SBC — Proceedings of SBGames 2020 — ISSN: 2179-2259

Master and Doctoral Thesis SBGames Award

Detecting long-range cause-and-effect relationships
in game provenance graphs with graph-based
representation learning

Sidney Araujo Melo
Instituto de Computagdo
Universidade Federal Fluminense
Niter6i, Brazil
sidneymelo @id.uff.br

Abstract—Success in Game Analytics tasks demands devel-
opers to identify what is happening in a game (an effect) and
track its causes. Thus, game provenance graph tools have been
proposed to capture cause-and-effect relationships. However, as
a downside gathering provenance still may demand huge coding
efforts for long-range relationships. In this dissertation, we
contributed with a framework named PingUMIL for automatic
edge detection using graph representation learning, aiming at
alleviating the coding effort. We evaluated the generalization
capacity of PingUMIL when learning from similar games and
compared its performance to classical machine learning methods.
The experiments conducted on two racing games show that
PingUMIL (1) outperforms classical machine learning, (2) can be
used for inference in unobserved data and (3) enhances detection
Cross games.

Index Terms—provenance graph, representation learning, ma-
chine learning, graph embeddings

I. INTRODUCTION

A game metric is a quantitative measure of attributes of
one or more objects that operate in the context of games. The
main idea behind the use of game metrics is to form a basis
for analysis using variables and features to support decision-
making during both the game design and game development
[1].

However, to obtain such metrics, it is necessary to track
and remotely gather data [1], an essential task for under-
standing the player’s behavior [2]. By using a structured,
relational representation one can naturally handle entities, their
properties and their relationships in a game. With that in
mind, provenance graphs have been proposed and successfully
adapted to record game session history while still denoting the
elements of the game and the causal relationships between
them [3]. However, there are still few initiatives to discover
information and patterns from game provenance, which could
bring insights into the process of game design and game
development.

Pattern recognition and information discovery are exam-
ples of tasks realized by several Machine Learning (ML)

The authors would like to thank the Brazilian Research agencies CAPES,
CNPQ, and FAPERJ.

XIX SBGames — Recife — PE — Brazil, November 7th — 10th, 2020

Esteban Walter Gonzalez Clua
Instituto de Computagdo
Universidade Federal Fluminense
Niterdi, Brazil
esteban @ic.uff.br

Aline Paes
Instituto de Computagdo
Universidade Federal Fluminense
Niterdi, Brazil
alinepaes @ic.uff.br

techniques. However, ML methods are dependent on data
representation on which they are applied [4]. For this reason,
learning representations of the data that make it easier to
extract useful information in machine learning tasks, has
become a field in itself in the machine learning community
[4]. Recently, representation learning for structured data has
become popular and several techniques have been proposed
to generate data representations more suitable for downstream
machine learning tasks.

In the context of game provenance, all cause-and-effect
relationships in game provenance graphs are materialized as
edges, which represent the influence between game elements.
Existing game provenance solutions [3] improve the extraction
and structured representation of game sessions. Direct influ-
ence edges are used to represent cause-and-effect relationships
of sequential events or states. Still, there is also a need for
domain-specific provenance tracking functions implementa-
tion, since different games might have different mechanics.
One of the needs for domain-specific functions is indirect in-
fluences, i.e., a causal relation between non-consecutive events,
which represents a long-range cause-and-effect relationship.
However, functions that track indirect influences might grow
in complexity if developers need to identify the influence
between nodes instantiated along distant timestamps and/or
with large path distances. Other difficulties may arise when
influences are defined by large sets of rules or formulas.

In this work, we propose a novel framework named PingU-
MiL that uses a recent graph-based representation learning
technique called GraphSAGE [5] in order to detect indirect
influence edges and improve game provenance data extraction.
The main objective of this work is to develop a framework for
detecting long-range cause-and-effect relationships by lever-
aging methods of representation learning in game prove-
nance graphs. The secondary objectives are (1) to propose a
conceptual framework for Machine Learning tasks in game
provenance graphs based on graph representation learning,
(2) evaluate if graph representation learning improves the
detection of influence edges compared to classical machine
learning techniques with raw features, and (3) evaluate if

1108

SBC — Proceedings of SBGames 2020 — ISSN: 2179-2259

the framework achieves generalization capability that allows
inferring long-range relationships in unobserved but similar
provenance graphs.

