
Peer-to-peer support for instance-based massively
multiplayer games

Marcos Rates Crippa, Fábio Reis Cecin, Cláudio Fernando Resin Geyer
Informatics Institute

Federal University of Rio Grande do Sul
Porto Alegre, RS, Brazil

Abstract

Massively Multiplayer Online Games are a growing seg-
ment on the game industry, combining the excitement of
3D games with the opportunity of playing with thousands
of players worldwide. The common network model used is
a straightforward client/server one, where all the simulation
and events are processed on the server. This creates a bottle-
neck on the server-side, and harshly affects the scalability of
the whole system. When the broadband technologies avail-
able today and the increase in the number of players are con-
sidered, the server’s complexity and size grows significantly,
becoming too costly. One approach being proposed to over-
come those difficulties is to change the network model into
a P2P (Peer-to-Peer) model. In this article we propose a P2P
network model that tries to provide scalability and security.
We first examine in more details the disadvantages of the
client-server model. After that, we talk about the instanced
game model, which is the game model support by our soft-
ware architecture. Finally, we describe the organization of
our solution, and some interesting points about it and others
solutions proposed.

Keywords:: Massively multiplayer games, peer-to-peer,
hybrid topologies, instanced games

Author’s Contact:

{mrcrippa,fcecin,geyer}@inf.ufrgs.br

1 Introduction

Multiplayer games are a very popular game genre, due to
their highly interactive nature. Among those games, a class
that is growing in popularity is MMOGs (Massively Multi-
player Online Games). MMOGs are real-time multiplayer
games played through the Internet, where a great number of
players (usually thousands) play within a persistent-state vir-
tual world. Successful examples include EverQuest [Enter-
tainment a] and Ultima Online [Origin].

The most common network model used on MMOGs is
client-server. In this model, the client only sends its data to
the server-side (that can operate on a single machine, a clus-
ter or distributed on a grid) and receives frequent updates
from the server. The server process all the data from the
clients, and broadcasts all the results that occur on the vir-
tual world back to the them. Some advantages of this model
are: being simple in design; cheating can be efficiently de-
tect and stopped; retaining control over access to the game;
and being a predictable model.

The main disadvantage of the client-server model is the lack
of scalability. The cost of maintaining the server-side be-
come excessive with the increase in the number of clients.
When talking about commercial games, the usual approach
is to continuously expand the number of machines on the
server-side. That is a reasonable solution, however it is not
suitable for projects on a budget such as those from small
companies or research groups.

One way of dealing with the above problem is to fully or
partially distribute the MMOG simulation. All the changes
on the game world would be registered and dealt within the
client-side, with no interference of the server-side. Security
and world state consistence are issues on that model, because
there isn’t a point where the changes in the virtual world can
be evaluate and consider legal or illegal. The main challenge
of our project is thus to provide a partially decentralized sup-
port model for MMOGs, while retaining the basic properties
of the client-server model such as security, consistency and
scalability [Schiele et al. 2007].

In this paper a hybrid model is proposed, combining the
security and consistency of the client-server model with
the scalability and flexibility of the distributed model. A
game model which follows that directives, called instanced
game model and inspired by the game Guild Wars [Are-
naNet], is described in the section 2 of this article. The
P2PSE(acronym in portuguese for ”P2P for Entertainment
Software”) architecture, which implements the instanced
game model, is explained in section 3. Section 4 offers a
discussion of our impressions with the limited testing that
we managed to perform over the current (incomplete) im-
plementation, and discusses our expectations towards gains
when compared with pure client-server approaches. Section
5 presents conclusions on the topic.

2 The instanced game model

The P2PSE project is a distributed simulation model, and
also a library (in reality, a stack of C/C++ libraries) that
implements that model, which will be described in section
3. The library is designed to support a specific kind of
MMOG,described in this section. The instanced game model
is the price to pay, in consistency, for a simple approach in
unifying security, consistency and scalability in a decentral-
ized MMOG support model.

