
Applying Hidden Markov Model for Dynamic
Game Balancing

Marcelo Zamith
Instituto Multidisciplinar

Universidade Federal Rural do Rio de Janeiro
Rio de Janeiro, Brazil

mzamith@ufrrj.br

Jose Ricardo da Silva Junior
Computing Department

Instituto Federal do Rio de Janeiro
Rio de Janeiro, Brazil
jose.junior@ifrj.edu.br

Esteban W. G. Clua
Instituto de Computação

Universidade Federal Fluminense
Niteroi, Brazil

esteban@ic.uff.br

Mark Joselli
Escola Politécnica

Pontifı́cia Universidade Católica do Paraná
Curitiba, Brazil

mark.joselli@pucpr.br

Abstract—In Artificial Intelligence (AI) field, Machine Learn-
ing (ML) techniques present an interesting approach for games,
where it allows some sort of adaptation along the game session.
This adaptation can make games more attractive, avoiding that
Non-Player-Characters (NPC) present too easy or hard patterns
during the game. In both cases, the player may be frustrated due
to undesired experience. Although ML techniques are appealing
to be used in games, some games characteristics are hard to
model. Besides, there are techniques that require a wide variety
of observations, which implies two hard barriers for game
application: the first is the power processing to compute a huge
amount of data in games, considering the real-time characteristic
of this kind of application. The second threat is related to the vast
majority of games’ attributes that must be described in the model.
This work proposes a novel approach using ML technique based
on Hidden Markov Model (HMM) for game balancing process.
HMM is a powerful technique which can be used to learn patterns
based on a strong co-relational between an observation and an
unknown variable (the hidden part). Our proposed approach
learns the player’s pattern based on temporal frame observation
by co-relating his/her actions (movements) with game events
(NPC destruction). The temporal frame observation approach
allows the game to learn about player’s pattern even if a different
person plays it. After the learning process, the following step is
to use the knowledge pattern to adapt the game according to
the current player, which normally involves making the game
harder for a certain period of time. During this time, another
pattern may arise, subjected to be learned. In order to validate
the presented approach, a Space Invaders clone has been built,
allowing to observe that 54% of participants had more fun while
playing it with ML activated in relation to a base version that
did not take into account dynamic difficult balancing.

Index Terms—artificial intelligence, machine learning, hidden
markov models, games

I. INTRODUCTION

Balancing a digital game is one of the most challenging
and time consuming task during game development. Due to
the subjectivity attached to this process, the game difficult may
be pleasant for some players while unpleasant for others due to
each individual perception. Besides, there is no mathematical
model that can be used for balancing a game, and thus this

process is manually tweaked. The most used approach for such
process is by using Beta testing [1]. The Beta test phase is a
valuable source of information for the game designer, which
can use such data in order to balance a game. Normally, these
beta testers are volunteers who are recruited to play a Beta
version of the game, that is, an early, pre-release version.
Besides that, there are some tools and techniques aimed for
supporting game designers while balancing a game. One suc-
cessfully method is the Game Analytics [2], used to understand
players’s behaviours as well as problems in the game. Game
Analytics tools have been used to understand cause and effects
relationships in the game. Additionally, Kohwalter et al. [3]
present a framework for collecting gameplay session data
and map it in terms of data provenance [4]. The framework
produces a provenance graph used for further analysis about
why the context of actions have been performed by the player.

However, it is important to state that normally the param-
eters set during a game balancing is target to a group of
players, or player profiles. Normally these profiles either use
”easy” and ”hard”, or ”beginner” and ”expert”. In this case, a
desired profile must be chosen before the game actually starts.
Unfortunately, even players with similar skill levels may find
some aspects of the game more difficult for them individually.
Besides that, according to Black and Hickey [5], player’s
profile can change in a progressive move or immediate change.
The former is referred as evolutionary adaptation while the
latter is referred as revolutionary adaptation. In this case, the
statically game difficult parameters setup previously may not
accommodate all the players individually, causing boredom or
frustration if a game is too easy or too difficult, respectively.

The solution for such problem includes monitoring the
players’ actions and their performance in the game which
are referred in the literature as ”Dynamic Game Balanc-
ing (DGB)” [6] and ”Dynamic Difficult Adjustment (DDA)”
[7]. Such approaches are becoming a trend for games [8],
and have been used for a while in games such as Mario
Kart [9]. In order to perform this, several approaches for

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 232

collecting and understanding players’ behavior on the game
have been proposed, including player’s emotional state [10],
static level design based on player’s real world data (instead
of arbitrary data) [11], artificial intelligence [12], [13], and
data provenance [3], [12], [14], [15]. However, the use of
DDA is controversial among players and developers, especially
in competitive games, where the player’s skills are tested.
Instead, there are clearly benefits for its use in some kind of
games, such as educational [16]. Besides that, it is important
to state that the usage of DDA is more effective when the
player does not have knowledge of its existence in the game
[17].

