
Team Recommendation for the Pokémon GO Game
Using Optimization Approaches

Samuel da S. Oliveira
Dept. of Informatics and

Applied Mathematics (DIMAp)
Federal University of

Rio Grande do Norte (UFRN)
Natal, Brazil

samueloliveira@ppgsc.ufrn.br

Guilherme E. P. L. Silva
Digital Metropolis Institute (IMD)

Federal University of
Rio Grande do Norte (UFRN)

Natal, Brazil
guigle@ufrn.edu.br

Arthur C. Gorgônio
Dept. of Informatics and

Applied Mathematics (DIMAp)
Federal University of

Rio Grande do Norte (UFRN)
Natal, Brazil

arthurgorgonio@ppgsc.ufrn.br

Cephas A. S. Barreto
Dept. of Informatics and

Applied Mathematics (DIMAp)
Federal University of

Rio Grande do Norte (UFRN)
Natal, Brazil

cephasax@gmail.com

Anne M. P. Canuto
Dept. of Informatics and

Applied Mathematics (DIMAp)
Federal University of

Rio Grande do Norte (UFRN)
Natal, Brazil

anne@dimap.ufrn.br

Bruno M. Carvalho
Dept. of Informatics and

Applied Mathematics (DIMAp)
Federal University of

Rio Grande do Norte (UFRN)
Natal, Brazil

bruno@dimap.ufrn.br

Abstract—Pokémon GO is one of the most popular Pokémon
games. This game consists of walking around the world and
collecting Pokémon characters using augmented reality. In addi-
tion, you can battle with friends, join a gym, or make attacks.
These battles must happen between teams with the same size,
and this poses a question that is related to the best combination
for a team to beat a given opposing team. In order to solve
this problem, one can use optimization algorithms. In this
paper, we investigate three optimization algorithms to solve this
problem: genetic algorithm (GA), memetic algorithm (MA), and
iterated local search (ILS). In our experiments, we use time
and fitness as evaluation metrics. Our findings indicate that the
fastest algorithm is ILS with an execution time of 1.49 ± 0.11
seconds, followed by GA with an execution time of 1.51 ± 0.10
seconds, and MA with an execution time of 13.41±1.00 seconds.
However, when we consider the fitness metric, MA achieves the
best average fitness of 50, 366.27 ± 12, 055.53, followed by GA,
43, 113.00±10, 482.30, and ILS, 31, 224.32±7, 943.70. All these
results are statistically significant to the others according to the
post-hoc Friedman test. Analyzing all the obtained results, we
recommend the use of the ILS algorithm when the execution
time is of utmost importance. However, if fitness is important,
then we recommend the use of the memetic algorithm. Finally, if
both the execution time and fitness are deemed equally important,
then, we recommend the usage of the genetic algorithm because
it has a runtime similar to ILS and reasonable fitness.

Index Terms—Pokémon GO, Recommender Systems, Opti-
mization algorithms

I. INTRODUCTION

Pokemon is a big franchise, including merchandise such
as games, series, books and toys [1]. For instance, there are
several variations of this game. In addition, these games are
famous all over the world, usually with an enormous number
of players taking part of a single game.

Pokémon GO is a mobile game that was launched in
2016 [2]. In this game, the Pokémon characters are scattered
around the real world and the players should go looking for the
virtual monsters. The player has the objective of completing
the Pokedex, which is a catalog with all the monsters present
in the game. This game also has a battle system that allows
two types of battles: players vs players and player vs computer.

Trainers can battle in many ways: against Team Rocket
(computer), against others trainers (traditional PvP) or in gyms
against a Pokémon boss (raids) or against others player’s
Pokémon to take control of a gym, increasing the competi-
tiveness of the game. A victory in a battle depends on some
factors, such as Health Points (HP), Combat Points (CP) and
Pokemon Types (PT), among others which are considered less
important ones. A player who has the team with the best
combination tends to win. In a battle against another player
or Team Rocket, the teams are composed of three Pokémon
characters each, while the teams engaged in gym battle consist
of six characters. At the moment, 651 Pokémon characters can
be selected, and we need to choose the best team to win a
match, given a rival team or gym battle. Hence, when a team
length grows or a new Pokémon is inserted on the game, the
possibilities to choose the best team grows too.

