
Broad Phase Collision Detection: New
Methodology and Solution for Standardized

Analysis of Algorithms
Ygor Rebouças Serpa

Programa de Pós-Graduação em Informática Aplicada
Universidade de Fortaleza (UNIFOR)

Fortaleza, Brazil
ygor.reboucas@gmail.com

Maria Andréia Formico Rodrigues
Programa de Pós-Graduação em Informática Aplicada

Universidade de Fortaleza (UNIFOR)
Fortaleza, Brazil

andreia.formico@gmail.com

Abstract—Collision detection is a computational problem fo-
cused on the identification of geometric intersections between
objects and, in general, proximity relationships among them.
Despite its notorious relevance and applications in various com-
puting fields, few authors have proposed solutions that are both
general and scalable. Additionally, until the time of publication
of the results of this work, there was no standard methodology
for the analysis of algorithms, neither in academia nor in the
industry: only proprietary scenes and comparative studies had
been developed, making it difficult to reproduce and compare
results. To tackle the issues previously mentioned, we present
a new general and scalable solution for broad phase collision
detection and a new methodology for comparative analysis
of algorithms, named Broadmark, whose open-source code is
publicly available, with the goal of transferring knowledge to
academia, industry, and society, so far lacking in the scientific
literature. Thus, by doing so, we aim to contribute to the
generation of robust and multi-faceted solutions applied to
various scenarios and, consequently, to greater transparency, ease
of modification/extension and reproducibility of results.

Keywords—Collision detection, broad phase, kd-trees, rigid-
body simulation, opensource

I. INTRODUCTION

Collision detection can be seen as a generalization of the
k-Nearest Neighbour problem for dynamic scenes with non-
punctiform objects, introducing complexities such as the shape
and behavior of objects [1]. Although collision detection has
been studied for many years, the field still features relevant
and active research that has not yet been resolved, introducing
additional challenging problems, such as simulation of massive
dynamic scenes, deformable bodies, solid-liquid coupling,
robot planning and robust constraint solving, among others
[1]–[5]. As a whole, despite its large success, the task is
known to be unstable at massive scales and to vary widely
in performance whenever scenes deviate from their expected
states [6]. For game developers, in particular, this is a daily
issue as physics engines are optimized for near-static scenes,
requiring designers to either minimize how many physical
objects can interact and move to a bare minimum or make
compromises elsewhere.

We thank FUNCAP and CNPq for the financial support.

Over the years, several efficient solutions have been pro-
posed, however, most works employ a limited set of scenes and
algorithms for their comparisons, failing to provide a strong
foundation to support their claims. Collectively, these works
lack a shared representative methodology, an effort attempted
only by Woulfe and Manzke [7], to limited success. On top
of that, many authors sacrifice generality over scalability,
narrowing their solution to either the static case, in which
only a fraction of objects moves, or the dynamic one, in
which all of them do. Combined, these problems reveal how
challenging it is to weigh the strengths of each work and
to faithfully reproduce their results, concerns of paramount
importance given the current reproducibility crisis [8]. This
master thesis1 [9] addresses the following questions:

1) To propose an open and extensible standard method-
ology, yet non-existing, to the development and study
of broad phase collision detection algorithms [10],

2) To create both a general-purpose and scalable novel
algorithmic solution to the broad phase collision detec-
tion field [6], and

3) To make all source code of the developed tools,
necessary for this research and evaluation of algorithms,
publicly available on GitHub2, so that anyone in-
terested can inspect, learn from it, test it, develop it,
and build on it, thus, in an effort also contributing to
the transfer of the knowledge base to the academy,
industry and society.

More specifically, we have developed Broadmark [10], a
research development environment containing 12 algorithm
families from both CPU and GPU (Table I), as well as stan-
dardized testing scenarios (Fig. 1), representatives of the static,
dynamic and uniform cases, with same sized or randomly
sized objects [10]. As part of this system, we have developed
a novel hybrid and adaptive solution based on KD-Trees,
the Sweep-and-Prune (SAP) algorithm and the incremental
detection paradigm, competitive on all tested scenarios [6].

1Thesis: xhttps://1drv.ms/b/s!Aq35PBOZWmsjhppQxK3ut ILqDvLfAy
2Github: xhttps://github.com/ppgia-unifor/Broadmarky

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Master and Doctoral Thesis SBGames Award

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 1104

(a) Free Fall. (b) Brownian. (c) Gravity.