In this paper we propose a novel approach for dynamic dif-
ficult adjustments through machine learning technique based
on Hidden Markov Model (HMM). In order to validate our
approach, a Space Invaders clone has been built. In the
game, we model the enemies as the hidden layer and give
a probability for such enemies being destroyed based on the
players’ movement. In this case, the game level of difficult
will be self adjusted based on the player’s behavior during
the game. In order to validate our approach, we conducted
an experiment with 11 participants, where they played each
version of the game with HMM enabled and not enabled.
Our results show that all the participants find the version with
HMM enabled most challenging. Besides that, 54.5% of the
participants had more fun with this version.

This paper is organized as follow. In Section II we presented
the related work. Section III presents a brief explanation
about the HMM method, while in Section IV we describe our
proposed approach. Section V presents the methodology used
for validating our approach. Finally, the results and discussion
are presented in Section VI, while Section VII presents the
conclusion and future work.

II. RELATED WORK

In games, several artificial intelligence techniques have been
developed in order to make computer challenging. Samuel
[18], [19] proposed a learning technique using the game check-
ers. It is an important contributions in modern search-based
games (with alpha-beta cutoffs and quiescence search) and
learning techniques for automatically improving the program’s
performance over time.

Collecting data becomes crucial for performing dynamic
difficult adjustment, specially aimed to analyzing the game
flow. There are three basic requirements that must be satisfied
[6]: the game must identify and adapt to the player’s level;
the game must track the evolution and regressions of player’s
performance; and the game must remain believable.

Chandler and Noriega [20] present a framework used to
evaluate success and failure in modern games based on col-
lected data. In the paper, they claim that a game must be
challenging, and neither too hard nor too easy, suggesting that
the game has to adapt its difficulty automatically based on
the player’s skills. In the same direction, Zuin and Macedo
[21] used the HMM approach for detecting infinite combos in

fighting games and thus giving the player’s chance to recover
from this sequence of attacks.

Tijs et al. [10] propose performing dynamic difficult bal-
ancing by using currently player’s emotional stage during
gameplay. The main drawback of this approach is the break
in the flow state along the game [22], as the player needs
to answer questions from time to time to adjust the difficult
level. Vasconcelos de Medeiros and Vasconcelo de Medeiros
[11], on the other hand, used offline collected player’s data for
procedural level design balancing. Unfortunately, due to their
static approach, variation in the player’s skills is not take into
consideration. Hunicke [7] implements a FPS based game that
uses a probabilistic approach in order to identify when the user
is having troubles in the game. In order to answer for such
trouble, game mechanics characteristics such as weapons or
munitions spawn rate are changed in order to assist the player.

When considering artificial intelligence based approach,
Prez et al [13] use fuzzy and probabilistic causal relationships
through cognitive maps for dynamically increase or decrease
the spawn rate of obstacles in the game as well as power
ups. Olesen et al. [12] use Neuro Evolution of Augmenting
Topologies in real time for adjusting game challenge. Using
an in house game, they analyzed the keys that contribute in
the level of difficult and proposed a model to take those keys
into account.

In [23] an automatic game balancing with reinforcement
learning is presented in a fighting game. It uses the Q-
Learning [24], a popular reinforcement learning algorithm,
in order to adjust the agents behavior. Some works [25],
[26] use intelligent agents based on genetic algorithms for
such difficulty balancing. One drawback of such approach
is that it needs an offline training in order to act correctly.
Additionally, such approach does not consider past history data
while performing such adjustments in difficulty along sessions.

In [27] a machine learning technique named Hidden Markov
Model was used to predict players combos in fight games. The
authors aimed to an automated solution to one of the main
flaws in fighting games, specifically infinite or unfair combos
that make the game be easy. This work proposed the used
of Hidden Markov Models to predict if a subset of player
commands may result in a combo.

Matsumoto and Thawonmas [28] discussed the use of
Hidden Markov Models on video games to classify players
in Massive Multi-player Online Games. This classification is
based on player’s actions recorded in log files during the on-
line matches. The results obtained in this work show that
Hidden Markov Models have satisfactory recognition perfor-
mance, especially for player’s classification among different
types, but having similar action frequencies.

III. HIDDEN MARKOV MODEL

Hidden Markov Model (HMM) is a Machine Learning
technique [29], [30] which works on a double stochastic
process:

i an unobservable stochastic process that is well-known as
hidden part and,

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 233

ii another stochastic process that produces an observable
sequence.

Due to this, HMM infers the hidden part based (item i) on
the co-relation of observable stochastic process (item ii).

Since HMM uses Markov Chain in the hidden part, we brief
explain the Markov Chain before discussing HMM in more
detail. Markov Chain may be defined as a series of random
variables x1, x2, x3, . . . , xn such that the following conditional
independence property holds for n ∈ 1, 2, 3, . . . , N

p(xn+1|x1, x2, x3, . . . , xn) = p(xn+1|xn). (1)

This probabilities’ condition may be represented by graph
chain, where the states are random variables and the edges are
the probabilities. The probabilities also represent the transition
of one state to the other and, in some cases, there is a
probability to keep it in the same sate. Fig. 1 depicts a
Markov Chain with two variables (states) and their conditional
probabilities.

p=0.42

p=0.25
p=0.15

p=0.18

Fig. 1. Markov Chain with two variables.