The selection of the ideal team can be laborious due to
the large search space even taking into account the correct
variables. The purpose of our paper is to show that team
selection in the Pokémon GO game is a process that contains
some restrictions. As the objective of the battles in the game
is to win, we have the following problem: given a rival team,
which is known, what is the best counter team that we can
choose using an heuristics based on the Pokémon character

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 357

abilities. In other words, given a rival team, which counter
team can beat the rival team as quick as possible. Thus, this
paper proposes an approach that computes, given a rival team,
the best counter team, using optimization algorithms. In the
Pokémon game, this represents the selection step of composing
a team. Aiming to contribute to this important issue, this paper
presents an investigation of the use of optimization techniques
to team recommendation. The main aim is to indicate the best
team for a given rival team. In order to do that, three different
techniques will be applied in order to optimize the search and
to recommend a suitable team for the confrontation. The three
heuristic selected techniques are:

• Iterated Local Search (ILS) [3];
• Genetic Algorithm (GA) [4];
• Memetic Algorithm (MA) [5].
The first algorithm (ILS) is a trajectory-based algorithm,

while the remaining two (genetic and memetic algorithms) are
population-based ones. All three aforementioned algorithms
are developed in order to evaluate the Pokémon teams and to
provide as result its impact factor. In this sense, it can indicate
the best team for a given rival team.

This paper is divided into six sections as follows. Section II
describes the theoretical aspects related to the subject of this
paper, while Section III presents some related studies. The
experiment methodology is described in Section IV, then
the obtained results are presented in Section V. Finally, in
Section VI we present the conclusions and suggestions for
future works.

II. THEORETICAL ASPECTS

This section addresses the theoretical aspects of the three
optimization techniques used in this paper. The next subsec-
tions will describe iterative local search, genetic algorithms
and memetic algorithms, respectively.

A. Iterative Local Search (ILS)

The ILS algorithm [3] is a simple, efficient meta-heuristic. It
is a trajectory-based algorithm in which it starts with an initial
solution. Based on this initial solution, it moves towards a local
optimum. At each iteration, a perturbation is generated and a
local search is performed based on the perturbed solution, thus
creating a new local optimum.

In this paper, the perturbation of the ILS algorithm occurs
by exchanging Pokémon character within the current solution
at random. In other words, perturbations are defined as team
member changes and the new solution is testing in order to
assess the efficiency of the new team.

B. Genetic Algorithm

A genetic algorithm (GA) [4], [6] is a meta-heuristic tech-
nique that is bio-inspired by the Darwin evolution theory. It is
a population-based algorithm that consists of a set of solutions
called population. In addition, it uses a step for the crossover
of this population and a mutation step, similar to its occurrence
in nature. It also has a step that evaluates the set of solutions.

Each individual of a population represents a possible solution
that must solve the proposed problem.

In a GA algorithm, the evolution starts from a random set
of solutions and it is carried out across generations. At each
generation, the adaptation of each individual of the population
is evaluated and some individuals are selected for the next
generation. These selected individuals are recombined and
some are still mutated in order to form a new population.
The new population is used as an input for the next iteration
of the algorithm.

The objective function (fitness) consists of evaluating each
individual, assigning a score that classifies it so that we
can know which individuals are most apt to perform the
recombination step in order to integrate the new population.
Fig. 1 presents the GA process. This algorithm runs for a
predefined number of iterations or until a minimum target
value for the fitness function is achieved.

Fig. 1. Genetic Algorithm Process.

C. Memetic Algorithm

The memetic algorithm is a natural evolution of GA [5].
The main aspect of the MA approach is that a local search
was included to be performed after the crossover and mutation
steps. In other words, along with the operations presented in
GA, the MA algorithm also performs a local search in order to
improve the quality of each individual. The memetic process
flow is shown on Fig. 2.

III. RELATED WORK

In this section, we will present some important studies in
the optimization area, involving heuristics techniques used by

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 358

Fig. 2. Memetic Algorithm Process.

recommendation systems. The literature of optimization algo-
rithms is vast, with different studies in different applications,
such as in [7]–[11].

