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Abstract—In this work, an autonomous agent based on rein-
forcement learning is implemented in a digital fighting game.
The implemented agent uses Fusion Architecture for Learning,
COgnition, and Navigation (FALCON) and Associative Resonance
Map (ARAM) neural networks. The experimental results show
that the autonomous agent is able to develop game strategies
using the experience acquired in the matches, and achieves a
winning rate of up to 90% against an agent with fixed behavior.

Index Terms—fighting game AI, game AI, reinforcement learn-
ing, neural networks

I. INTRODUCTION

Electronic games are a form of entertainment that has
been gaining more and more consumers, especially with the
increasing ease of access to electronic devices worldwide.
With the introduction of the possibility to play with others
over the internet, competitive games have gained more space
in the market [1].

Currently, the behavior of computer-controlled agents
in commercial games is usually fixed, with scripted pre-
programmed strategies. This makes playing against these
agents increasingly distant from the experience of playing
against a human opponent. For competitive players, this fixed
behavior causes them to acquire bad playing habits when
training against the machine. In addition, as the machine starts
to have predictable reactions, the gameplay becomes repetitive
and predictable [2]. The developer, responsible for creating
these scripts, needs to anticipate about every kind of situation
possible in the game environment, which requires effort [3].

The development of this work is motivated by the possibility
of implementation of an artificial intelligence technique that
makes the machine capable of learning and developing game
strategies with certain autonomy. In this way, it can adapt to

Identify applicable funding agency here. If none, delete this.

the way players play the game. This machine behavior has
a positive impact on the game’s gameplay by iterating over
players’ input — which is constantly changing — to offer
new tactics and new challenges for the player to overcome
and improve their skills [4].

The objective of this work is to develop an autonomous
agent based on reinforcement learning for a digital fighting
game. It is implemented using Fusion Architecture for Learn-
ing, COgnition, and Navigation(FALCON) and neural net-
works Associative Resonance Map(ARAM). The experimental
results show that the autonomous agent is able to develop game
strategies using the experience acquired in the matches, and
achieves a winning rate of up to 90% against a fixed behavior
agent.

In section 2, work related to the proposal of the present
study is discussed. Section 3 presents the theoretical frame-
work used. In section 4, the game used in this work, Fighters
Arena is presented. In section 5, the implementation of the
proposed agent is detailed. In section 6, the experimental
methodology is presented. In section 7, the experimental
results are presented. Section 8 presents the conclusion.

II. RELATED WORK

In this section, related work from the technical literature
on the topics involved in this work are presented: machine
learning and its use in digital games.

In the work of P. G. Patel, N. Carver, and S. Rahimi
[5], the authors discuss the implementation of artificial in-
telligence techniques in commercial digital game agents and
point out that generally the logic of simple routines is used.
Considering that the challenges and requirements for digital
game developers are similar to those of the academic artificial
intelligence community, the authors develop an abstraction of
the game Counter Strike with agents that simulate players
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using artificial intelligence based on Q-learning. With test runs
performed using these agents, it was possible to note that
their performance is superior to that of fixed-behavior agents,
and that using Q-learning, agents were able to learn various
behaviors based on the reward they get from their actions.

In the work of M. R. F. Mendonça, H. S. Bernardino, and
R. F. Neto [4], the authors implement two forms of machine
learning in a fighting game using Neural Networks — with and
without Q-learning — for game agents to simulate a human
player. The methods are assigned a reward function proposed
by the authors and the results are compared with two other
forms of machine learning. The results of the experiments
indicate that the methods using Q-learning achieve better
performance with human players when compared to other
existing methods.

The authors S. Saini, P. Chung, and C. W. Dawson [1]
have developed a way for an avatar to learn and replicate a
player’s playing style. Their method is to analyze the data
and separate it as tactical and strategic data. A Naı̈ve Bayes
classifier is used to classify tactics for specific states, and a
finite state based data machine to dictate when certain tactics
are used. Implementation results were positive, but limitations
were noted as to the number of variables that can be analyzed
due to the use of a finite state machine. It is concluded that
facing this avatar may seem repetitive in relation to a human
player due to the indiscriminate way in which actions are
chosen, regardless of errors and preferences.