A. Contributions

To the best of our knowledge, this is the first attempt to
combine graph representation learning, provenance graphs and
digital games, proposed as the PingUMIL framework. We
conduct extensive experiments to evaluate the performance of
the proposed framework and its resulting models. Also, our
proposal of the PingUMiL framework for edge detection has
been published in Elsevier’s Entertainment Computing [6].

The PingUMIL framework hereby presented was the first
step towards a more generic framework for ML assisted
Game Analytics and Game Development. One of the intended
tasks is player behavior profiling, which can be approached
as a clustering task. Our recent work on player behavior
profiling using PingUMIiL has been accepted as a full paper
at Foundations of Digital Games 2020 (FDG) [7].

II. BACKGROUND

This chapter presents two fundamental topics for un-
derstanding PingUMiL: Provenance in games and Learning
graphs embeddings.

Provenance is well understood in the context of art and
digital libraries, where it respectively refers to the documented
history of an art object, or the documentation of processes in
a digital object’s life cycle [8]. Provenance of objects is rep-
resented by a directed acyclic graph enriched with annotation
capturing further information pertaining to execution [9].

The adoption of data provenance in the context of games
was first proposed by Kohwalter et al. in the PinG (Provenance
in Games) framework [8]. The authors define a mapping
between game elements and each type of node of a provenance
graph. Summarizing the proposed mapping, one can say that
players, enemies and Non-Playable Characters (NPCs) are
mapped as Agent nodes; items, weapons, potions, static obsta-
cles or any other object used in the game are mapped as Entity
nodes; and actions and events such as attacking, jumping or
interacting with an item are mapped as Activity nodes. Causal
relationships between game elements are mapped into edges
connecting their respective nodes, resulting in a game data
provenance graph.

The PinG framework was later implemented as generic
framework for the Unity game engine called Provenance in
Games for Unity (PinGU) [3]. The PinGU plugin is a domain-
independent and low-coupling solution, written in UnityScript
that provides easier provenance extraction, requiring minimal
coding in the game’s existing components [10] to obtain game
provenance graphs.

Regarding graphs, it is known that such structures often
represent real-world data containing relationships between
entities. Thus, many graph representation learning methods
have been proposed to learn a mapping that embeds nodes as
points in a low-dimensional space. The goal is to optimize this

XIX SBGames — Recife — PE — Brazil, November 7th — 10th, 2020

Master and Doctoral Thesis SBGames Award

mapping so that geometric relationships in this learned space
reflect the structure of the original graph [11].

Earliest methods generate vector representations for each
node independently not considering node attributes during the
encoding. This is a major drawback since node attributes can
be highly relevant to a node’s representation. Thus, convolu-
tional approaches have been proposed to solve this problem.
In general, these approaches generate a node embedding itera-
tively. At the first step, the node embedding is initialized with
the node’s features. At each iteration, the nodes aggregate their
neighbors’ embeddings, generating new embeddings. These
neighborhood aggregation methods determine the node em-
bedding according to its surrounding neighborhood attributes.

The GraphSAGE (Graph Sample and Aggregate) framework
is a convolutional approach that uses graph-based loss func-
tions to fine-tune weight matrices and aggregation functions’
parameters. The loss function enforce similarities on represen-
tations of nearby nodes. We opted for GraphSAGE due to the
following reasons:

« As an inductive approach, it facilitates generalization
across graphs.

« It comprises an unsupervised setting, which emulates sit-
uations where node features are provided to downstream
machine learning applications.

o It has multiple aggregator architectures, i.e., functions
defined for aggregating node embeddings (Mean, LSTM,
Pooling, GCN).

