from the environment and sent to the agent. Thus, exposing the
temporal relationship in the current state, allowing the agent

Fig. 7. Reward generation setting when two events occur: touch the two
cubes next to the sphere.

to decide on the domain of a MDP.

C. Code Generation of Training and Testing Loops for Rein-
forced Learning Agents

An essential configuration of the environment is the defini-
tion of its data shape, the observation space, and action space.
The environment specification is encapsulated in the tool’s
programming interface, giving the modeler the possibility of
declarative modeling, but allowing the flexible programmatic
use of the specification. The declared environment’s specifica-
tion is translated into a common Gym’s environment format,
which facilitates the generation of code for training and exe-
cution loops common in the implementation of reinforcement
learning algorithms. With this, the AI4U tool can generate
execution loops, as shown in Fig. 4 or be integrated with tools
that generate this loop.

For the generation of agent code to occur, it is necessary to
provide some extra information to AI4U. This can be done
by associating a script EnvironmentGenerator with one of
the game objects. And so, when the game is run once, the
training and test loop is automatically generated. In Fig. 8, the
script EnvironmentGenerator was associated with one of the
game objects. The configuration of script will determine the
characteristics of Gym’s environment format to be generated.
AI4U captures this and other data to generate the agent’s
execution loops. Training and test loops are generated with
the stable-baselines [27] PPO2 [23] algorithm, and the built-
in A3C implementation. The script EnvironmentGenerator
contains pieces of information such as the observation’s shape
(attribute State Shape), the type of data (attribute State Shape
is Integer) that represent the state of the environment, the
action shape (attribute Action Shape), and other attributes
of the environment. Fig. 9 shows the code produced by an
EnvironmentGenerator.
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Fig. 8. Specifying environment settings for automatic code generation.

Fig. 9. Automatically generated test and training loop.

In the next section, results of the AI4U tool implementation
are presented.

V. RESULTS

We used AI4U in a research project for developing au-
tonomous virtual characters with emotions [28]. In addition,
we show some simple application examples to demonstrate
some possibilities of use of this tool. Next, some general
aspects of the tool’s implementation are presented followed
by some didactic examples for demonstration purpose.

A. Implementation

As mentioned before, the two main components of AI4U
are: the server and the client components. The server collects
pieces of information from the environment, and sends them to
the client, which processes them for use on the agent’s training
and test loops.

The server was coded with C# programming language, and
the client component was coded using Python programming
language. On the server-side, we chose C# as the main
language because it is the main language used to code Unity’s
game logic. On the client-side, Python was chosen because
it has a comprehensive community of Artificial Intelligence
in general, and reinforcement learning, in particular, that
distributes code and works around an ecosystem based on the
Python programming language. Part of the code to manage
client-side communication and infrastructure is generated from
the environment specification given at the server-side.

To show the potential of the developed tool, three examples
based on AI4U are presented in the next section.

B. Application Examples

AI4U allows for reinforcement and Artificial Intelligence
learning experiments using the Unity game development plat-
form. Thus, we modeled 3 scenarios with different degrees of
difficulty and environment settings to show their possibilities:
• BoxChaseBall [29]: this is a simple environment whose

input for decision making is a vector of real numbers, and
the action is a discrete set. The agent must move a sphere
on the plane to make it collide with a box. If the sphere
goes off-bounds, the agent receives a -1 penalty; and, if
the sphere touches the target, the agent wins a +1 reward.
An episode ends when the sphere touches the target
or goes off-bounds. The input vector of real numbers
encodes the position of the target and the position of
the sphere. The actions that can be performed by the
agent are: to apply a constant force to the sphere along
the z axis; and to apply a constant force to the sphere
along the x axis. Fig. 10 shows an image of the modeled
environment (left), the result of training the agent using
the A3C [1], and PPO2 [10] algorithms (implementation
of stable-baselines).

