
Asymmetric Action Abstractions for Planning in
Domains with Very Large Action Spaces and

Real-Time Constraints
Rubens O. Moraes

Departamento de Informática
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Universidade Federal de Viçosa - Campus Viçosa
Viçosa - Minas Gerais - Brazil

levi.lelis@ufv.br

Abstract—Action abstractions restrict the number of legal
actions available for real-time planning in multi-unit zero-sum
extensive-form games, thus allowing algorithms to focus their
search on a set of promising actions. Even though unabstracted
game trees can lead to optimal policies, due to real-time con-
straints and the tree size, they are not a practical choice. In
this context, we introduce an action abstraction scheme we
call asymmetric abstraction. Similarly to unabstracted spaces,
asymmetrically-abstracted spaces can have theoretical advan-
tages over regularly abstracted spaces while still allowing search
algorithms to derive effective strategies in practice, even in
large-scale games. Further, asymmetric abstractions allow search
algorithms to “pay more attention” to some aspects of the
game by unevenly dividing the algorithm’s search effort amongst
different aspects of the game. We also introduce four algorithms
that search in asymmetrically-abstracted game trees to evaluate
the effectiveness of our abstraction schemes. An extensive set
of experiments in a real-time strategy game developed for
research purposes shows that search algorithms using asymmetric
abstractions are able to outperform all other search algorithms
tested.

Index Terms—Asymmetric abstractions, real-time constraints,
planning.

I. INTRODUCTION

In real-time strategy (RTS) games the player controls a
number of units to collect resources, build structures, and
battle the opponent. RTS games are excellent testbeds for
Artificial Intelligence methods because they offer fast-paced
environments, where players act simultaneously, and the num-
ber of actions grows exponentially with the number of units
the player controls. Also, the time allowed for planning is
on the order of milliseconds. In this paper we assume two-
player deterministic games in which all units are visible to
both players.

A successful family of algorithms for planning in real time
in RTS games uses what we call action abstractions to reduce
the number of legal actions available to the player. Action
abstractions reduce the number of legal actions a player can
perform by reducing the number of legal actions each unit can
perform. We use the word “action” if it is clear that we are
referring to a player’s or to a unit’s action; we write “player

action” or “unit-action” otherwise. For instance, Churchill and
Buro [1] introduced a method for building action abstractions
through what they called scripts. A script σ̄ is a function
mapping a game state s and a unit u to an action m for u. A
set of scripts P induces an action abstraction by restricting the
set of legal actions of all units to actions returned by the scripts
in P . We call an action abstraction generated with Churchill
and Buro’s scheme a uniform abstraction.

We introduce an action abstraction scheme we call asym-
metric action abstractions (or asymmetric abstractions for
short). In contrast with uniform abstractions that restrict the
number of actions of all units, asymmetric abstractions re-
strict the number of actions of only a subset of units. We
show that asymmetric abstractions can retain the unabstracted
spaces’ theoretical advantage over uniformly abstracted ones
while still allowing algorithms to derive effective strategies in
practice, even in large games.

Another contribution we offer is the introduction of four
general-purpose algorithms that search in asymmetrically-
abstracted trees: Greedy Alpha-Beta Search (GAB), Stratified
Alpha-Beta Search (SAB), and two variants of Asymmetrically
Action-Abstracted Naı̈veMCTS, denoted as A2N and A3N.
GAB and SAB are based on Alpha-Beta pruning, Portfolio
Greedy Search (PGS) [1], and Stratified Strategy Selection
(SSS) [2]. PGS and SSS are algorithms designed for searching
in uniformly-abstracted spaces. The other two algorithms,
A2N and A3N, are based on Naı̈veMCTS, a search algorithm
that uses combinatorial multi-armed bandits (CMAB) [3] to
search in unabstracted spaces. In addition to the two variants
of Naı̈veMCTS that search in asymmetrically-abstracted trees,
we also introduce a Naı̈veMCTS baseline that, similarly to
PGS and SSS, searches in uniformly-abstracted trees; we call
this baseline A1N.