III. PINGUMIL: A FRAMEWORK FOR COMPLETING GAME
PROVENANCE BASED ON GRAPH-BASED REPRESENTATION
LEARNING

The general procedure of the framework proposed in this
work, named as PingUMil' is to induce a latent representation
of the edges in a provenance graph so that they become the
examples in a classification task, aiming at inducing a model
that discriminates whether an edge is of a specific type or not.
An overview of PingUMIil is shown in Fig. 1.

A set of provenance graphs is the input to the whole
framework. These graphs must be preprocessed due to node
heterogeneity and the definition of balanced sets of positive
and negative example edges for the downstream classification
tasks. After the preprocessing, graphs are fed to an embedding
generation technique which outputs node embeddings. Then,
edges from positive and negative example edge sets are
encoded using their connecting nodes’ embeddings. Encoded
edges are finally fed to a classifier training algorithm. The
resulting classifier should be able to detect edges similar to the
examples edge sets and generalize this detection capability to
semantically analogous edges in graphs not seen in the training
phase.

Consider a graph G = (V, E,T,). A node v is defined as
v €V = (2,,t,) where z, € R*7(") is the node feature
vector, 7 is a mapping function that maps node into a type
t € T, and n is a function that maps a type of node ¢

Lnttps:// github.com/ sidneyaraujomelo/ Ping UMIL

1109

SBC — Proceedings of SBGames 2020 — ISSN: 2179-2259

Provenance
Graphs

Embedding
generation

Preprocessing

Master and Doctoral Thesis SBGames Award

Classifier

Positive and ;
negative edge

examples set

Training

_[Edge examples
'l encoding

Fig. 1. Overview of the proposed framework.

into an integer that represents the dimension of the type ¢.
T, = {ti eR% i=1,.., \Tﬂ\} is the set of node types, where
d; is the number of dimensions of the type ¢;. Every dimension
of t; represents a label [€ L for node attributes. Every type ¢
of a node defines a set of labels so that each label corresponds
to a value in the node feature vector. Using this notation,
an activity node with attributes HP = 10 and Speed = 5
and provenance label Running could have, for example, a
type t, = (provenance_type, provenance_label, hp, speed)
and z, = (activity, running,10,5). Edges are defined as
(v,v') € V x V. Let L, be the set of node’s provenance
label values, we define edge labels as L. = I; — [; where
li, lj € L.

Embedding generation is realized through GraphSAGE,
which takes as input graphs with homogeneous nodes, i.e.,
nodes with the same set of features. Provenance graphs with
heterogeneous nodes must, therefore, be mapped into homoge-
neous nodes. That can be achieved by creating a new type ¢’ =
{l|let,i=1,..,|T,|}. A homogeneous node is defined as
v’ = (xy,t'), where z,, € R is composed of the original
values of node feature vector z,, respecting labeling order
and default values for previously unaddressed features. Once
all the nodes are homogeneous, any non-numeric attribute
must be mapped into one-hot-vector representations. Using the
unsupervised setting of GraphSAGE with any of the previously
mentioned architectures, we obtain the node embeddings that
are going to pose as features to a machine learning classifier.
Since generated node embeddings are vectors all with the
same dimension, we generate edge embeddings using a simple
function embed_edge(vy,va) = f(Zy,, y,) Where v and vy
are the connecting nodes of edge e and f is an operation such
as concatenation, element-wise sum or cross product. Finally,
a classifier is trained with edge embeddings and their classes.
The resulting model can then be used to detect the targeted
edges.