For instance, Bansal and Baliyan in [7] worked with web-
based recommendation systems (RS). In the cited paper,
the authors presented a novel MA-based Similarity Met-
ric (MASM) for RS, leveraging the collaborative behavior
of memetic algorithms (MA). It used a publicly available
Movielens dataset (100K ratings) to conduct experiments.
They investigated the accuracy using precision and recall
with different neighborhood sizes of target users on a public
available Movielens dataset. Results shows that the proposed
MASM is better than conventional GA-based Similarity Metric
(GASM). The precision of RS using MASM is improved by
28% over RS using GASM, resulting in an improved predictive
recommendation accuracy.

In [8], the authors presented a Recommendation system
based on locations and tags. In this system, they proposed a
novel location and tag aware recommendation framework that
uses ratings, locations, and tags to generate a recommendation.
In their framework, all users are partitioned into several
clusters by a newly designed MA-based clustering method. For
existing users, items are recommended by applying the Latent
Dirichlet Allocation (LDA) to users who are part of each
cluster of the obtained partition. For cold-start (new) users,
each cluster is presented as a new user. Several experiments
were carried out on real-world datasets, demonstrating that,
when compared to state-of-the-art location and tag aware
recommendation algorithms, the proposed algorithm provided
better results on making recommendations and alleviating the
cold-start problems.

In [9], the authors performed a comparison of machine
learning algorithms for different scenarios of Pokémon battles.
In the cited analysis, the best performing algorithm was
used in a testing scenario against human players, aiming to
assess the capability of the selected algorithm to play at the
human level. According to the authors, the most successful
algorithm was a Monte Carlo search algorithm [12] which
spent time, before a round, playing out the entire game from
that round many times. Another evaluated technique was the
linear combination of features [13], that before a battle begins,
a user spends time playing several training games trying to
adjust the weights related to the actions and the state of
the game. In addition, the random algorithm which always
picks a random action and the hard coded algorithm which
picks a predefined action each round was used as benchmark
algorithms for the different scenarios. In this analysis, three
different battle scenarios within the Pokémon game for the
Game Boy were covered. The Monte Carlo search algorithm
achieved the highest performance of all evaluated algorithms,
and it was then select to play the human player challenge.
According to the authors, the Monte Carlo algorithm managed
to win half of all battles in the the human player challenge.

In [14] a Pokémon battle environment is implemented that
preserves the main elements of a Pokémon battle, allowing
researchers to test learning objectives in isolation. The paper
approach focuses on the advantages between the types of
Pokémon and the delayed rewards through exchanges. A
multi-agent environment and standard reinforcement learning
are used and oriented towards high performance, reaching
thousands of interactions per second in hardware merchandise.
Deep competitive reinforcement learning algorithms, WPL θ
and GIGA θ are able to converge to rational and effective
strategies, and GIGA θ shows a faster convergence, obtaining
a 100% victory rate in a disadvantaged scenario.

Unlike the aforementioned studies, our paper deals with
making team recommendations in a Pokémon GO game battle.
In our recommendation procedure, the user’s experience and
personal preferences are not taken into account, but only
the characteristics that are already present in the Pokémon
database are provided as input. The main aim is to provide a
robust and simple team recommendation.

IV. METHODOLOGY

In order to select the best solution for the team recommen-
dation problem, a fair comparison different aspects of each
solution is needed. In this analysis, two main aspects will be
evaluated, fitness and execution time. As mentioned before, in
this paper, we will compare three different solutions, which are
an Iterated Local Search, a Genetic Algorithm, and a Memetic
Algorithm. In this sense, in our empirical analysis, these three
techniques will be evaluated using those two aspects.

A. The Proposed Approach

Fig. 3 describes the flowchart of our experimental approach.
In this figure, once the Pokémon GO database that contains
all Pokémon features is provided, the rival team should be

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 359

selected to fight against the opposing team, in order to test
the performance of the selected methods. The next step is the
selection of the analysed optimization algorithms: GA, ILS or
MA. Then, the next step is to select the optimal home team
using the selected optimization technique.

Fig. 3. Design of the Experiment.