We evaluate our algorithms in µRTS [3], an RTS game
developed for research purposes. µRTS is a great testbed
for our research because it offers an efficient forward model
of the game, which is required by search-based approaches.
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Finally, µRTS codebase1 contains most of the current state-
of-the-art search-based methods, including the systems used
in µRTS’s competitions [4], thus facilitating our empirical
evaluation. An extensive set of experiments show that our
algorithms that search in asymmetrically-abstracted trees are
able to outperform in terms of matches won their counterparts
that search unabstracted and uniformly-abstracted trees.

Although we present our abstraction schemes and search
algorithms in the context of RTS games, we believe our ideas
and algorithms to also be applicable in other scenarios. For
example, a robotic system, which controls several actuators
simultaneously while trying to accomplish a task, can benefit
from asymmetric abstractions. This is because some actuators
might require a finer control than the others. To illustrate, the
actuators controlling the arms of a robot planning a sequence
of actions to open a door might need a “finer plan” than the
actuators controlling the wheels of the robot, given that the
robot is already in front of the door to be opened. Asymmetric
action abstractions offer an approach that allows the planning
system to focus on the arms of the robot rather than on its
wheels. As another example, a search algorithm for uniformly-
abstracted trees is the core of the artificial player of the
commercial card game Prismata [5]. The idea we introduce
in this work of performing search in asymmetric trees can
also be used in such card games to enhance the strength of
their artificial player. For example, the artificial player could
benefit from an algorithm that discovers finer plans for the
“more important” cards.

II. ZERO-SUM EXTENSIVE-FORM GAMES

RTS games can be described as zero-sum extensive-form
games with simultaneous and durative actions, defined by a
tuple ∇ = (N ,S, sinit,A,B,R, T ), where, N = {i,−i} is
the set of players (i is the player we control and −i is our
opponent). S = D ∪ F is the set of states. Every state s ∈ S
defines a joint set of units Us = Us

i ∪ Us
−i, for players i and

−i. A = Ai×A−i is the set of joint actions. Ai(s) is the set
of legal actions player i can perform at state s. Each action a ∈
Ai(s) is denoted by a vector of n unit-actions (m1, · · · ,mn),
where mk ∈ a is the action of the k-th ready unit of player
i. A unit is not ready if it is already performing an action
(unit-actions can have different durations). We denote the set
of ready units of players i and −i as Us

i,r and Us
−i,r. We

denote the set of unit-actions as M. We write M(s, u) to
denote the set of legal actions of unit u at s. Ri : F → R is a
utility function with Ri(s) = −R−i(s), for any s ∈ F . The
transition function T : S ×Ai ×A−i → S deterministically
determines the sucessor state for a state s and the set of joint
actions taken at s.

III. UNIFORM ABSTRACTIONS

We define a uniform action abstraction (or uniform ab-
straction for short) for player i as a function mapping the set
of legal actions Ai to a subset A′i of Ai. Action abstractions

1https://github.com/santiontanon/microrts

can be constructed from a set of scripts P . Let the action-
abstracted legal actions of unit u at state s be the actions for
u that is returned by a script in P , defined as,

M(s, u,P) = {σ̄(s, u)|σ̄ ∈ P} .
Definition 1: A uniform abstraction Φ is a function that

receives a state s, a player i, and a set of scripts P . Φ returns
a subset of Ai(s) denoted A′i(s). A′i(s) is defined by the
Cartesian product of actions in M(s, u,P) for all u in Us

i,r,
where Us

i,r is the set of ready units of i in s.
Algorithms using a uniform abstraction search in a game

space for which player i’s legal actions are limited to A′i(s)
for all s. This way, algorithms focus their search on actions
deemed as promising by the scripts in P , as the actions in
A′i(s) are composed of unit-actions returned by the scripts in
P .