In Fig. 1, the full line represents the probabilities of variable
x1, as long as the dashed line is the probabilities of the other
variable. Both of them are independents and they obey to the
following standard stochastic constraints:

ai,j ≥ 0 (2)

N∑

j=1

ai,j = 1 (3)

The Markov Chain can also be represented by matrix A (4),
where each matrix coefficient is the transition probability.

A = ai,j =

[
a11 a12
a21 a22

]
(4)

In several problems, there are co-related events, eventually
one of them is hard to track or observe as long as the other
is not. In this case, we can built a Markov Chain through
an observable events so that we can infer the co-related
and untracked event. Thus, HMM arises as very useful tool
which allows us to infer the Markov Chain and figure out the
most likely sequence (states of Markov Chain) through other
observable events that are co-related to the Markov Chain.
Indeed, the HMM is an extension of discrete Markov process

[31] where Markov process is unknown with another stochastic
process co-related that produces an observable sequence.

We can understand the HMM concept through a simple
example called: “Urns and Balls” [32] 1. In this example, we
assume that there are N urns in a room and each urn has
a larger number of colored balls. We also assume that there
are M distinct colors of the balls. All the urns are hidden by
curtain and a person takes a random color ball from random
urn, showing only us the ball so we can record the color. So,
the physic dynamic of example consists in a person in the
room who choose a random urn. Once the urn is selected, the
person takes up a random ball of this urn, recording the color
of the ball as the observation. Then, the ball is put back in
the selected urn. And this same process is repeated by random
selection of a new urn and a new random ball is picked up
from this and recorded the ball’s color as the observation.
Repeating this selecting ball process for a finite time, HMM
is able to build a HMM Model that allows us to predict the
most sequence of urns that will be selected.

The previous example give us a good idea of HMM and its
application. Besides, HMM defines its notation and elements
as following:
• N is the number of states in the model, referring to states

of the hidden part of the model.
• S denotes the states, where S = {S0, S1, . . . , SN−1}.
• M represents the number of distinct observation symbols

per state, the number of observation symbols.
• The transition probability distribution is defined in matrix
A = ai,j .

• The observation symbol probability in state j is given by
vector B = bj(k).

• The initial distribution represented by vector π.
• The length of observation is given by T .
• Observation sequence O = {O1, O2, . . . , OT }.
• V = {0, 1, . . . ,M −1} is the set of possible observation.
• Distinct Markov state is defined by Q =
{q0, q1, . . . , qN−1}

Fig. 2 depicts a general scheme of Hidden Markov Model,
where X are the states of the hidden part (inside the dash box)
which represents a Markov Chain. B refers to the co-relation
of each state with a observation O.

X0 X1 X2 XT-1...

O0 O1 O2 OT-1

B B B B

A A A A

Observations:

Markov process - hidden part

Fig. 2. Hidden Markov Model.

HMM is able to solve three fundamental problems:
i) The first problem determines the likelihood of observation
O, given a known model λ = (A,B, π). In this case, the

1The urns and balls example was introduced by Jack Ferguson in lectures
on HMM theory.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 234

model finds out an observation probability. The model
parameters (matrix A, vectors B and π) have been
previously defined.

ii) The second problem seeks the optimal state sequence of
the hidden part (Markov process), given the model λ =
(A,B, π). In this case, similar to the first problem, the
models parameters have already been defined.

iii) The third problem discover the model λ = (A,B, π)
based on an observation sequence O. In other words,
given an observation sequence O and the dimensions N
and M , the HMM find a model λ = (A,B, π) so that it
can maximize the probability of O. The third problem is
also called as the training method.

In order to identify or learn pattern, we have to discovery
the model λ = (A,B, π), solving item iii, following the step
that defines the likely states sequence of hidden part, which is
the second problem (ii). Therefore, the former employs Baum-
Welch Algorithm [33] to find out the model and the latter uses
Viterbi Algorithm [34] to build the most likely state sequence
of HMM hidden part.

Viterbi Algorithm solves item ii considering Markov prop-
erty of the HMM, the joint probability of the most likely
path that ends at state s in certain time instant, i.e., the
highest probability path is the desired solution. The Algorithm
selects the most likely terminal state, following a backtracking
procedure interactive in an effort to build the joint probability
of the most likely path and find observations.

As there is at least a path from the initial to final state, the
Algorithm converge. For each step of backtrack interactive
procedure, a part of path is selected until the initial state. If
there no path from initial state to any final state, then this is
not a valid path. Finally, the path length is given by the length
of observation sequence.

Baum-Welch Algorithm [33] is a special case of the pro-
posed work by B. Benyacoub et al. [35] and consist in learning
step. The Algorithm starts initial HMM λ and an observation
history O and finds a new HMM λ′ that can explain the
observations better than previous model, P (O|λ′) ≥ P (O|λ).
Aiming to the Algorithm tries to maximize P (O|λ), the model
λ′ shares the same observation of λ.