In the work of G. Andrade, G. Ramalho, H. Santana, and V.
Corruble [6], the authors implement an agent using artificial
intelligence for a fighting game using Q-learning, and justify
its use for simplicity and good results. The implementation
proposed in the work uses a difficulty balancing system in
which, given a situation, instead of using the best known
option or a random option for learning, it uses actions that
match the skill level of the player it faces.

In the work of A. Carpenter, S. Grossberg, and D. B. Rosen
[7], a variation of the fuzzy Q-learning algorithm for training
an intelligent agent to play Ms. Pac Man. In the strategy used,
the agent analyzes the current situation of the game, considers
variables that contribute to the situation in which he finds
himself, and makes decisions based on these values.

In the work of D. Wang and A. H. Tan [8], the FALCON
architecture (Fusion Architecture for Learning COgnition and
Navigation) is used to implement agents in the game Unreal
Tournament in real time, using fuzzy ARAM neural networks
and combinatorial operations for comparison between the
two methods. The implemented agents are able to develop
strategies and explore the effectiveness of different combat
tools in the game without any human intervention. With the
knowledge absorbed by the agent, he is able to adapt to a new
opponent or a map unknown to him in a short period of time.

In the work of A. R. da Silva and L. F. W. Goes [3],
a FALCON network is used to implement an agent capable
of playing the digital card game Heartstone using machine
learning. The agent is trained in matches against agents using
AI based on Monte Carlo Tree Search. The agent develops

the ability to achieve an average 80% winning rate in matches
against the same agents used in his training.

The work presented in this section, as well as the present
study proposes, explore the use of artificial intelligence in
digital games. Most of the work cited study competitive games
or specifically fighting games, with the purpose of presenting
the player with diversified and adaptive experiences, instead
of the predictable ones widely used commercially. As in
this article, the proposed work involve the development of
adaptive gaming experiences. However, in the present study,
a strategy closer to the work of [8] is used, in which the
proposed agent performs actions that describe a behavior, and
the neural network specializes in deciding which action is most
appropriate given the current situation in that the agent is in
the game.

III. THEORETICAL FRAMEWORK

A. Machine learning

The reinforcement learning method consists of an artificial
intelligence technique in which the agent learns to solve a
given problem from his experiences of previous actions. As
illustrated in Fig. 1, from the perceptions of external stimuli
(s) of the environment, the selected actions generate signs of
reward (R (s, a)), which can be positive or negative. negative
depending on the results of the action performed [4] [5].

Fig. 1. Standard reinforcement learning model.

B. Q-Learning

Q-Learning is a reinforcement learning technique in which,
based on a set of states, a set of actions and a reward
function, it is possible to obtain a quality metric for each action
performed in each state. States are sets of actions possible by
the agent. Actions act as transitions between states, while the
reward function is a quality metric of the result of the chosen
action. This metric is Q-Value. The Q-Values are stored in
a table called Q-Table. When making a change of state, the
reward obtained changes the weight of this transition between
states in the Q-Table, which, with training, becomes more
accurate in predicting the result of each transition between
states. The equation used to update the Q-Value is shown in
(1). The γ parameter is the discount factor (0<γ <1), used
to give preference to more recent rewards; The α parameter
is the learning rate. The variable (t) is the current time, (s) is
the external stimulus, and (a) is the selected action [4] [9].
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Q(st, at) = (1−α)×Q(st, at)+α×(rt+γ×max
a
Q(st+1, a))

(1)

C. Artificial Neural Networks for Reinforcement Learning

An Artificial Neural Network (ANN) is a model composed
of interconnected elements (neurons). Each neuron receives a
series of input stimuli that result in an output value, a process
based on the weights associated with the input values of the
stimuli. ANN works in two modes: training and execution.
In training, several input values are presented for the ANN,
as well as the desired output. For each situation presented,
ANN modifies its internal weights to obtain the desired output.
With this mechanism, the ANN finds a relationship between
the input values and the output variables, and becomes able to
predict the output values from a given input based on modeling
the internal relationships between neurons. In execution mode,
the internal weights aren’t modified by the outcome [4].

1) ARAM networks: Adaptive neural networks, such as the
fuzzy Associative Resonance Map (ARAM) and the fuzzy
Adaptative Resonance Theory Map (ARTMAP), are used in a
variety of applications, from computer vision to game agent
control. These networks allow the agent to adapt to various
scenarios according to their needs. This behavior can be useful
if the environment that interacts with the agent is not known
or is partially known. They are based on Adaptive Resonance
Theory (ART) modules that communicate with each other to
form an associative memory, thus allowing the mapping of the
environment. ART fuzzy networks that describe feature fields
that interact between layers are known as multi-channel fuzzy
Feature Field System (FFS). In general, the multi-channel FFS
fuzzy networks have two layers: F1 and F2, as can be seen in
Fig. 2.