IV. ASYMMETRIC ACTION ABSTRACTIONS

We introduce an abstraction scheme we call asymmetric
action abstractions (or asymmetric abstractions for short) that
is not as restrictive as uniform abstractions but still uses the
guidance of the scripts for selecting a subset of promising
actions. The key idea behind asymmetric abstractions is to
reduce the number of legal actions of only a subset of the
units controlled by player i; the sets of legal actions of the
other units remain unchanged. We call the subset of units that
do not have their set of legal actions reduced the unrestricted
units; the complement of the unrestricted units are defined as
the restricted units.

Definition 2: An asymmetric abstraction Ω is a function
receiving as input a state s, a player i, a set of unrestricted
units U ′i ⊆ Us

i , and a set of scripts P . Ω returns a subset
of actions of Ai(s), denoted A′′i (s), defined by the Cartesian
product of the unit-actions in M(s, u,P) for all u in Us

i \ U ′i
and of unit-actions M(s, u′) for all u′ in U ′i .

The following theorem shows that an optimal strategy de-
rived from the space induced by an asymmetric abstraction is
at least as good as the optimal strategy derived from the space
induced by a uniform abstraction as long as both abstractions
are defined by the same set of scripts.

Theorem 1: Let Φ be a uniform abstraction and Ω be an
asymmetric abstraction, both defined with the same set of
scripts P . For a finite match with start state s, let V Φ

i (s) be
the optimal value of the game computed by considering the
space induced by Φ; define V Ω

i (s) analogously. We have that
V Ω
i (s) ≥ V Φ

i (s).
The proof for Theorem 1 (provided in the Appendix A of

the dissertation [6]) hinges on the fact that a player searching
with Ω has access to more actions than a player searching with
Φ.

A practical advantage of asymmetric abstractions is that they
allow search algorithms to differently divide its “attention”
among the units at a given state of the game. That is,
depending on the game state, some units might be more
important than others (e.g., units with low hit points), and
asymmetric abstractions allow one to derive finer strategies to
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these units by accounting for a larger set of unit-actions for
them.

V. SEARCHING IN ASYMMETRICALLY-ABSTRACTED
ACTION SPACES

In this section we briefly describe the four algorithms we
introduced for searching in asymmetrically-abstracted spaces
(c.f. Chapter 5 of the dissertation [6]).

A. GAB and SAB

Greedy Alpha-Beta Search (GAB) and Stratified Alpha-
Beta Search (SAB), two algorithms for searching in
asymmetrically-abstracted trees, hinge on a property of PGS
[1] and SSS [2] that has hitherto been overlooked. Namely,
both PGS and SSS may come to an early termination if they
encounter a local maximum. GAB and SAB take advantage
of PGS’s and SSS’s early termination by operating in two
steps. In the first step GAB and SAB search for an action in
the uniformly-abstracted tree with PGS and SSS, respectively.
The first step finishes either when (i) the time limit is reached
or (ii) a local maximum is encountered. In the second step,
which is run only if the first step finishes by encountering a
local maximum, GAB and SAB fix the moves of all restricted
units according to the moves found in the first step, and search
in the asymmetrically-abstracted tree for unit-actions for all
unrestricted units.

B. A2N and A3N

We call A2N the version of Naı̈veMCTS [7] that uses an
action abstraction defined by two sets of scripts: P ′ and P ′′.
A2N divides the set of units into two subsets: the units related
to P ′ and the units related to P ′′. A2N can only sample unit
actions m for the units u in the first group if m is returned
by one of the scripts in P ′ for u. The unit actions A2N can
sample for the second group of units is defined analogously.
Note that the two subsets of units do not need to be disjoint as
some units can have actions sampled from both sets of scripts.
The action abstraction used by A2N is also asymmetric as the
number of scripts in each set can be different.

We call Asymmetrically Action-Abstracted Naı̈veMCTS
(A3N) the version of Naı̈veMCTS that accounts during search
for all unit actions of the unrestricted units and only for the
actions returned by the set of scripts P for the restricted
units. The only different between Naı̈veMCTS and A3N is that
in the latter, the select-sampling procedure can only sample
combinations of unit-actions that are in the asymmetrically-
abstracted tree.