Fig. 1. Broadmark [10] built-in scenes, representatives of the nearly-static, uniformly-distributed, and fully dynamic cases.

The framework [6] and algorithm [10] contributions have
been published individually on the Computer Graphics Forum
(CGF) journal (Qualis A1) and come from the exclusive
effort of the student and advisor, not being part of any
overarching project. During the M.Sc., two other journal pub-
lications related to this work were accepted to the Computers
in Entertainment [11] (Qualis B1) and ACM Entertainment
Computing [12] (Qualis B1) journals, respectively. Addition-
ally, the authors were formally invited by the program co-
chairs of the ACM SIGGRAPH / Eurographics Symposium
on Computer Animation3 (SCA’19’) (Google Scholar h5-index
20) to present the results published on the CGF journal [6] as
a journal first entry4, on the University of California (UCLA),
in Los Angeles, USA, testifying the quality and relevance
of the research to the scientific community. The presentation
was carried out by the student on site on July 26th, 2019.
In parallel, still in 2019, the field of artificial intelligence
started to be studied as a complementary tool. This study led
to two scientific contributions: a tutorial on the Conference
on Graphics, Patterns and Images (SIBGRAPI’19) [13] and a
full research paper on the Brazilian Symposium on Games and
Digital Entertainment (SBGames’19) Computing Track [14],
awarded First Place at the SBGames Computing Track.

Finally, this work has also recently won a prestigious award
from the XXXIII Concurso de Teses e Dissertações (CTD) of
the XL Congresso da Sociedade Brasileira de Computação
(CSBC): It is among the Top 10 finalists chosen from 73 M.Sc.
theses concluded in 2019. The 3 winners will be announced
next November, during the CSBC conference, after online
presentation of the 10 finalist works.

II. BROADMARK

To date, the dominating methodology in the field is to design
your own environment. This includes defining the test cases,
assembling baseline algorithms and timing each solution. This
methodology has a number of flaws, to name a few, results
are difficult to reproduce, baselines are often not state-of-the-
art, and no external guarantees of fairness are given. In this
context, the proposed Broadmark system [10], is meant to
(1) reduce the barrier-of-entry to the field by exposing a set
of ready-to-use tools, (2) be a repository of state-of-the-art
collision detection algorithms, and (3) benchmark a wide range

3Invitation: xhttps://1drv.ms/b/s!Aq35PBOZWmsjhsUyoq9eevMYa5pD-wy
4SCA’19 schedule: xhttps://sca2019.kaist.ac.kr/wordpress/program/y

of solutions on a representative set of scenes. In more detail,
the system is composed of two independent modules: (1) the
simulation generator, developed using the Unity game engine,
and (2) the algorithm runner, developed purely using the C++
language. The former is accessible either via a pre-compiled
wizard, designed for those with no Unity expertise, or via the
Unity project itself, through the engine’s editor, while the latter
is a command-line tool, for maximum flexibility. As an extra
convenience, we also provide a Python tool to design large
benchmark schedules.

The simulation generation tool was designed using Unity
to ease the creation and maintenance of massive scenes with
beautiful real-time visualizations. When ran, simulations are
baked to disk in a binary format, completely decoupling the
scene generation from the benchmark. Thus, the time spent
on generating scenes is constant with regard to the number
of algorithms. Moreover, it ensures that each test runs on the
exact same input, improving fairness. Finally, we modulate
each physical aspect of the scenes to the number of objects
used. This way, the ratio between the scene volume and the
combined objects volume is constant, regardless of object
count. Finally, the system has three built-in scenes: Free Fall,
Brownian, and Gravity, representatives of the static, uniform
and dynamic cases, respectively, designed to be run from one
thousand objects to a million. Fig. 1 shows the three scenarios
with four thousand same sized objects (left half, in green) and
varied-sized objects (right half, in assorted-colors).

The second module is concerned with loading scenes,
running algorithms, and logging measurements. Within it, we
assembled 12 sets of algorithms, including original implemen-
tations and known algorithms from the literature and industry,
spanning serial, parallel and GPU algorithms. Table I lists
each set and their distinct features. While some sets have only
one algorithm, others, such as BF and SAP, include several
variants, for instance, SIMD, parallel, and SIMD + parallel
implementations. Other families, such as the DBVT family,
have unique features, such as being able to run on a forward
pass (DBVT F) or in deferred mode (DBVT D), respectively,
optimized for the static and dynamic cases.