Baum-Welch Algorithm is also interactive procedure and
the first step is to define the initial condition π

′
s = P (X1 =

S|O, λ), following the build matrix A, where each coefficient
is given by:

ai,j =
E[Si,j]

E[Si]
(5)

where i and j are states and E[Si,j] represents the expected
transition probability of state i to j. While E[Si] is the
expected probability of state i;

Additionally, a matrix of entries is also build, as follow:

M
′
s,m =

E[Ks,m]

E[Km]
(6)

where E[Ks,m] is the expected number of times that state
s occurred in m, as long as E[Km] is the number of times

that state s occurred. Finally, the Algorithm converges when
P (O|λ′

) ≥ P (O|λ) is achieved.

IV. PROPOSED APPROACH

In order to demonstrate the usage of HMM for dynamic
difficulty adjustment in games, we built an in-house Space
Invaders clone with HMM module that is responsible for
predicting the most likely player movement. The game consists
in defending a base using a cannon, which can move sideways.
The main objective of the game is to destroy enemies by
shooting them, while avoiding enemies’ shots.

With this in mind, we can see each enemy as a state of
Markov Chain with a probability p to be destroyed. However,
these probabilities rely on player skill in controlling the cannon
and its position as well as the enemy position. In this case,
each time step may be presented as a set of probabilities that
each enemy can be destroyed. In such a way, the enemies
can be modeled as Markov Chain that composes the hidden
part and the player movement is another stochastic process
that produces an observable sequence. Finally, the latter is co-
related to the former based on the fact that player movement
implies enemy destruction.

The aim of HMM module is to learn the player style for
every n player movements. Once identified the player’s style,
the game adapts itself, adjusting the enemies defense strategy
by operating over their shooting mechanics. The machine
learning procedure in games is composed by two steps: 1)
learning the player style in order to figure out the most likely
enemies spaceship; and 2) counter-attack.

The learning consists in detecting the player’s style, which
includes their movement and shooting patterns. Following, it
is necessary to make the enemies counter-attack, where some
enemies will active a shield and increase the shoot frequency.
Based on the described process, the HMM module uses a
sequence of the player’s movement to train the model λ =
(A,B, π), where the matrix A (Markov Chain) represents the
hidden part composed by the probabilities of one enemy gets
destroyed given any other that were destroyed in the previously
(i.e., each enemy spaceship is a state of Markov Chain). Matrix
B co-relations the hidden part with observations and vector π,
which presents the initial probabilities.

During update, the game loop actives the learning process
for a batch of n player movements by invoking the HMM
module, so that it can learn based on the player movements.
During this process, the player movement is gathered as
the observation. In other words, the game observation O is
given by player’s movement. Here, we consider three possible
movements: Left (0), Right (1) and Stopped (2). Therefore, the
HMM module build a new model λ for each 100 observations,
i.e., 100 player moments. Besides, the HMM module calcu-
lates the next likely moment as fast as possible, it takes less
than 1

60 , otherwise, the game may lost its interactivity. Indeed,
the length of the observation sequence should be great enough
to represent the player pattern, but it must not affect the game
interactivity since it is computed in only one game frame.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 235

We could initialize matrix A and π with any random value
due to training procedure and re-define these matrices in ac-
cording to the observation and the matrix B. However, matrix
B describes the co-relation of player spaceship movement
and each enemy spaceship. In this case, we considered two
variables to define those probabilities: the distance and the
angle between player spaceship of each enemy spaceship at
the time step where HMM model trains the model λ.

Additionally, we included both the angle of shooting (90o

degree in relation to x-axis) as well as the distance in order
to calculate the probability of any enemy spaceship to be hit.
Enemies next to the player in an angle close to zero degrees
are more likely to be destroyed. On the other hand, enemies
far from the player in a wider angle have less chance to be
killed, as can be seen in Fig. 3.

In order to build probabilities (matrix B), we work on
inverse of distance and angle. Equation 7 presents the first
part of this relation, where dp,i denotes the distance between
ith-enemy and player spaceship in p movement (Left, Right
and Stopped). θp,i is the angle between the same spaceship.

ωi,p =
1

di,p × θi,p
(7)

We build the probabilities normalizing each ωi,p in relation
to p movement (Equation 8). The sum of probabilities should
be 1 (Equation 9).

Ωi,p =
ωi,p∑n−1
p=0 ωi,p

(8)

n−1∑

i=0

Ωi,p = 1 (9)

In matrix B, columns represents the player’s movement,
whereas the rows are enemies spaceship. Given Equations 8
and 9, we can summarize Matrix B as following:

B =

Ω0,0 Ω1,1 Ω1,2

Ω1,0 Ω1,1 Ω1,2

...
...