• MazeWorldBasic [30]: this environment consists of a
three-dimensional maze from which the agent has to find
its way out before running out of energy. The maze
contains red and green spheres scattered on the ground.
The agent controls a three-dimensional avatar with a
rudimentary first-person view of the environment. The
view is a 20 × 20 image produced by a ray casting
perspective projection. The agent’s observation of the
environment at a given instant consists of the last four
captured images. At the outset of an episode, the agent
has 30 units of energy. During the agent’s exploration
of the environment, energy is lost. Extra loss of energy
occurs whenever a red sphere is touched. However, an
energy gain occurs whenever a green sphere is touched.
The agent’s possible actions are: walk, run, turn left,
turn right, stay still. Fig. 11 shows how the environment
looked like after modeling. In this environment, we tried
the A3C and PPO2 algorithms.

• MemoryV1 [31]: in this environment, the agent is in a
room with several red and green cylinders. The agent
has to touch all cylinders of the same color, producing a
coherent sequence of touches. At the outset of an episode,
the touch color is chosen randomly, and the agent must
act to find the next cylinder in the coherent sequence.
The episode ends if coherence is broken, in which case,
the agent receives a negative ”reward” of -10. For each
element of a coherent sequence, the agent receives a
positive reward of +10. The observations are similar to
those obtained in the MazeWorldBasic environment. The
set of actions is discrete and consists of two actions: one-
degree rotation around the vertical axis of the agent, and
walk. For this environment, it was necessary to use the
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non-Markovian reward function specification, as shown
partially in Fig. 12. In this case, it was not possible
to use the PPO2 algorithm because the implementation
of stable-baseline does not provide a standard way of
creating a neural network model with two groups of
inputs. This is necessary to facilitate the integration of the
non-Markovian reward functions into the agent’s decision
making mechanism.

These environments show the viability of the developed
tool. The graphs on the right in Fig. 10, 11 and 12 show the
results obtained with each algorithm used in the experiments.
The differences in the result of the algorithms, however, do
not indicate a better performance of one or the other in
these environments, since the algorithms were applied without
the refinement of the parameters, that is, with the standard
parameter values of the implementations used. The goal is
to show the flexibility of the presented tool in adapting to
different implementations. Any other algorithm whose imple-
mentation is already adapted to Gym’s environment format
can be evaluated with this tool by changing a few trivial lines
of code. In addition to the presented environments, AI4U
base code was used in the development of autonomous and
emotional characters in [28].

In addition to those didactic examples, AI4U can be used
in any game developed with the Unity game engine. A
prerequisite for this is that the game be adapted or use the
AI4U API from the beginning. An example of this is the
adaptation of a game based on Unity’s TowerDefense template,
shown in Fig. 13, which we are adopting to use with AI4U.

VI. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

In this work, we presented the AI4U tool for specifying
and developing environments for reinforcement learning ex-
periments in games. Reinforcement Learning is a promising
approach to obtaining autonomous Non-Player Characters
(NPCs) in video games. However, one of the barriers to re-
searching new approaches to RL applied to games is the layer
of complexity added to integrate state-of-the-art RL algorithms
into the game environment. New tools have been developed
to deal with this problem, such as ML-Agents, but the direct
visual specification of non-Markovian reward functions and
their translation into a composition of Markovian functions is
a contribution of the AI4U. Besides, the integration of this
tool with third-party algorithms is almost straightforward, as
long as they follow Gym’s environment specification. The use
of this tool, though, is not limited to environments that follow
Gym’s environment format. However, without following that
specification, the automatic code generation does not work.

Another limitation of AI4U is its strong coupling with Unity,
as this makes portability to other game development platforms
difficult. Thus, the possible future work is its portability to
other game development platforms.

Despite the pointed limitations, the developed tool proved
to be flexible in the development of three case studies of
environments with different levels of complexity, integrating

it with both internal algorithms of the tool itself and with
algorithms implemented by third parties.

The next steps in this research include the modeling of more
complex reinforcement learning experiments aimed at obtain-
ing autonomous virtual characters with emotion in virtual
worlds and the investigation of emotion modeling integrated
with the visual description of reward functions.
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