III. HYBRID ALGORITHM

The Broadmark framework, in its early stages, revealed
that most solutions are biased towards one of the three
developed scenarios, with none being significantly competitive
on all three simultaneously [6]. To jointly satisfy the criteria of

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Master and Doctoral Thesis SBGames Award

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 1105

TABLE I. BUNDLED ALGORITHMS WITHIN BROADMARK [9].
IMPLEMENTATION COMPLEXITY

Algorithms Principle Optimizations Temporal Remarks Source Time Space
BF BF SIMD + Parallel - Naive Original Opn2q Op1q

SAP SAP SIMD + Parallel - STL Sort Original Opn5{3q Op1q
Grid BF Grid Parallel - T objects/cell Original Opn2{tq Opntq

Grid SAP Grid + SAP Parallel - T objects/cell Original Opn2{tq Opntq
AxisSweep iSAP - Yes Insertion Sort Bullet 2 Opn` sq Opnq

DBVT BVH - Optional Persistent Tree Bullet 2 Opnlogpnqq Opnq
CGAL Tree + SAP - - Stateless CGAL Opnlog3pnqq Opnq
Tracy Grid + iSAP Parallel Yes Insertion Sort Authors Opn` sq Opnq

KD-Tree Tree + SAP SIMD Adaptive Adaptive, Persistent Tree M.Sc. Dissertation Opnlogpnqq Opnq
GPU Grid Grid GPU - OpenCL Bullet 3 N/A N/A

GPU LBVH BVH GPU - OpenCL Bullet 3 N/A N/A
GPU SAP SAP GPU - OpenCL Bullet 3 N/A N/A

generality and efficiency, we hypothesized that three properties
are needed: flexibility, to handle different object distributions;
efficiency, to prune huge portions of the search space quickly;
and adaptivity, to bypass worst-case scenarios. For the first
two concerns, we have developed a two-tier approach based
on the KD-Tree, responsible for dividing the set of objects
into smaller, independent, groups; and the SAP technique,
responsible for processing each individual subproblem using
sorting, yielding the set of colliding objects for each sub-
problem. Both algorithms complement each other, as the KD-
Tree is allowed to be shallower, mitigating its overhead, and
the SAP is performed over smaller sets, mitigating its Opn 5

3 q

time complexity. While both algorithms have been extensively
studied in the past, our work is the first one to study them in
combination for the collision detection problem.

Regarding the tree construction and maintenance, we de-
veloped an update algorithm which runs in linearithmic time,
is idempotent, and efficiently performs both minor and major
adjustments, thus, being optimized for both static and dynamic
scenes. Orthogonal to these developments, we explored the use
of SIMD instructions to accelerate the SAP algorithm and a
custom memory layout to reduce the costs of the most expen-
sive operations carried out during the tree update algorithm.
To efficiently cope with static scenes, it is paramount to have
algorithms whose time complexity is dependant solely on the
number of dynamic objects. To this end, we employ the in-
cremental approach: to detect only new and ceased collisions.
The latter are detected by screening the current set of collisions
at the beginning of each frame and the former by selectively
testing only collisions involving dynamic objects. This labeling
is based on speed. Objects with speed below/above 0.05, in any
direction, are labeled static/dynamic, respectively. Empirically,
we found that the incremental detection is faster than the
plain algorithm whenever more than half of the objects are
static. To have the best of both worlds regarding temporal
optimizations and the lack of thereof, we alternate between
both approaches in run-time based simply on the number of
static objects labeled on the current frame.

In the full text of the M.Sc. dissertation, detailed analyses
of the empirical observations are presented along with the
technical and implementation details of each algorithm used.

IV. TESTS AND RESULTS

All implemented algorithms were tested and their average
time per frame is presented in Table II, from one thousand
to one million objects. For brevity, we show the results for
same-sized objects only and the worst and best variants of each
algorithm. To scope our analysis to the best solutions available,
we chose 0.5 seconds per frame as a cutoff threshold. In-depth
analyses are provided in the M.Sc. thesis [9].

In the following, we summarise the findings and contribu-
tions made. To the best of our knowledge, this is the most
extensive and up-to-date comparative study published, in both
depth and breadth using the same hardware, software, and
scenes [6], [10]. In a nutshell, on the Brownian scene (Fig.
1.b), solutions based on grids are favored, on Free Fall (Fig.
1.a), temporal optimized solutions dominate and, finally, on
the Gravity (Fig. 1.c), solutions optimized for the dynamic
case perform best. In all three, the developed solutions during
the M.Sc. (KD-Tree) performed comparably or better to the
best state-of-the-art solutions. In special, our solution is the
fastest for the static case (Free Fall), surpassing both multi-
core CPU and GPU solutions, performs similarly as the best
CPU parallel solutions on the dynamic case (Gravity), and is
on par with the best grid-based solutions on the uniform case
(Brownian), all being a single-threaded CPU algorithm.