Fig. 2. ARAM architecture. Source: [10]

As seen in Fig. 2, the F1 layer (features), is where features
are extracted from the environment and arranged in a coherent
way. The F2 layer (categories), maintains a multidimensional
pattern that has the function of connecting all fields of features
of F1 in F2 using neurons. The network receives stimulus
signals from the environment as input. These signals are then
transformed into a feature vector, which is transferred to the
elements of F1 [3] [11].

2) FALCON architecture: The FALCON architecture (Fu-
sion Architecture for Learning, COgnition, and Navigation) is
proposed in [10]. It employs a 3-channel architecture, compris-
ing a sensory field, which represents states of the environment;
a motor field, which represents the possible actions; and a
feedback field representing reinforcement values. FALCON is
a self-organized neural network based on ART, which means
that it is able to evolve systematically to incorporate new
information [3].

There are two main processes for using FALCON networks:
retrieving knowledge and updating knowledge. When it is nec-
essary to retrieve knowledge, we insert the vectors currently
known from the input fields to retrieve the corresponding
winning code. The winning code is the one with the highest
activation value among all the codes that fill the network.
When it is necessary to learn knowledge, we present all vectors
of the three input fields and execute the knowledge retrieval
process to find the winning code. The information presented
is used to update the weights of the winning code. If there
is no code on the network that meets the vigilance criteria,
FALCON automatically creates a new code for future use.
Thus, FALCON dynamically expands its network architecture
in response to new entry standards in progress [8] [3] [10].

A FALCON network has 7 sets of meta-parameters. These
parameters are: i) vigilance standards, {ρ 1, ρ 2, ρ 3 }; ii)
Learning rate parameters, {β 1, β 2, β 3 }; iii) Contributing
factors, {γ 1, γ 2, γ 3 }; iv) Choice parameters {α 1, α 2,
α 3 }; v) Learning rate parameter α; vi) Learning discount
parameter γ; vii) Selection policy threshold ε [8] [3] [10].

IV. FIGHTERS ARENA

For this work, the competitive fighting game in development
by the author called Fighters Arena is used. In this game,
matches involving 2 to 4 players - human or machine con-
trolled - are carried out in three-dimensional arenas with top-
down view as illustrated in Fig. 3. The player can select one
of several characters available. These characters share basic
actions, such as walking and defending, but have different
characteristics, such as: size, speed, attack animations, attack
damage, etc. In a match, the players face each other in a fight
in which the objective is to hit the opponent until their health
bar depletes, which causes the player to be eliminated from
the competition. A player is declared the winner when they
are the last fighter remaining.

The game used in this work has an implementation of
an avatar with fixed behavior for players controlled by the
machine. In this work, it was proposed to implement a new
methodology for the behavior of these players controlled
by the machine using neural networks in order to make a
comparative analysis of these two methodologies.

V. AGENT DEPLOYMENT

An agent in the game Fighthers Arena needs to perform a
three-step process to be functional: i)It must be able to perceive
the game environment; ii)It must process this information to
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Fig. 3. Example of a match in the game Fighters Arena.

analyze what action should be taken; iii)It must perform the
chosen action.

A. Neural Network Architecture

For the implementation of the agent, a neural network
with FALCON architecture was used. The agent chooses an
opponent at random, and the game environment variables
analyzed by the network are:

1) The action the opponent is currently performing.
2) If the agent’s special bar is full.
3) If the opponent’s special bar is full.
4) If the opponent is in a state that allows interruption into

another action.
5) The remaining time of the opponent’s current animation.
6) If the opponent is defending.
7) The distance to the opponent.
8) The difference between the agent’s rotation and the

direction the opponent is in relation to them.
9) If the agent is in a state that grants invincibility.

10) If the opponent is in a state that grants invincibility.
11) Whether or not the agent is defending.

The continuous input values are all normalized in the
range [0, 1]. Logical values are 0 for false and 1 for true.
Eleven basic actions were defined, as shown in Table I, which
represent strategies that can be performed by the agent. One
more field is used for the reward, which is calculated from
the reward function at the end of each action and used in the
learning process.