For each rival team and optimization method selected,
the selection process (solve the problem) is repeated five
times since the evaluated optimization techniques are non-
deterministic ones. The execution times and impact factors
are stored for each run, and, after that, the best home team is
selected from among all five executions. Table I presents the
parameter values used for each algorithm. For GA and MA
parameters, we will use the recommendations described in [15]
to set crossover and mutation rate values. Additionally, the
number of individuals and iterations were set after several tests
in order to find the best configuration for these parameters.

TABLE I
THE TUNING OF THE ALGORITHM IN THE EXPERIMENT

Algorithm Tunning
ILS Iterations = 1000

GA Individuals = 50, Iterations = 20,
Crossover = 80%, Mutation = 20%, Elitism = True

MA
Individuals = 50, Iterations = 15,

Crossover = 80%, Mutation = 20%, Elitism = True,
local-search = ILS with 10 iterations

The number of possible solutions in the search space is
huge. Given that P is the set of all Pokémon characters
available in this game (|P | = 651), and k represents the team
length (k = 3), (1) computes the total number of possible
solutions N in the search space, i.e., of different teams.

N =
(|P |+ k − 1)!

k!(|P | − 1)!
(1)

This equation is a combination with replacement, because
it is possible to use the same Pokémon more than once in a
team. However, it is necessary to consider that, from the point
of view of a game, the repetition is severely limited. This
happens because the player can use only Pokémon already
caught, which is very difficult, specially in the case of stronger
Pokémon. In the Pokémon battle system it takes into account

that each member of the home team will battle with only one
member of the rival team. However this battle can occur with
any permutation of that team, being necessary to calculate the
fitness of a pokémon of the home team for each member of
the rival team.

B. Pokémon Data

In order to define a Pokémon team, it is necessary to know
the Pokémon character and its aspects. The data related to four
Pokémon characters can be seen in Table II.

As it can be seen in Table II, a Pokémon character abilities
can be described by the following stats descriptors:

• Pokedex number: ID (identification), a unique number
that identifies a specific Pokémon;

• Name: The Pokémon’s name;
• CP: Combat Power is a metric as defined in (2);
• HP: Pokémon’s health;
• Attack: Pokémon’s base attack;
• Def: Pokémon’s base defense;
• Stam: Pokémon’s base stamina;
• types: Pokémon’s types;
• types against: how effective is a type against this

Pokémon.
The CP of a Pokémon character is defined by (2) [16]:

CP =
(Attack + Aiv)

√
(Def + Div)

√
(Stam + Siv)C

2

10
, (2)

where C is a constant defined by the Pokémon level. In this
paper, we will consider only the maximum value, 0.7903,
relative to the maximum level. Additionally, Aiv , Div and Siv

are variables that are relatives to Pokémon IV [17]. In this
paper, we set these parameters to their maximum values, 15.

For the empirical analysis, we will use a database con-
taining 1000 different Pokémon teams, where the Pokémon
teams were randomly generated. Given a rival team, all the
optimization techniques are applied to search for an acceptable
counter (home team) to play in a Pokémon battle.

C. Representation of individuals

In this paper, an individual is composed of a team of three
Pokémon characters. This setting was selected since it is the
default team size on battles against Team Rocket and other
players, where both the player’s team and enemy’s teams have
three Pokémon. Nevertheless, all definitions and methods used
in this paper can be applied to different team’s sizes and
situations. In this sense, a chromosome is a set of genes in
which each gene represents a Pokémon character.

D. Fitness

A fitness function, also known as objective function, defines
a value (grade) that is used to describe how good is an
individual and this value is calculated by applying this function
to each solution. For a fair comparison, the same fitness
function is used to all three optimization techniques, GA, MA
and ILS.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 360

TABLE II
POKÉMON DATA EXAMPLE

Pokedex Name CP HP Attack Defense Stamina Type Against Against
Number Electric Fire

1 Bulbasaur 1 115 111 118 111 128 Grass 0.5 2
4 Charmander 980 103 116 93 118 Fire 1 0.5
7 Squirtle 946 111 94 121 127 Water 2 0.5

10 Caterpie 437 111 55 55 128 Bug 1 2

Algorithm 1 is used to calculate the fitness value. In this
algorithm, the following steps describe the entire process to
evaluate an individual: i) for each Pokémon character in a
home team (team), it will perform a battle with each Pokémon
in the opposing team (team target); ii) Algorithm 2 presents
the steps of a battle function between two Pokémon characters
in order to assess which character is the best one. This
battle function consists of a comparison of both Pokémon
CPs affected by the adversary’s types. When analysing two
Pokémon teams, the winner will be the one who has the higher
CP after been affected by the adversary’s types. The variation’s
magnitude on the Pokémon’s CP will be defined by its
coefficient against the adversary’s type. Finally, Algorithm 3
defines the main steps to compose a team that has the best
fitness value within the set of solutions and returns it as a
result.