VI. EXPERIMENTS

We introduced nine strategies for selecting the unrestricted
units. A selection strategy receives a state s and a set size N
and returns a subset of size N of player i’s units for asym-
metric action abstractions. The selection of unrestricted units
is dynamic as the strategies can choose different unrestricted
units at different states. We defined empirically the best strat-
egy and number of unrestricted units that are asymmetrically

controlled by our search algorithms, see chapter 6.3 of the
dissertation [6] for details.

To evaluate our algorithms, we tested GAB, SAB, and
A3N against their baselines and the state-of-the-art systems
for playing MicroRTS [7]. The baselines for GAB and SAB
consist of the algorithms used for the first step of the search,
PGS and SSS, respectively. The baseline for A3N, we used
A1N, that consist of a A3N’s variation without un-restricted
units. Table I shows the average percentage of matches won
by each approach tested in ten maps. It is notable how the
algorithms using asymmetric action abstractions outperformed
their baselines. SAB won 68% of the matches played against
SSS. GAB and A3N achieve 87% and 88.5% of victories
against the baselines PGS and A1N, respectively. Considering
A3N against NS, the percentage is expressive, 93.5%. Overall,
A3N wins more matches than any other approach tested.

Professional RTS players often control one unit at a time,
focusing most of their attention to that single unit. GAB, SAB
and A3N act similarly as their action abstractions provide a
coarse set of unit-actions to all units but the units engaged in
some critical activity in the game; for these units all actions
are accounted for during search.

VII. PUBLICATIONS

The results of this dissertation were published in prestigious
conferences in Artificial Intelligence. These papers are listed
below:
• [8] AAAI conference (Qualis A1). Asymmetric action

abstractions for multi-unitcontrol in adversarial real-time
scenarios.

• [9] AIIDE conference (Qualis A3). Action abstractions
for combinatorial multi-armed bandit tree search.

During the master’s degree, we investigated and worked
in other papers describing planning algorithms for zero-sum
extensive-form games. Bellow, they are listed:
• [10] AAAI conference (Qualis A1). Evolving action ab-

stractions for real-time planning in extensive-form games.
• [11] AIIDE conference (Qualis A3). Nested-greedy

search for adversarial real-time games.
• [12] IEEE Transactions on Games (Qualis A4).

Strategy generation for multi-unit real-time games via
voting.

The algorithms developed during my Masters allowed me to
develop a system that won the IEEE MicroRTS Competition
in 2018.We are currently working on a paper to be submit-
ted to the Journal of Artificial Intelligence Research (JAIR,
Qualis A1), which extends our previous publications by
presenting more experiments on MicroRTS and by discussing
important implementation issues of algorithms that search in
asymmetrically-abstracted spaces.

VIII. CONTRIBUTIONS

The work presented by the dissertation advances the state-
of-the-art in planning algorithms for domains with very large
action spaces by introducing asymmetric action abstractions.
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TABLE I
THE WINNING RATE OF THE ROW PLAYER AGAINST THE COLUMN PLAYER IN 100 MATCHES PLAYED IN 10 MAPS. THE WINNING RATE IS COMPUTED BY

SUMMING THE TOTAL NUMBER OF VICTORIES AND HALF OF THE NUMBER OF DRAWS OF THE ROW PLAYER AGAINST A COLUMN PLAYER, AND THEN
DIVIDING THIS SUM BY THE TOTAL NUMBER OF MATCHES PLAYED. THE BEST WINNING RATE OF EACH COLUMN IS HIGHLIGHTED.

HER RAR AHT NS WOR A1N SSS PGS PS SCV+ LIR STT SAB GAB A3N Avg.