The reward function returns from 0.8 to 1.0 if the agent hits
the opponent, being greater the more damage is inflicted; 0.6
if the opponent attacked and missed the agent or if the agent
defends an attack by the opponent; and 0.1 if the agent was hit
by the opponent. Any other situation results in a 0.5 reward.
No reward 0 was used, as no action is completely dependent
on the agent, so it was disregarded.

The agent is implemented in the game using the same
structure that the fixed behavior agent and the human player
use to interact with the game, making their ability to input
commands and perform actions compatible with the rules that
the game defines. In other words, the commands performed in

TABLE I
LIST OF AGENT STATES AND THEIR RESPECTIVE BEHAVIOR

State Behavior
jab Approach the opponent and use a standard sequence

of 3 light, fast, short-range attacks.
tilt Approach the opponent and use a light, fast, short-

range directional attack.
strong Approach the opponent and use a strong attack that

hits around the character and has a medium duration.
strongTilt Approach the opponent and use a strong attack that

is slow but has long range.
keepDistance Move away from the opponent and use projectile

moves from a safe distance.
punish Quickly approach the opponent with a swift attack.

roll Roll backwards, which grants intangibility from in-
coming attacks during the animation.

retreat Retreat from the opponent using defensive movement
options.

grab Approach the opponent and use a grab move, effec-
tive against a defending opponent.

shield Defend.
charge Approach the opponent and use the ”charge” attack,

which is invincible at the beginning of the animation.

the game by the network can also be carried out by a human
who makes the same decisions.

B. Agent Algorithm

The three steps of the implemented agent routine use the
following routine: starting from an initial state, the game
environment is obtained through sensors. The algorithm then
selects an action through a selection policy that, initially,
encourages the exploration of possible options, partially in-
dependent of the knowledge already acquired. The results of
these actions are used to calculate the reward for each action in
each environment setting. As more knowledge is acquired, the
network tends to choose actions that tend to result in greater
reward. The chosen action is performed until the agent hits the
opponent or is hit by the opponent. This event is then analyzed
and the reward is calculated based on the result, thus ending a
three-step routine cycle. The network interprets this sequence
and updates its internal weights, generating knowledge. The
routine is then repeated from the beginning.

VI. METHODOLOGY

In this section, the methodology used for the experiments
of this work is presented.

A. Experiment setup

The test environment was designed so that there was a focus
on the performance of the network and its learning process,
limiting the number of variables and situations. To this end, the
developed agent was picked to fight against a single opponent
using a script with fixed behavior programmed using a greedy
strategy. Both agents use the same character, which is designed
to be the most versatile and neutral in terms of abilities, with
no polarizing characteristics in their design. The arena selected
for the battles is a rectangular room completely closed and
without obstacles, unevenness of terrain or external elements
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that might interfere in the battle, to avoid interference that
could alter the results in a random fashion.

All experiments were performed on an Ubuntu Linux in-
stalled on an Intel i5-6500 with 4 threads and 8 GB of memory.
The code for the proposed agent was implemented in C# on
the Unity engine as a component of the game, which was run
at 4 times its standard speed (240 frames per second).

B. Choice of parameters

To carry out experiments in behavior modeling, it is nec-
essary to configure the FALCON parameters. The parameters
used are listed below.

Vigilance parameters {ρ1, ρ2, ρ3 } are defined as {0.9;
0.9; 0.8 }. Since most of the attributes in the state vector are
Boolean, we set ρ1 to a high value to preserve a certain level
of integrity of the knowledge learned. At the same time, ρ1 is
not defined as 1.0 to allow for the compression of knowledge
and to obtain a certain level of generalization. ρ2 was set to
0.9 for the field of action to ensure accurate combinations of
Boolean variables. The reason for defining ρ3 as a high value
for the reward field is to ensure effective learning for all similar
action-state pairs. At the same time, ρ3 is defined as a lower
value than the others in order not to completely associate the
action-state pairs with the result, since it does not depend only
on the agent.

The learning rate parameters {β1, β2, β3 } are defined as
{0.2; 0.2; 0.1 }. Since the reward is immediate, β1, β2 and
β3 are defined as low values for slower learning. Contribution
factors {γ1, γ2, γ3 } are defined as {0.5; 0.5; 0.5 }, so that
the most recent learning is always more relevant than the past
learning, meaning the agent adapts quickly to the opponent’s
strategy changes.