IV. EXPERIMENTAL RESULTS

We used two racing game prototypes as case studies, in
which a single player drives along a single track. The first
game is Car Tutorial Unity (CT)?, and the second one is
Arcade Car Physics (AC)3. Car Tutorial Unity (CT) is a free

Zhttps://assetstore.unity.com/packages/templates/tutorials/
car-tutorial-unity-3-x-only-10
3https://github.com/SergeyMakeev/ArcadeCarPhysics

XIX SBGames — Recife — PE — Brazil, November 7th — 10th, 2020

prototype asset for racing games, designed for Unity 3.x, i.e.,
an older version of the game engine. The game is single
player, contains only a single track and uses Unity’s native car
physics. Arcade Car Physics (AC) is an open source prototype
implemented in Unity 2018. Like CT, this prototype is single
player and has only one track. However, AC implements
several algorithms over or instead native engine physics.

Both games were made available for 4 playtesters, all male,
age between 20 and 30 years old, experienced with racing
games and considered themselves hardcore gamers. For CT,
10 game session graphs were extracted, which in total contain
9194 nodes and 47497 edges. For AC, 3 game session graphs
were extracted, which in total contain 4146 nodes and 21397
edges. Regarding long-range cause-and-effect relationships,
we target edges with the following labels: Crash — Crash,
Crash — LostControl, Crash — Scraped, Flying — Crash,
Flying — Landing, Flying — LostControl, Flying — Scraped,
HandBrake — LostControl, Scraped — Crash and Scraped —
Scraped.

We test the performance of PingUMIL generated classifier
models for AC and CT. Every model uses a combination of
the following options:

o Aggregation architecture: LSTM, MaxPool, MeanPool,
Mean, GCN

o Edge encoding functions: Mult(Elementwise Multiplica-
tion) and Cat (Concatenation)

o Classifier method: MLP (multilayer perceptron neural
network), SGD (Stochastic Gradient Descent), SVM
(Support Vector Machine).

Precision, recall and fl-score are measured for both study
cases encoded edges in a stratified k-fold cross-validation
setting. In our results, we show the average mean of all folds
measured metrics. We compare the generated classifiers from
PingUMIL against traditional classification methods using the
raw features and the same classifiers as before (SVM, MLP,
and SGD). We call raw features the attribute values attached
to each node in the original provenance graph, such as speed,
acceleration, position, etc.

For CT, the best average performance was achieved by
LSTM-based aggregation method, concatenation as edge en-
coder and an MLP neural network with approximately 67%
on all metrics, which implies in a 13% gain over the best
baseline (Raw Features with SGD). The best average precision

1110

SBC — Proceedings of SBGames 2020 — ISSN: 2179-2259

Master and Doctoral Thesis SBGames Award

TABLE 1
GENERALIZATION RESULTS PER EDGE TYPE

AC

CTAC

Edge Type Precision (Var)

Recall (Var)

Precision (Var) Recall (Var)

Flying — Landing | 0.7325 (0.007)

0.575 (0.001)

0.673 (0.014) 0.655 (0.012)

Flying — Crash 0.635 (0.004)

0.645 (0.003)

0.643 (0.014) 0.73 (0.037)

Scraped — Crash 0.58 (0.015)

0.683 (0.023)

0.605 (0.006) 0.723 (0.075)

inside a fold was achieved by PingUMiL.LSTM + Mult +
MLP(100,1) with 72,3%, while the best average recall and
F1 was achieved by PingUMIL.LSTM + Cat + MLP(100,1)
with 72,2% and 71,9% respectively. These top performances
suggest that PingUMIiL generated models capable of detecting
target edges.

For AC, the best average performance was obtained by
LSTM-based aggregation method, concatenation as edge en-
coder and an MLP neural network with approximately 70%
on all metrics, which implies in a 10% gain over the best
baseline (Raw Features with SGD). The best average precision
and F1 inside a fold were achieved by PingUMiL.GCN
+ Cat + MLP(256,1) with 77,1% and 74,3%, respectively,
on fold 4, while the best average recall was achieved by
PingUMiL.MeanPool + Cat + MLP(256,1) with 74% on fold
4. These metrics corroborate the edge detection capability of
PingUMIiL models.

Finally, we trained a classifier with CT and AC data and
applied it into AC data to observe generalization capabilities
in the model, which we named CTAC. Even though the models
did not benefit from such configuration on overall performance
statistics, a deeper analysis shown that it enhanced the metrics
on edges with fewer examples, as observed in Table I.