Several MMOGs, like PlanetSide [Entertainment b] and
World of Warcraft [Blizzard] offer to the player the illusion
of one or several large and contiguous virtual spaces where
all the gaming takes place. Those spaces are divided in seg-
ments, and each server machine or group of server machines
are responsible for one segment. A warping system is nec-

essary to tied all segments together, allowing the player to
move from one space to the other transparently.

The game Guild Wars introduces a new game model, which
will be referenced to as the instanced game model [Cecin
et al. 2006]. There is two virtual spaces on Guild Wars:
the social space and the action space. The first kind is a
medium-sized virtual space where a significant number of
players can socialize, trade virtual goods and organize game
sessions. Because of the nature of this space, low consis-
tency requirements are necessary. Game sessions happen on
the action space, which is a small-sized virtual space where
a small number of players gather to play a game session.
Higher consistency requirements are necessary on that space
because of its fast nature.

The relationship between the two spaces is as follows. When
a game session ends, the players involved in it return to the
social space. All the traits of the characters (e.g. virtual
world money, experience points and statistics) are updated
with new information from the session. The social space
is designed as a contiguous world, as mentioned in the be-
ginning of this section. The action spaces are created dy-
namically to support temporary game sessions with a small
number of players. This space is destroyed after the session
ends.

Figure 1: The instanced ’social vs. action’ MMOG and our
approach for its distribution.

Guild Wars, as far as we can tell, follows the client-server
model. Our proposal is to used the instanced game model
with a hybrid network architecture model. Since the inter-
actions on the social space (chatting, trading) don’t require
high consistency, and there is a necessity of validation of
who can play (game accounts,passwords), the server-side
will be responsible for coordinating this part of the game.
So even a server-side with modest processing capacity and
network bandwidth could manage the social space if game
quality is scaled down accordingly, for instance by sending
less frequent updates to clients. The game sessions would be
process only on the client-side machines, avoiding unneces-
sary processing and communication cost on the server-side.
The clients groups would operate within a peer-to-peer dy-
namics.

3 The P2PSE project

The P2PSE architecture proposed on this article implements
the instanced game model specified on section 2. A group of
software libraries provide the functionalities associated with
the game model. These libraries are organized in layers, each
level setting a group of features to the upper one. There are
three layers on the architecture, which are described below.

Figure 2: The layer structure of the P2PSE archictecture.

3.1 Layer 0

The first layer of the P2PSE architecture is responsible for
the creation of the network topology seen on section 2. It
operates assuming that the most basic network functions (
such as creating a socket and managing TCP/UDP packages
and connections) are handle by an external library. All the
communication necessary on the system will use the services
provide by this low-level network API.

There are two main components on the game model: the
server and the client. The server is responsible for the so-
cial space and for the clients playing in the action spaces.
The client can either be in the social space, communicating
directly with the server, or playing in a game session and
communicating with others players. In order to differentiate
all the roles that both server and client assume, Layer 0 has
four main classes: Server, Group,Client and Peer.

The Server represents the server machine, and handles the
connections and the social space. The Group resides within
the server, and represents a group of clients. It encapsulates
all the necessary functions to manage a group. The Client
represents the client machine and handles the connection
with the server. This class also represents one client when
he is on a social space. And, finally, the Peer represents the
client within a game session, and handles the connections
with the others players.

3.2 Layer 1

Layer 1 of the P2PSE architecture is responsible for han-
dling connection-related problems between the peers within
a group. This layer will ensure that all peers are able to send
and receive messages from each other.

We see two main problems that can cause a connection fail-
ure between two peers : NAT/Firewall block and bandwidth
insufficiency. When the Layer 0 indicates that a message
must be send from one peer to another, Layer 1 must verify
if there is a direct connection between the peers. If this con-
nection doesn’t exist, an alternative path must be discover,
using intermediate peers. After the path is discovered, the
proper routing of the message can take place.