Algorithm 1: fitness(team, team target)

begin
fit ← 0
foreach home ∈ team do

foreach opposing ∈ team target do
fit += battle(home, opposing)

return fit

Algorithm 2: battle(poke1, poke2)

begin
against1 ← best against(poke2, poke1.types)
against2 ← best against(poke1, poke2.types)
return poke1.cp * against1 - poke2.cp * against2

Algorithm 3: best against(pokeA, pokeB types)

begin
best = 0
foreach against ∈ pokeA.against(pokeB types) do

if against > best then
best = against

return best

In summary, given two teams, the recommended (home
team) and rival (target team) ones, the fitness value of the
recommended team is given by the sum of the battle values

(a) Team before crossover (b) Team after crossover

Fig. 4. Example of crossover operation using Pokémon’s Pokedex number.

over all Pokémon character combinations, recommended and
rival.

E. Crossover

As mentioned in Section II, genetic and memetic algorithms
apply a crossover technique. A crossover consists of an
exchange of genes between two chromosomes (individuals
or solutions). As described in Section IV-C, an individual
is composed of a team of three Pokémon characters and
a chromosome is a set of genes, with each gene being a
Pokémon character. Thus, a crossover between two teams
consists of a Pokémon trade.

During the crossover process, a recombination point is
selected and it is used to cut both chromosomes, this cut
separates genes into two parts, where the first part of genes
stays in the corresponding chromosome, while the second
group will be exchanged with the second part of the other
chromosome [6]. Fig. 4 presents how a crossover operation
between two teams is performed using two individuals (teams).
Fig. 4a represents two teams randomly selected and Fig. 4b
represents the Crossover in a cut point, that is randomly
selected for each pair of teams.

F. Mutation

In nature, genetic mutations can occur due to the chemical
instability of some bases as well as to errors during DNA
replication [18]. Additionally, a mutation can increase or
decrease an individual’s fitness, and can sometimes generate
an individual with a fitness that can not be generated by any
crossover in a population.

In this application, a mutation is applied in all three op-
timization algorithms (ILS, GA and MA). Hence, given an
individual and a database with all Pokémon characters, a mu-
tation in a team (individual) is represented by the replacement
of one of its member, chosen randomly, by another member
from the Pokémon database, also randomly chosen.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 361

G. Algorithm Description

In this section, we will describe the overall flow of the se-
lected algorithms. As previously mentioned, the ILS algorithm
is the only trajectory-based algorithm. The ILS made a random
disturbance to generate new teams to evaluate the fitness. This
strategy tries to maximize the team’s evaluation changing the
Pokémon teams. This process is repeated until a max number
of the iteration is archived. Therefore, the final solution is the
best-evaluated team over all iterations.

For the population-based algorithms (GA and MA), the
same general flow will be applied, but with a difference. As
previously mentioned, MA is a GA algorithm with a local
search algorithm after the crossover and mutation steps. The
GA main flow is described following the steps:

1) Generate the first population randomly;
2) Apply genetic operators (crossover and mutation);
3) Measure this population using the selected fitness func-

tion;
4) Select individuals using the elitism strategy;
5) Generate the next population of the genetic algorithm

with the selected individuals.
The MA flow requires an extra local search step which is

set to be before the calculation of the population fitness (step
3). Therefore, a step 2.5 is created in which an ILS method is
used to apply a local search on all individuals of the current
population.

V. EXPERIMENTAL RESULTS

This section presents the results of the empirical analysis
using the three different optimization techniques, ILS, GA
and MA. As previously mentioned, we created a database
containing 1000 different Pokémon teams that were randomly
generated.