Edges of type Flying — Landing presented gain on recall
metrics (8%) and a decrease in precision metrics (approxi-
mately 6%). CT training edges add 84 Flying — Landing
examples. These results means that edges from CT enhanced
the model’s comprehension of what defines a negative example
at the cost of complicating the comprehension of what defines
a positive example. As we believe a high recall value is more
essential for provenance graph enhancement, this result shows
that for some type of edges, a model generated using different
games might lead to improvements in preferred metrics.

Edges of type Flying — Crash and Scraped — Crash
presented gain on both recall (1% and 2.5% respectively) and
precision (8.5% and 4% respectively) metrics. For both edge
types, the number of CT examples is more than twice the
number of AC examples. This result corroborates to a positive
answer for secondary objective 3, in which the use of another
similar game data improves the capacity to infer long-range
influences.

Finally, we conclude from this generalization across games
experiment that simply feeding new edges from a similar game
does not guarantee overall model’s quality enhancement for
the racing games used in the experiment. However, PingUMiL
models could be enhanced by fine-tuning the model with some
types of edges. Further investigations about quality enhance-

XIX SBGames — Recife — PE — Brazil, November 7th — 10th, 2020

ment through generalization using other types of games is
suggested as future work.

V. CONCLUSION

Results from CT and AC show that machine learning tech-
niques are able to detect influence between game components
represented as edges in a game provenance graph, given that
the models achieved above 77% averaged precision. Also,
PingUMIL best performance presents a gain of at least 10%
over classical machine learning approaches. Moreover, data
from different games of a similar genre can be used to fine-
tune the detection of edges with fewer examples.

REFERENCES

[11 M. S. El-Nasr, A. Drachen, and A. Canossa, Game analytics. Springer,
2016.

[2] C. Bauckhage, K. Kersting, R. Sifa, C. Thurau, A. Drachen, and
A. Canossa, “How players lose interest in playing a game: An empirical
study based on distributions of total playing times,” in Computational
Intelligence and Games (CIG), 2012 IEEE conference on. IEEE, 2012,
pp. 139-146.

[3] T. C. Kohwalter, L. G. P. Murta, and E. W. G. Clua, “Capturing
game telemetry with provenance,” in 2017 16th Brazilian Symposium
on Computer Games and Digital Entertainment (SBGames). 1EEE,
2017, pp. 66-75.

[4] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 8, pp. 1798-1828, 2013.

[5S] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems, 2017, pp. 1025-1035.

[6] S. A. Melo, A. Paes, E. W. G. Clua, T. C. Kohwalter, and L. G. P.
Murta, “Detecting long-range cause-effect relationships in game prove-
nance graphs with graph-based representation learning,” Entertainment
Computing, vol. 32, p. 100318, 2019.

[7]1 S. A. Melo, T. C. Kohwalter, E. W. G. Clua, A. Paes, and L. G. P. Murta,
“Player behavior profiling through provenance graphs and representation
learning,” in To appear in Proceedings of the 15th International Con-
ference on the Foundations of Digital Games, 2020.

[8] T. Kohwalter, E. Clua, and L. Murta, “Provenance in games,” in
Brazilian Symposium on Games and Digital Entertainment (SBGAMES),
2012, p. 11.

[9] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwas-

nikowska, S. Miles, P. Missier, J. Myers et al., “The open provenance

model core specification (v1. 1), Future generation computer systems,

vol. 27, no. 6, pp. 743-756, 2011.

T. C. Kohwalter, F. M. de Azeredo Figueira, E. A. de Lima Serdeiro,

J. R. da Silva Junior, L. G. P. Murta, and E. W. G. Clua, “Understanding

game sessions through provenance,” Entertainment Computing, vol. 27,

pp. 110-127, 2018.

W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning

on graphs: Methods and applications,” IEEE Data Engineering Bulletin,

2017.

[10]

[11]

1111