Among all peers within a group there are different bandwidth
capabilities. It is very likely to occur a situation where a
peer doesn’t have enough upload bandwidth to deal with the
number of messages that it has to send. Layer 1 will identify
such situation and, instead of sending the messages directly
to the their destinations, send them to a peer with good up-
load bandwidth capability, holding him responsible to send
the message.

The algorithms and methods that are going to be used to im-
plement this layer are been researched and developed.

3.3 Layer 2

The last layer of the P2PSE architecture will keep the action
spaces consistent. Due to the fact that the simulation on the
action spaces is carried out only by the peers, maintaining
consistency becomes more difficult.

The main problem associated with a P2P approach to the
simulation is that there isn’t a centralized point where all the
events are kept ordered. A player generates a event and has to
notify all the others players on the group. But the events are
generated in an arbitrary order and it’s very difficult to main-
tain game consistency. All players will end up with unsyn-
chronized versions of the simulation. Keeping all the local
simulation synchronized requires a total event order within
the group. One possible solution is proposed on [Cecin et al.
2006].

One optimization present on this layer that can help to re-
duce the amount of data the server has to handle in the social
space is to determine an area of interest [Morse et al. 2000]
for the player, and to adapt the frequency of updates mes-
sages to that area. All the information regarding players and
environment that are far away from the player and can’t af-
fect him is sent less frequently than objects that are inside
an area of interest surrounding the player. The size of this
area is game-dependent. Identifying the best way to add this
optimization on our architecture is a work in progress.

The server-side isn’t necessarily represented by only one
server. It’s common to a player to be able to choose between
multiple servers. All these servers belong to the same com-
pany, but differ on geographic location, maximum number
of players playing and even network latency and bandwidth.
However, the only responsibility the player has is to choose
among one of the available servers: his account, which in-
cludes his character traits and his virtual goods should re-
main the same on all servers. Multi-server functionalities
will be present on the Layer 2 to allow such system. Multi-
server support is still being designed and implemented into
the P2PSE architecture.

Everything mentioned so far collectively form the core of our
proposed game architecture. An application that follows the

model proposed could be builded using only that set of func-
tionalities. However, when dealing with gaming, especially
network gaming, cheating becomes a key problem [Kabus
et al. 2005]. The architecture would be incomplete without
some sort of tools to prevent any illegal modification on the
game that favors one or more players. Cheating in multi-
player games can be carried out in many ways, one of them
being the illegal modification of network messages.

The architecture will include support for marking messages
so that, for instance, a malicious peer that is relaying mes-
sages from two other peers, at Layer 1 level, will not be able
to modify the message. Optionally, it will be possible to also
cypher the message so peer relaying messages won’t be able
to understand them.

If a player alters the messages, he could alter the behavior
of his character and/or his traits within the game. A com-
mon modification is movement cheats. They can be either
excessive speed, far beyond what’s allow on the game, or
”teleportations” through the map. In order to identify play-
ers cheating in such a way, the uncommon movement pattern
by the player has to be detected. The P2PSE architecture
will use Artificial Neural Networks (ANN) to prevent move-
ment cheating. To automatically detect that a pattern has
been broke, it is necessary to record a sample of the player’s
moves, and use it as input for a ANN. But there is a lot of
noise and instability on network messages. To prevent the
ANN to give false positives, a training is needed (feeding
the ANN with a correct pattern, specific to the game). Every
player in a P2P group will monitor each other, and if a cheat
is detect, the server will then take any necessary measures.
The exact details of the AI module are being researched.