This database is given as input to our approach, where each
optimization technique searches for the optimal solution for
each input team. As these techniques are non-deterministic
ones, each solution is executed five times. Then, the home
team that possesses the best fitness value is selected as the
result of the iteration. Finally, once the algorithms are non-
deterministic, it is necessary to reduce the variations of these
algorithms. After the five iterations of the same team, the
average time and fitness are computed to describe the result
of the team. Fig. 5 describes the flow to generate the results
analyzed in this paper. All analysis performed in this section
were made with a thousand results, thus, one result represents
the average for each team in the evaluated metric.

The experiments were executed on a computer with 15GB of
RAM and an octa-core AMD Ryzen 7 1800X processor. The
experiments were run using the Python programming language
and the pyeasyga module1.

Tables III - IV show the results for the fitness and execution
time metrics for each optimization algorithm, respectively. In
these tables, we report the average values, along with standard

1Avaliable in https://github.com/remiomosowon/pyeasyga

Fig. 5. Experiments Flow

deviation, best and worst values for each metric. The best
result for each metric is highlighted in bold in each column.

For the fitness metric (Table III), it can be observed that
MA obtained the best values in all cases (3 out of 3). In
other words, the MA technique provided the most efficient
home teams for a Pókemon game, according to the fitness
function used in this analysis (described in Section IV-D). It
is an expected result since it is a population-based method
and it is a variation of a GA, with more elaborated search
techniques.

TABLE III
FITNESS RESULTS

Alg. Fitness ↑
Mean ± SD Best Worst

ILS 31, 224.32± 7, 943.70 72, 722.20 12, 716.70
GA 43, 113.00± 10, 482.30 98, 276.60 19, 082.40
MA 50,366.27± 12,055.53 105,757.40 26,337.20

TABLE IV
EXECUTION TIMES

Alg. Time ↓
Mean ± SD Best Worst

ILS 1.49± 0.11 1.35 1.88
GA 1.51± 0.10 1.18 1.94
MA 13.41± 1.00 10.60 16.67

However, when the execution time is analyzed (Table IV),
MA takes 10 seconds to generate the result in the best case
and it takes over 16 seconds to generate the result in the worst
case. On the other hand, both GA and ILS take an average time
around 1.5 seconds to generate a result, with ILS being faster
than GA by 0.02 seconds on average.

In summary, we can state that MA delivers the best results
and it should be used when the time requirement is not an
important aspect. When comparing ILS to GA, GA achieves
fitness values much larger than ILS, around 11, 888.68 points
higher. In terms of execution time, both GA and ILS provide
similar results. In this sense, one can state that GA provides
the best overall result, taking into consideration fitness and
execution time.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 362

After evaluating the average performance of the optimiza-
tion techniques, we illustrate the results in Fig. 6 and Fig.
8, that show time and fitness for all test cases individually.
Fig. 6 shows the execution time results, for all compared
algorithms, where we can see that MA takes the highest time
when compared to other algorithms, for all test cases. The
difference in execution times is a bit high. Both GA and ILS
are flattened into the same line because the average difference
between these algorithms was 0.02 ± 0.01. On the other
hand, we expected that the MA achieves the highest execution
time once it performs a local search for each individual in
each generation. Fig. 7 shows a focus on Genetic and ILS
methods; once these methods are flattened in Fig. 6, when
both optimization methods are compared using the average
time, the ILS obtains a better performance. This is justified
because this method runs a fixed number of iterations, and the
exchanges occur, at most three times in each iteration. On the
other hand, in the case of the genetic algorithm, we define the
stop criteria as being twenty iterations, or the population of
the algorithm represents the same solution or permutations of
this. Although we were not expecting too much similarity in
the results of our experiments, both methods have the same
total number of iterations. However, in the genetic algorithm,
its execution is divided into 20 iterations of 50 individuals.

Fig. 6. The distribution of the time for all test cases.

As it can be seen in Fig. 8, MA produces the highest fitness
values for almost all test cases, followed by GA and ILS.
However, it can be observed an instability of all optimization
techniques, being more consistent and stronger for MA. This
behaviour is corroborated in Table III in which MA provides
the highest standard deviations. Therefore, it can be concluded
that although MA provides the more accurate values, it is an
unstable method, being strongly dependent on the input case.