...
Ωn−1,0 Ωn−1,1 Ωn−1,2

 (10)

The following step after defining matrix B is to train HMM
model λ using Baum Welch Learner algorithm [36]. HMM
model also provides the sequence of the most likely states. In
case of our game, this sequence refers the sequence comprising
the most likely enemies that can be destroyed.

Finally, the following step is to perform the game’s difficulty
adaptation. Hence we figure out which enemies have more
likely to be destroyed, these enemies and all other in the same
columns turn on their force shields and increase the frequency
of shoots for 10 seconds, as Fig. 4 depicts. After that, the force
shields are disable and the shoots became normal (Fig. 5).

Once selecting the most likely enemies to be destroyed,
the sequence is disposed and the HMM model trains another
model (λ), considering a new observation. This approach al-
lows the game to learn the player pattern and acts accordingly.
As it is performed in real time after 100 observations, the game
will be adapted to consider this new observed pattern.

di,0

di,2

di,1
θi,0 θi,1 θi,2

Fig. 3. Influence of the enemies’ distance and angle of shooting.

Harder mode

Fig. 4. Harder mode enabled.

V. METHODOLOGY

In order to validate the presented approach, a study has been
performed to investigate the machine learning implementation.
This investigation involved participants who played the in-
house game with HMM enabled and disabled. For a didactic
approach, the former is named by Space-Invader-HMM while
the latter is just called Space-Invader. While playing, partic-
ipants where not informed which version of the game they
were playing. In fact, they did not even know the objective of
the experiment before playing the game.

We carried out the tests with a total of 11 different
volunteers (players) recruited from different classes in the
University. Volunteers selection was diverse across age and
academic career. All the participants had some experience with
games, 3 had low experience, 5 mid level experience and 3
had high experience level with games.

Before the experiment actually starts, initial instructions

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 236

Fig. 5. Normal game mode.

are given to each participant about the game mechanics. No
information about the DDA have been given to the participant
in order to avoid bias in the result [17]. Following, we asked
the player for playing each version of the game (Space-
Invader and Space-Invader-HMM) once, for five minutes,
in order to collect game statistics. All these tests have been
performed using a notebooks with a keyboard to control the
player spaceship. The player starts with 5 lives, infinity shoots
and 180 enemies to kill. There are also a bonus enemy, which
appear from time to time in the top of the screen that gives
a bonus point in case the player kill it. Besides that, player’s
shoots can neutralize an enemy’s shoot, which can be a defense
strategy for the player.

During the experiment, statistical information were gathered
for both version of the game, as following:
• Player score: the game is by considering the number of

enemies killed;
• Player Shoots: number of shots the player made;
• Number of enemies killed: increased by killing enemies;
• Number of player’s lives : every time the player get hit

by colliding with an enemy or its bullet the player looses
a life. The player start with 5 lives and if this number
reaches 0 the game ends.

Finally, after the tests, the participants were asked to fill up
a brief interview in order to evaluate the their experience. The
following characteristics were addressed:
• Difficult factor: perception of the game difficult for both

versions of the game, using a 5-point Likert scale ranging
from 0 (very easy) to 5 (very difficult);

• Most fun version: the participant’s perception about
which version he/she played was most fun;

• Most challenge version: the participant’s perception
about which version he/she found more difficult.

VI. RESULTS AND DISCUSSIONS

In this section, we present our results by using the HMM
module. Subsection VI-A presents the performance evaluation

of HMM while Section VI-B presents participants’ evaluation
of the HMM approach.

A. HMM Performance

In this section we aim to evaluated the performance of
HMM module in order to analyze the feasibility of our
approach in commercial games. In doing so, we measured
each processing step which compose the HMM module:

i) Initialization: this step allocates and initializes all the
HMM modules variables: A matrix and B and π vectors.
Due to the fact that HMM module will learn with player’s
movement, A matrix and π vector can be initialized
with any random value. On the other hand, B vector
is calculated by Equation 7 considering each enemy
presented in the game. In other words, in the beginning
of game, we have 180 enemies in order to compute their
probabilities.

ii) Training: in this step, as discussed in Section IV, the
HMM module applies Baum-Welch Algorithm so that it
can figure out A matrix and π vector, building the λ =
(A,B, π).

iii) Most likely state sequence: The last step uses the Viterbi
Algorithm to build the most likely state sequence of
HMM hidden part.

We leaded the experiment using a notebook Intel i7-4510U
CPU @ 2.00GHz with two physical cores and hyperthreading
enabled, totaling four virtual cores. It comprises 8 Gbytes of
RAM memory and runs CentOS 7 as OS. The prototype is
implmented in Java and the JVM version was Oracle J2SE
build 1.8.0 144−b01. The game loop used is a single-threaded
uncoupled model [37].

While the game is running, the HMM module performs the
previous described steps for a collection of 100 player’s move-
ments. Thus, we also leaded tests to measure the computational
processing of each step of HMM module and to define the
asymptotic curve of HMM module in function of enemies.

Fig. 6 and 7 illustrate the power processing demand of
HMM module. Remark that the training step spends almost
90% of computation time, following by the most likely states
sequences and initialization requires almost nothing represent-
ing 1%.