V. CONCLUSION AND FUTURE WORK

We are confident that this work may improve knowledge in
the broad phase collision detection area. In the M.Sc. thesis [9]
we answer the open question “is there a solution that is both
general and scalable for the broad phase collision detection
problem?”. In addition, we contribute to the advancement of
the field by open-sourcing Broadmark to the community.
With these initiatives, this work may have many implications
for research into the collision detection area. More specifically,
we hope for new research to be developed using the framework
and, in turn, their results be more easily reproducible and val-
idated by others, increasing both the significance and impact
of each individual contribution. Moreover, with Broadmark,
we hope to lower the barrier of entry for new researchers, to
raise the quality of following comparatives and to encourage
the research for novel, general-purpose, solutions.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Master and Doctoral Thesis SBGames Award

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 1106

TABLE II. RESULTS FOR EACH ALGORITHM AND THEIR VARIANTS (SECONDS PER FRAME) [9].
BROWNIAN

BF SAP Grid BF Grid SAP Axis DBVT Tracy GPU

objects ST MT ST MT ST MT ST MT Sweep F D ST MT CGAL KD SAP LBVH Grid

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.11 0.00 0.01 0.00 0.02 0.01 0.00 0.00 0.02 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00

16 0.42 0.01 0.02 0.00 0.03 0.01 0.00 0.00 0.06 0.01 0.01 0.02 0.01 0.01 0.00 0.00 0.00 0.00
32 1.60 0.04 0.06 0.01 0.04 0.02 0.01 0.00 0.23 0.04 0.02 0.05 0.02 0.03 0.01 0.00 0.00 0.00
64 0.16 0.18 0.02 0.09 0.04 0.02 0.01 1.09 0.09 0.05 0.12 0.05 0.08 0.01 0.01 0.00 0.00

128 0.60 0.57 0.04 0.17 0.07 0.03 0.02 0.25 0.14 0.26 0.11 0.18 0.03 0.02 0.01 0.01
256 0.13 0.36 0.13 0.06 0.03 1.42 0.44 0.70 0.31 0.41 0.06 0.06 0.02 0.01
512 0.34 0.78 0.23 0.14 0.08 1.04 1.19 0.95 0.13 0.19 0.05 0.04
768 0.63 0.32 0.21 0.14 0.20 N/A 0.08 0.07

1,024 0.39 0.28 0.19 0.28 0.10 0.08

FREE FALL

BF SAP Grid BF Grid SAP Axis DBVT Tracy GPU

objects ST MT ST MT ST MT ST MT Sweep F D ST MT CGAL KD SAP LBVH Grid

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.11 0.00 0.01 0.00 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

16 0.42 0.01 0.01 0.00 0.07 0.02 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.02 0.00 0.00 0.00 0.00
32 1.65 0.05 0.04 0.00 0.15 0.05 0.02 0.01 0.04 0.01 0.03 0.01 0.01 0.05 0.00 0.01 0.00 0.00
64 0.16 0.14 0.01 0.41 0.14 0.05 0.02 0.18 0.02 0.08 0.04 0.02 0.12 0.00 0.01 0.01 0.01

128 0.68 0.41 0.04 1.05 0.37 0.10 0.05 1.09 0.05 0.18 0.09 0.05 0.30 0.01 0.03 0.02 0.01
256 1.30 0.10 0.94 0.24 0.11 0.10 0.42 0.23 0.12 0.65 0.03 0.06 0.04 0.03
512 0.24 0.60 0.22 0.22 1.09 0.57 0.29 0.06 0.16 0.08 0.07
768 0.46 0.35 0.36 0.47 0.08 N/A 0.12 0.10

1,024 0.85 0.51 0.52 0.71 0.11 0.15 0.14

GRAVITY

BF SAP Grid BF Grid SAP Axis DBVT Tracy GPU

objects ST MT ST MT ST MT ST MT Sweep F D ST MT CGAL KD SAP LBVH Grid

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.13 0.00 0.01 0.00 0.07 0.01 0.01 0.00 0.09 0.02 0.01 0.01 0.08 0.01 0.00 0.00 0.00 0.00