The choice parameters {α1, α2, α3 } are defined as {0.5;
0.5; 0.5 }. This was done to avoid any kind of invalid calcu-
lation. The learning rate parameter α = 0.5 and the learning
discount parameter γ = 0.5, which are values generally used
in the literature [8]. The selection policy threshold ε is initially
set to 1.

C. Simulations

In order to analyze agent performance and network learn-
ing, three groups of tests were performed. In each group, a
new agent was trained following the algorithm described in
Algorithm 1.

Each group was used to test the autonomous agent in
matches against the fixed behavior agent, performing 50, 100
and 200 matches, respectively. The selection policy threshold
ε was reduced linearly at the end of each match so that, in
each group, in the first half of matches it was positive and
the agent explored more options. In the second half of each
group’s matches, the agent used only the knowledge previously
acquired. At the end of each game, the values of proportion of
remaining life of the autonomous agent and number of neurons
in the network used by the autonomous agent were counted.

Algorithm 1 Agent learning
Start: Initialize the network with the defined parameters and
weights with neutral value
while Game running do

Select and perform an action using the network in accor-
dance with the selection policy;
if An attack by the autonomous agent or his opponent
hits then

Update the network’s internal weights;
end if
Decrement the value of ε

end while

VII. RESULTS

The results obtained with the simulations are shown in Fig.
4, 5 and 6.

The values of the first half of the simulations matches had a
greater standard deviation than the second half: 0.21, 0.19, and
0.20 for the first halves, 0.18, 0.17, and 0.19 for the second
halves. This behavior was expected, considering that the agent
was induced to explore more options in the first half and to act
based on his previous knowledge in the second. Despite this,
the second half of the matches is also not entirely consistent.
This is due to the fact that, although the autonomous agent
decides for actions that, from experience, would bring better
results, it depends on the fixed-behavior agent to select an
action that makes the result successful. Through observation
of the execution of the experiments, it was possible to note that
the autonomous agent was able to learn to react in a similar
way to the optimum predicted for the situations in which
he found himself during the matches. The autonomous agent
achieved a winning rate of 90%, 84% and 89%, respectively,
in the test groups. The average life remaining at the end of
group matches was 37%, 28% and 37%, respectively.

Regarding the network used in the implementation of the
agent, the number of neurons in the network of each test
group is shown in Fig. 7, 8 and 9. Through the observation of
the graphs, it is possible to notice that the progression in the
number of neurons was of as expected. In all test groups, at
first, the rate of growth of the number of neurons was high. As
more matches were performed and situations similar to those
already known to the autonomous agent were presented, this
growth rate decreased until it approached zero. The number of
neurons was higher in the test groups in which more matches
were performed because, as a result of the greater number
of matches, the agent was in contact with more different
situations.

VIII. CONCLUSION

From the results of the experiments, it can be said that it
was possible to implement the artificial intelligence technique
based on reinforcement learning that made the machine capa-
ble of learning and developing game strategies with a certain
autonomy. It was able to adapt to the fixed-behavior agent’s
strategies. The agent’s performance was satisfactory in view

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 245



Fig. 4. Remaining agent life x Matches. Each point on the Y axis
represents the average remaining life of the autonomous agent over 5
matches.

Fig. 5. Remaining agent life x Matches. Each point on the Y axis
represents the average remaining life of the autonomous agent over 10
matches.

Fig. 6. Remaining agent life x Matches. Each point on the Y axis
represents the average remaining life of the autonomous agent over 20
matches.

of the high rate of victories obtained by the autonomous agent
in the experiments carried out.

As for the network used, its complexity was sufficient
for there to be an efficient learning. At the same time, the
network has not become complex enough for its logic to
impact performance when run in conjunction with game logic,
in real time.

To continue this work, complementary networks can be used
for each of the states of the main network, in order to make
the agent optimize the actions it performs in each of the states.
This procedure can contribute to the results, for example, with

Fig. 7. Number of neurons in the network used by the agent x Matches,
for 50 matches.

Fig. 8. Number of neurons in the network used by the agent x Matches,
for 100 matches.

Fig. 9. Number of neurons in the network used by the agent x Matches,
for 200 matches.

the optimization of the attacks executed by the agent at a time
when it selects an offensive action.
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