Fig. 6. Elapsed time in percent of each HMM module.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 237

In fact, the HMM module may take too much time (Fig. 7).
In accordance to Cutting et al. [38], the Baum-Welch as Viterbi
present complexity O(TN2), where T is the observation
length and N is the number of hidden states. Therefore, Fig. 7
reinforces both algorithms, presenting exponential growth of
computational time in function of states length.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 20 40 60 80 100 120 140 160 180

E
la

p
s
e
d
 t
im

e
 t

o
 c

o
m

p
u
te

 H
M

M
 (

s
e
c
o
d
s
)

Number of live enemies

Fig. 7. Asymptotic curve based on the number of enemies.

According to Fig. 7, it is possible to observe that our game,
running with HMM module activated, does not impact on
the game interaction. However, due to complexity of HMM
algorithms, the game invective may becomes compromised if
there are too many states (N > 180 enemies).

B. Participant’s Evaluation

Table VI-B shows the Player Score, Player Shoots (PS , and
Killed Enemies(KE) for each participant in both versions of
the game. Besides that, it shows the accuracy, defined here
as KE

PS
, becoming an important metric to distinguish how

skilled a participant is. According to the result, is is possible
to see that all the participants were capable of finishing the
game (killing all the 180 enemies) in the Space-Invader
version. On the other hand, the majority of the participants
had problems while playing Space-Invader-HMM, as just one
participant (participant K) was able to finish the game. Also,
we can observe that the number of players’ shoots on the
Space-Invader-HMM version is much higher than the Space-
Invader, which represents an increase of 36.86% considering
the mean among all players. One fact to such an increase is
the need to use the shoot as a defense to protect her spaceship.

Additionally, it is possible to see a decrease about 42.86%
in the mean for the accuracy from Space-Invader to Space-
Invader-HMM. This is another fact that can be explained by
the increase in shots fired by players, as participants missed
more bullets in the latter version of the game. One interesting
fact is that all participants dropped their accuracy when HMM
was enabled (being participant A the one that dropped more),
except for participant D, which presented an slightly increase
in his accuracy. One reason for such result could be a failure
in the HMM to learn his pattern while playing.

When looking to the participant’s answer for choosing
which version had been more challenge, all of them answered
it was the Space-Invader-HMM version. Besides that, partic-
ipants classified the Space-Invader either very easy (81.8%)
or easy (18.2%), leading to a possibly disengagement in the
game after some time. On the other hand, Space-Invader-
HMM has been scored as very difficult (27.3%), difficult
(63.6%), or normal (9.1%) by the participants. However, this
does not necessary indicates participants got frustrated by the
challenges presented in Space-Invader-HMM version. For
instance, participant D says: ”The second version [Space-
Invader-HMM] provides new mechanics (enemies) and irreg-
ular patterns”. It is important to state that the same participant
increased his accuracy in the Space-Invader-HMM version.
Additionally, participant H (the second highest accuracy drop)
says: The shots [from the enemies] constrained my movements,
requiring different strategy to beat them. In fact, according
to Fig. 8, the majority of the participants (54.5%) had more
fun with the second version (Space-Invader-HMM), while
34.6% had fun with both. Finally, when asked for additional
comments in the end of the experiment, participant D says:
”The second version [Space-Invader-HMM] is more dynamic;
it is interesting to learn enemies new mechanics just by
observation, requiring time... The first version does not present
a challenge, being boring..

Fig. 8. The version that participants had more fun.

VII. CONCLUSION AND FUTURE WORKS

Game balancing is one of the critical aspect of the game,
and also one of the more difficulty for achieve in game
development. The usage of machine learning could help the
development of this task, allowing developers to focus in
others tasks of the game. At the same time, the majority of
the games’ level of difficult are based on a group of players,
without considering that players evolves differently.

In this paper we presented a machine learning applied for
game dynamic difficult adjustment, using a real time Hidden
Markov Model. In order to validate our approach, a 2D
shooting game has been developed and tested with volunteers.
According to our results, the version that did not use our
approach was classified as easier for the player, presenting

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 238

Space-Invader Space-Invader-HMM
Player Player Enemies Player Accuracy Player Player Enemies Player Accuracy

User Score Shoots Killed Killed Score Shoots Killed Killed
A 2250 310 180 0 0.58 2550 821 175 5 0.21
B 2100 283 180 0 0.64 2370 583 162 5 0.28
C 2150 263 180 0 0.68 2180 300 143 5 0.48
D 2350 645 180 1 0.28 2100 485 165 5 0.34
E 1850 272 180 0 0.66 2010 604 144 5 0.24
F 2150 323 180 3 0.56 1070 301 128 5 0.43
G 2000 379 180 0 0.47 2350 826 160 5 0.19
H 2050 279 180 2 0.65 1900 450 130 5 0.29
I 1950 261 180 0 0.69 820 128 77 5 0.60
J 1950 438 180 1 0.41 1840 566 134 5 0.24
K 2150 348 180 0 0.52 2670 956 180 4 0.19

Mean 2086.36 345.55 180.00 0.64 0.56 1978.18 547.27 145.27 4.91 0.32
TABLE I

RESULTS OF THE STATISTICS COLLECTED IN THE GAME PLAY.

almost no challenge. On the other hand, the game version
using HMM could be finished just by one participant. Even
increasing the challenge level, the majority of the participants
find the HMM version more fun (90.90%).