Table V presents the p-value of the Shapiro-Wilk normal-
ity test (first two columns) and the results of the post-hoc
Friedman test (last two columns). Based on the results of this
table, we can assume that the distributions delivered by the
optimization techniques does not follow a normal distribution.
In this case, we can use non-parametric tests to analyze the
obtained results. In order to apply both the normality and

Fig. 7. The distribution of the time with focus in ILS and Genetic.

Fig. 8. The distribution of the fitness for all test cases.

post-hoc Friedman tests to evaluate the distribution of the
population, we first summarize the average of the results
based on same rival’s team. After this step, 1000 results were
summarized, and then these results are used in the statistical
test to evaluate the population. Finally, one way to present the
obtained result is through a critical difference diagram, which
is a diagram that makes it easier to analyze and to show with
clarity which algorithm is better than the others. It is applied
to the result of the used post-hoc Friedman test, the Nemenyi
test.

TABLE V
SHAPIRO-WILK AND POST-HOC FRIEDMAN TESTS

Metric Shapiro-Wilk post-hoc Friedman
Algorithm p-value Algorithms p-value

GA < 0.001 GA × ILS < 0.001
Time ILS < 0.001 GA × MA < 0.001

MA < 0.001 ILS × MA < 0.001

GA < 0.001 GA × ILS < 0.001
Fitness ILS < 0.001 GA × MA < 0.001

MA < 0.001 ILS × MA < 0.001

Fig. 9 shows the critical difference diagram for both anal-
ysed metrics, the fitness and run time. The leftmost method

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 363

(a) Fitness (b) Time

Fig. 9. Critical Difference Diagram with evaluated methods.

obtained the lowest ranks, and the rightmost method obtained
the highest ranks when the results are ranked. Moreover,
methods that are not covered by a critical difference horizontal
line are statistically different; otherwise, the null hypothesis
of the Friedman test cannot be refuted. When analysing
the results obtained by the post-hoc Friedman test (in both,
Fig. 9 and Table V), we can see that both comparisons are
statistically significant, for all analyzed two-by-two analysis
and both evaluation metrics. Hence, these values show that, in
relation to execution time, ILS > GA > MA. However, when
considering fitness, MA > GA > ILS.

VI. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the use of three optimization
algorithms, ILS, GA and MA, to generate Pokémon home
teams to a specific rival team. The main aim was to provide
the best team configuration to beat a rival team in a Pókemon
game. In this game, the available possibilities lead to vast
search space. Additionally, any variation on the length of the
team configurations results in a change in the search space
size.

An empirical analysis was conducted to perform this inves-
tigation. As a result of this analysis, it observed that the ILS
is the less time-consuming approach of all three because of a
reasonably low fixed number of iterations (1,000). Also, MA is
the slowest of the tested techniques, since it performs a local
search (ILS) with ten iterations for each individual in each
generation. As there are 50 individuals in each generation, it
requires a larger processing load. However, when the fitness
values are analyzed, MA delivers the highest fitness values,
since it performs a more in-depth search of the solution space.
On the other hand, ILS obtains the worst fitness evaluation.
We believe that is because it uses a fixed number of iterations
and only one solution. Therefore, ILS may not perform well
in a exhaustive search into space since it depends on many
factors (e.g. seed, number of swaps).

In summary, as expected, the ILS obtained the best execu-
tion time results; on the other hand, the worst fitness results.
Hence, this technique is useful in real-time situations, when
fast responses are required but one does not need too much
precision. In contrast, GA did not obtain the best results for
both execution time and fitness metrics, but also it did not
achieve the worst results. It means that GA may be chosen
when a good trade-off solution is needed, being used in
situations where a fast time and high fitness are both required.
Finally, MA obtained the best fitness values. On the other

hand, it achieved the worst execution time results, meaning
that it is useful in situations where an accurate response is
required, and time is not an issue.

In general, we strongly recommend the use of the GA
approach if the time is primordial for the application. Due
to this algorithm, executes fast when compared with the MA.
Hence, if the fitness of the home team is more critical and the
time is available, the best option is the MA. However, in our
analysis consists of a hypothetical case when the rival’s team
is previously known. Besides, we just study a single instance
of battle, Player versus Team Rocket (PvE battles) and this
battle occur with three Pokémon in each team.