16 0.51 0.01 0.02 0.00 0.14 0.06 0.02 0.01 0.36 0.04 0.02 0.03 0.15 0.02 0.01 0.00 0.00 0.00
32 0.05 0.05 0.01 0.34 0.15 0.03 0.02 0.89 0.15 0.05 0.29 0.52 0.04 0.01 0.01 0.00 0.00
64 0.17 0.16 0.01 0.84 0.36 0.08 0.03 0.57 0.15 2.90 0.09 0.03 0.01 0.01 0.01

128 0.63 0.51 0.04 0.76 0.17 0.06 0.44 0.22 0.06 0.03 0.01 0.01
256 0.11 0.37 0.14 0.99 0.51 0.14 0.06 0.02 0.03
512 0.27 0.82 0.33 0.31 0.17 0.05 0.06
768 0.48 0.51 0.49 N/A 0.09 0.09

1,024 0.72 0.68 0.13 0.12

Finally, in the near future, we plan to investigate novel
parallel CPU and GPU solutions while retaining the joint
focus on generality and speed, and to further develop the
Broadmark framework with new algorithms and scenes, as
well as support for related tasks, such as collision queries and
continuous detection. Related to the topic, we are interested in
applying deep learning models to collision detection research,
on topics such as cloth and volume deformations.

REFERENCES

[1] D. M. Ming C. Lin and Y. J. Kim, “Collision and proximity queries,”
in Handbook of Discrete and Computational Geometry, 3rd ed. CRC
Press, 2017, ch. 39.

[2] C. Ericson, Real-time Collision Detection. CRC Press, 2004.
[3] D. H. Eberly, Game physics. CRC Press, 2010.
[4] G. Capannini and T. Larsson, “Adaptive collision culling for massive

simulations by a parallel and context-aware Sweep and Prune algorithm,”
TVCG, vol. 24, no. 7, pp. 2064–2077, 2018.

[5] J. S. Park and D. Manocha, “Efficient probabilistic collision detection
for non-gaussian noise distributions,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 1024–1031, 2020.

[6] Y. R. Serpa and M. A. F. Rodrigues, “Flexible use of temporal and spatial
reasoning for fast and scalable CPU broad-phase collision detection

using KD-Trees,” Computer Graphics Forum (CGF), vol. 38, no. 1,
pp. 1–14, 2019.

[7] M. Woulfe and M. Manzke, “A framework for benchmarking interactive
collision detection,” in Proc. of the 25th Conf. on Computer Graphics.
ACM, 2009, pp. 205–212.

[8] M. Baker, “Reproducibility crisis?” Nature, vol. 533, no. 26, 2016.
[9] Y. R. Serpa, “Detecção de colisão broad phase: Nova solução e

metodologia implementadas para análise padronizada de algoritmos,”
Master’s thesis, Prog. de Pós-Graduação em Informática Aplicada (PP-
GIA). Universidade de Fortaleza (UNIFOR). Defesa: 19/12/2019, 2019.

[10] Y. R. Serpa and M. A. F. Rodrigues, “Broadmark: A testing framework
for broad-phase collision detection algorithms,” Computer Graphics
Forum (CGF), vol. 39, no. 1, pp. 436–449, 2020.

[11] D. V. Macedo, Y. R. Serpa, and M. A. F. Rodrigues, “Fast and
realistic reflections using screen space and GPU ray tracing—a case
study on rigid and deformable body simulations,” ACM Computers in
Entertainment (CIE), vol. 16, no. 4, p. 5, 2018.

[12] Y. R. Serpa, M. B. Nogueira, H. Rocha, D. V. Macedo, and M. A. F.
Rodrigues, “An interactive simulation-based game of a manufactur-
ing process in heavy industry,” Entertainment Computing (ENTCOM),
vol. 34, pp. 1–11, 2020.

[13] Y. R. Serpa, L. A. Pires, and M. A. F. Rodrigues, “Milestones and new
frontiers in deep learning,” in Proceedings of the SIBGRAPI-T 2019.
IEEE, 2019, pp. 22–35.

[14] Y. R. Serpa and M. A. F. Rodrigues, “Towards machine-learning assisted
asset generation for games: A study on pixel art sprite sheets,” in Anais
do SBGames’19. IEEE, 2019, pp. 182–191.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Master and Doctoral Thesis SBGames Award

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 1107