Also, for future topics, it is included to porting the machine
learning to others game types, allowing more games to have
an adapted game balancing with machine learning. Besides
that, an independent HMM module that can be adjusted by
processing different parameters for performing DDA without
requiring any kind of programming knowledge is an interesting
topic for further research.

Additionally, another future work may be to develop a
parallel approach of the HMM module in order to compute the
model concurrently with the game, synchronizing only when
necessary. With that, great domains (several states) will not
affect the game interactivity.

ACKNOWLEDGMENT

The authors would like to thank CAPES, NVidia, CNPq,
and FAPERJ for the financial support.

REFERENCES

[1] J. P. Davis, K. Steury, and R. Pagulayan, A survey method for assessing
perceptions of a game: The consumer playtest in game design. Game
Studies 5, 2005.

[2] M. Wulff, M. Hansen, and C. Thurau, “Gameanalytics for
game developers know the facts improve and monetize,”
¡http://www.gameanalytics.com/¿, accessed: 2017-01-20.

[3] T. Kohwalter, E. Clua, and L. Murta, “Provenance in games,” in
Proceedings of the 2012 Brazilian Symposium on Computer Games and
Digital Entertainment, ser. SBGAMES ’12, 2012, pp. 162–171.

[4] J. Freire, D. Koop, E. Santos, and C. T. Silva, “Provenance
for computational tasks: A survey,” Computing in Science and
Engg., vol. 10, no. 3, pp. 11–21, May 2008. [Online]. Available:
http://dx.doi.org/10.1109/MCSE.2008.79

[5] M. Black and R. J. Hickey, “Maintaining the performance of a learned
classifier under concept drift,” Intell. Data Anal., vol. 3, no. 6, pp. 453–
474, Nov. 1999. [Online]. Available: http://dx.doi.org/10.1016/S1088-
467X(99)00033-5

[6] G. Andrade, G. Ramalho, A. S. Gomes, and V. Corruble, “Dynamic
game balancing: An evaluation of user satisfaction,” in Proceedings of
the Second AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, ser. AIIDE’06. AAAI Press, 2006, pp. 3–8.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3023108.3023110

[7] R. Hunicke, “The case for dynamic difficulty adjustment in games,”
in Proceedings of the 2005 ACM SIGCHI International Conference
on Advances in Computer Entertainment Technology, ser. ACE ’05.
New York, NY, USA: ACM, 2005, pp. 429–433. [Online]. Available:
http://doi.acm.org/10.1145/1178477.1178573

[8] R. Lopes and R. Bidarra, “Adaptivity challenges in games and simula-
tions: A survey,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 3, no. 2, pp. 85–99, June 2011.

[9] A. Saltsman, “Game changers: Dynamic difficulty,”
¡http://www.gameanalytics.com/¿, 2009, accessed: 2017-01-20.

[10] T. J. Tijs, D. Brokken, and W. A. Ijsselsteijn, “Dynamic game balancing
by recognizing affect,” in Proceedings of the 2Nd International
Conference on Fun and Games. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 88–93. [Online]. Available: http://dx.doi.org/10.1007/978-3-
540-88322-7 9

[11] R. J. V. d. Medeiros and T. F. V. d. Medeiros, “Procedural level balancing
in runner games,” in 2014 Brazilian Symposium on Computer Games and
Digital Entertainment, Nov 2014, pp. 109–114.

[12] J. K. Olesen, G. N. Yannakakis, and J. Hallam, “Real-time challenge
balance in an rts game using rtneat,” in 2008 IEEE Symposium On
Computational Intelligence and Games, Dec 2008, pp. 87–94.

[13] L. J. F. Pérez, L. A. R. Calla, L. Valente, A. A. Montenegro, and
E. W. G. Clua, “Dynamic game difficulty balancing in real time using
evolutionary fuzzy cognitive maps,” in 2015 14th Brazilian Symposium
on Computer Games and Digital Entertainment (SBGames), Nov 2015,
pp. 24–32.

[14] L. B. Jacob, T. C. Kohwalter, A. F. V. Machado, E. W. G. Clua, and
D. d. Oliveira, “A non-intrusive approach for 2d platform game design
analysis based on provenance data extracted from game streaming,”
in Proceedings of the 2014 Brazilian Symposium on Computer Games
and Digital Entertainment, ser. SBGAMES ’14. Washington, DC,
USA: IEEE Computer Society, 2014, pp. 41–50. [Online]. Available:
http://dx.doi.org/10.1109/SBGAMES.2014.33

[15] F. M. Figueira, L. Nascimento, J. da Silva Junior, T. Kohwalter, L. Murta,
and E. Clua, “Bing: A framework for dynamic game balancing using
provenance,” in 2018 17th Brazilian Symposium on Computer Games
and Digital Entertainment (SBGames), 2018, pp. 57–5709.