The results obtained in this paper are promising and, our
future work will be focused on the investigation of other
optimization algorithms, parameter tuning, cross-over and
combinations for all of the above. We also plan to investigate
the local search in MA with different algorithms, e.g., Tabu
search.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil
(CAPES) – Finance Code 001.

REFERENCES

[1] Koichi Iwabuchi. How ‘japanese’is pokémon. Pikachu’s global adven-
ture: The rise and fall of Pokémon, pages 53–79, 2004.

[2] Janne Paavilainen, Hannu Korhonen, Kati Alha, Jaakko Stenros, Elina
Koskinen, and Frans Mayra. The Pokémon GO experience: A location-
based augmented reality mobile game goes mainstream. In Proceedings
of the 2017 CHI conference on human factors in computing systems,
pages 2493–2498, 2017.

[3] Xingye Dong, Houkuan Huang, and Ping Chen. An iterated local search
algorithm for the permutation flowshop problem with total flowtime
criterion. Computers & Operations Research, 36(5):1664–1669, 2009.

[4] Michael D Vose. The simple genetic algorithm: foundations and theory.
MIT press, 1999.

[5] William Eugene Hart, Natalio Krasnogor, and James E Smith. Memetic
evolutionary algorithms. In Recent advances in memetic algorithms,
pages 3–27. Springer, 2005.

[6] Marco Aurélio Cavalcanti Pacheco et al. Algoritmos genéticos:
princı́pios e aplicações. ICA: Laboratório de Inteligência Computa-
cional Aplicada. Departamento de Engenharia Elétrica. Pontifı́cia Uni-
versidade Católica do Rio de Janeiro, page 28, 1999.

[7] Saumya Bansal and Niyati Baliyan. Memetic algorithm based similarity
metric for recommender system. In Proceedings of the 12th IEEE/ACM
International Conference on Utility and Cloud Computing Companion,
pages 143–144, 2019.

[8] Shanfeng Wang, Maoguo Gong, Haoliang Li, Junwei Yang, and Yue
Wu. Memetic algorithm based location and topic aware recommender
system. Knowledge-Based Systems, 131:125–134, 2017.

[9] Linus Norström. Comparison of artificial intelligence algorithms for
pokémon battles. Master’s thesis, Chalmers University of Technology,
Sweden, 2019.

[10] D. Huang and S. Lee. A self-play policy optimization approach to
battling pokémon. In 2019 IEEE Conference on Games (CoG), pages
1–4, 2019.

[11] Pablo Garcı́a-Sánchez, Alberto Tonda, Antonio J. Fernández-Leiva, and
Carlos Cotta. Optimizing hearthstone agents using an evolutionary
algorithm. Knowledge-Based Systems, 188:105032, 2020.

[12] Gerald Tesauro and Gregory R Galperin. On-line policy improvement
using monte-carlo search. In Advances in Neural Information Processing
Systems, pages 1068–1074, 1997.

[13] Dominik Ślezak and Jakub Wroblewski. Classification algorithms
based on linear combinations of features. In European Conference on
Principles of Data Mining and Knowledge Discovery, pages 548–553.
Springer, 1999.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 364

[14] David Simões, Simão Reis, Nuno Lau, and Luı́s Paulo Reis. Competitive
deep reinforcement learning over a pokémon battling simulator. In
2020 IEEE International Conference on Autonomous Robot Systems and
Competitions (ICARSC), pages 40–45. IEEE, 2020.

[15] Ricardo Linden. Algoritmos genéticos (2a ediçao). Brasport, 2012.
[16] Pokego Complete. How CP on this web site is calculated. https://

gamepress.gg/pokemongo/pokemon-stats-advanced, April 2020.
[17] Gamepress. Pokemon Go IV calculator. https://gamepress.gg/

pokemongo/pokemongo-iv-calculator, April 2020.
[18] H Lodish, A Berk, SL Zipursky, P Matsudaira, D Baltimore, and J Dar-

nell. Molecular Cell Biology. W. H. Freeman, New York, 4th edition,
2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21475/.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 365