HER - 85.0 13.5 57.5 15.0 17.5 30.0 23.0 16.0 18.0 12.5 5.0 9.0 8.0 3.0 22.4
RAR 15.0 - 57.0 78.0 60.0 24.0 16.0 11.0 3.0 20.0 0.0 16.0 11.0 12.0 1.0 23.1
AHT 86.5 43.0 - 18.5 10.0 13.0 27.0 24.5 39.5 28.5 39.5 9.0 19.5 19.5 2.0 27.1
NS 42.5 22.0 81.5 - 41.0 35.0 22.0 20.0 28.0 26.5 20.0 20.0 27.0 23.0 6.5 29.6
WOR 85.0 40.0 90.0 59.0 - 29.0 49.0 43.0 40.0 50.0 35.0 38.5 27.5 31.5 26.5 46.0
A1N 82.5 76.0 87.0 65.0 71.0 - 36.5 34.0 49.0 46.0 34.0 28.0 24.0 26.0 11.5 47.9
SSS 70.0 84.0 73.0 78.0 51.0 63.5 - 54.0 42.0 37.0 28.0 27.0 32.0 17.0 16.0 48.0
PGS 77.0 89.0 75.5 80.0 57.0 66.0 46.0 - 45.5 42.5 46.0 27.5 32.0 13.0 18.5 51.1
PS 84.0 97.0 60.5 72.0 60.0 51.0 58.0 54.5 - 42.5 47.0 30.0 29.0 26.0 28.5 52.9
SCV+ 82.0 80.0 71.5 73.5 50.0 54.0 63.0 57.5 57.5 - 61.0 40.5 44.0 34.5 23.5 56.6
LIR 87.5 100.0 60.5 80.0 65.0 66.0 72.0 54.0 53.0 39.0 - 53.0 35.5 17.0 41.0 58.8
STT 95.0 84.0 91.0 80.0 61.5 72.0 73.0 72.5 70.0 59.5 47.0 - 53.0 29.0 52.5 67.1

SAB 91.0 89.0 80.5 73.0 72.5 76.0 68.0 68.0 71.0 56.0 64.5 47.0 - 36.5 23.0 65.4
GAB 92.0 88.0 80.5 77.0 68.5 74.0 83.0 87.0 74.0 65.5 83.0 71.0 63.5 - 47.5 75.3
A3N 97.0 99.0 98.0 93.5 73.5 88.5 84.0 81.5 71.5 76.5 59.0 47.5 77.0 52.5 - 78.5

We also introduced asymmetric action abstractions for multi-
unit zero-sum extensive-form games. We also introduced A2N,
A3N, GAB, and SAB, four search algorithms for searching
in asymmetrically-abstracted spaces. Similarly to uniformly-
abstracted spaces, asymmetric abstractions also use domain-
knowledge in the form of scripts. However, in contrast with
uniform abstractions, which restrict all units to the unit-actions
returned by the scripts, asymmetric action abstractions restrict
only a subset of the units—the restricted units. Algorithms
searching with asymmetric action abstractions account for
all legal unit-actions of the remaining units—the unrestricted
units. As a result, the strategy derived by search algorithms
are focused on the unrestricted units, as the algorithms are
able to derive finer plans for such units. Asymmetric action
abstractions can be seen as an attention scheme, where the
search “pays more attention” to a subset of units.

We evaluated our algorithms with an extensive set of exper-
iments on µRTS. Our results suggest that A3N is the current
state-of-the-art algorithm in this domain if one considers a
large diversity of maps and opponents, similarly to the setting
used in the µRTS annual competition [4]. If one considers
large maps such as those used in commercial games, then
GAB presented the strongest results.

Although we performed our experiments on µRTS, the
ideas of this paper are general and could be applied to
other games. For example, in collectible card games such as
Hearthstone [13] and Magic: The Gathering [14] the player
has to decide on the action of several cards. Algorithms could
use asymmetric action abstractions to focus their search on
a subset of the cards. The ideas introduced in this paper
might also be applied in problems other than games. For
example, a robotic system that controls several actuators while
trying to accomplish a task can benefit from asymmetric action
abstractions. This is because some actuators might require a
finer control than the others.

REFERENCES

[1] D. Churchill and M. Buro, “Portfolio greedy search and simulation for
large-scale combat in StarCraft.” in Proceedings of the Conference on

Computational Intelligence in Games. IEEE, 2013, pp. 1–8.
[2] L. H. S. Lelis, “Stratified strategy selection for unit control in real-

time strategy games,” in International Joint Conference on Artificial
Intelligence, 2017, pp. 3735–3741.
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