[16] C. R. Beal, J. Beck, D. Westbrook, M. Atkin, and P. Cohen,
“Intelligent Modeling of the User in Interactive Entertainment,”
in AAAI Spring Symposium on Artificial Intelligence and
Interactive Entertainment, 2002, pp. 8–12. [Online]. Available:
http://info200.infc.ulst.ac.uk/˜darryl/Papers/Digra05/digra05.pdf

[17] D. Charles, M. Mcneill, M. Mcalister, M. Black, A. Moore,
K. Stringer, J. Kücklich, and A. Kerr, “Player-Centred
Game Design: Player Modelling and Adaptive Digital Games,”
in Digital Games Research Association 2005 Conference:
Changing Views - Worlds in Play, 2005. [Online]. Available:
http://info200.infc.ulst.ac.uk/˜darryl/Papers/Digra05/digra05.pdf

[18] A. L. Samuel, “Some studies in machine learning using the game of
checkers,” IBM Journal of research and development, vol. 44, no. 1.2,
pp. 206–226, 1959.

[19] ——, “Some studies in machine learning using the game of checkers.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 239

ii—recent progress,” IBM Journal of research and development, vol. 11,
no. 6, pp. 601–617, 1967.

[20] C. Chandler and L. Noriega, “Games analysis – how to stop history
repeating itself,” in WSEAS International Conference on Multimedia,
Internet & Video Technologies, 2006, pp. 47–52.

[21] G. L. Zuin and Y. P. A. Macedo, “Attempting to discover infinite combos
in fighting games using hidden markov models,” in 2015 14th Brazilian
Symposium on Computer Games and Digital Entertainment (SBGames),
Nov 2015, pp. 80–88.

[22] J. Schell, The Art of Game Design: A Book of Lenses. Morgan
Kaufmann Publishers, 2008.

[23] G. Andrade, G. Ramalho, H. Santana, and V. Corruble, “Automatic
computer game balancing: A reinforcement learning approach,”
in Proceedings of the Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems, ser. AAMAS ’05. New
York, NY, USA: ACM, 2005, pp. 1111–1112. [Online]. Available:
http://doi.acm.org/10.1145/1082473.1082648

[24] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[25] P. Demasi and J. d. O. Adriano, “On-line coevolution for action games,”
International Journal of Intelligent Games & Simulation, vol. 2, no. 2,
2003.

[26] R. P. Wiegand, W. C. Liles, and K. A. De Jong, “Analyzing cooperative
coevolution with evolutionary game theory,” in Evolutionary Compu-
tation, 2002. CEC’02. Proceedings of the 2002 Congress on, vol. 2.
IEEE, 2002, pp. 1600–1605.

[27] G. L. Zuin and Y. P. Macedo, “Attempting to discover infinite combos
in fighting games using hidden markov models,” in Computer Games
and Digital Entertainment (SBGames), 2015 14th Brazilian Symposium
on. IEEE, 2015, pp. 80–88.

[28] Y. Matsumoto and R. Thawonmas, “Mmog player classification using
hidden markov models,” Entertainment Computing–ICEC 2004, pp. xv–
xx, 2004.

[29] S. Russell, P. Norvig, and A. Intelligence, “A modern approach,”
Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs, vol. 25, p. 27,
1995.

[30] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[31] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

[32] S. S. Joshi and V. V. Phoha, “Investigating hidden markov models
capabilities in anomaly detection,” in Proceedings of the 43rd annual
Southeast regional conference-Volume 1. ACM, 2005, pp. 98–103.

[33] L. R. Welch, “Hidden markov models and the baum-welch algorithm,”
IEEE Information Theory Society Newsletter, vol. 53, no. 4, pp. 10–13,
2003.

[34] G. D. Forney, “The viterbi algorithm,” Proceedings of the IEEE, vol. 61,
no. 3, pp. 268–278, 1973.

[35] B. Benyacoub, I. ElMoudden, S. ElBernoussi, A. Zoglat, and
M. Ouzineb, “Initial model selection for the baum-welch algorithm
applied to credit scoring,” in Modelling, Computation and Optimization
in Information Systems and Management Sciences. Springer, 2015, pp.
359–368.

[36] Z. Ghahramani and M. I. Jordan, “Factorial hidden markov models,” in
Advances in Neural Information Processing Systems, 1996, pp. 472–478.

[37] A. LaMothe, Tricks of the 3D game programming gurus: advanced 3D
graphics and rasterization. Sams, 2003, vol. 2.

[38] D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun, “A practical part-of-
speech tagger,” in Proceedings of the third conference on Applied natural
language processing. Association for Computational Linguistics, 1992,
pp. 133–140.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 240