4 Discussion and related work

For comparison purposes, our project is a solution to the
problem of supporting massively multiplayer on-line games
with a decentralized (albeit partially) topology. There are
several publications that offer solutions to this problem. The
solution shown here attempts to solve the security, consis-
tency and scalability problems at the same time [Schiele et al.
2007]. The security problem is that, when an MMOG decen-
tralizes its simulation, it start relying on client (untrusted)
machines for critical computations, and opportunities for
players to cheat at the game are bound to appear. The scal-
ability problem is dealt with ensuring that server machines
are not overloaded, and that the peer-to-peer overlay (logi-
cal) topology chosen scales well. The consistency problem
is ensuring that game players have a view of the game world
that is sufficiently well synchronized with the views of other
peers.

To achieve scalability and security, the architecture borrows
from the game metaphor of Guild Wars, which separates the
player experience in action spaces and in social spaces. By
only decentralizing the simulation of action spaces, the secu-
rity problem is greatly simplified, as all player goods trading
is done on social spaces. Scalability is achieved since the
social space is expected to have very few interactions (chat
messages and low-fidelity 3D avatar interactions) and so run-
ning it as a server-side simulation doesn’t incur significant
costs. As for the consistency problem on the action spaces,
there are solutions proposed to cope with that problem, so the

problem ends up being to find one that fit our model properly.

Of course, having a fully decentralized MMOG that is
as secure, consistent and scalable as a partially decen-
tralized MMOG will always be a good research objec-
tive. The more decentralized, the better, if all necessary
requirements [Schiele et al. 2007] are met. Works that
attempt full MMOG decentralization include NEO [Gau-
thierDickey et al. 2004], SimMud [Knutsson et al. 2004],
Mercury [Bharambe et al. 2002], Dynamic microcell assign-
ment [De Vleeschauwer et al. 2005] and others. NEO is ac-
tually an event-ordering mechanism which is part of a larger
MMOG model in development, which aims to be scalable
and fully decentralized by using of distributed hash tables
(DHTs).

Although we don’t have corroborative results yet, it still
possible to analyze the model proposed and elaborate some
reasonable expectations. The main problem with client-
server games is that the simulation processing is done on
the server.So, besides security anf authentication issues, the
server has to cope with keeping all the players updated and
the virtual world consistent. Changing the model to a P2P
approach transfers all that load of work to the peers, and
makes the cost of the server inherently lower on our proposed
architecture. Even if elaborated security and authentication
measures are implemented, it is very unlikely that they will
inflict on the server-side a greater workload than the simula-
tion of the game.

5 Conclusion

We proposed a different approach to MMOGs, that uses P2P
groups and transfers the simulation processing to them. In
order to provide security and scalability (that are relevant
problems on a decentralized model), the game model was re-
strict to the instanced game model. The existence of a server-
side (as oppose to purely decentralized P2P MMOGs) guar-
antees that, if deem necessary, the server can act as final ar-
biter. In addition to that, that allowed for a layer organization
to our software architecture, where each layer has a defined
and simple job. Despite the choice of a specific game model,
most of the techniques shown here could be adapt in order to
be used on purely decentralized P2P MMOGs.

We expect to obtain more data using a simulation based on
our implementation of the Layer 0. A log of the messages on
the P2P groups and between client-server, and the analysis
of the traffic will show how much information the server has
to deal with, and if the expectations cited in the last section
were satisfied. The simulation is still under development, but
its basic structure is defined: one process will simulate the
server-side, managing the groups and sending update mes-
sages with a certain frequency (to emulate the social space).
Another process will create several clients and connect with
the server. The clients will be distribute among the social
space and various action spaces. Clients in the social space
will send an update message with a certain frequency either
to the server, if they are in the social space (they will do
that to emulate movement and chatting in the social space)
or will send updates messages to all of others peers on his
group. To give the simulation a more realistic behavior, arti-
ficial events (like the destruction of group) will occur based
on a probability of occurrence within a period of time. For

instance, every 10 seconds, there is a 3% chance of a group
to be destroyed.

Future work includes finishing up the simulation and re-
searching bibliography to find out realistics values to all the
variables on the simulation (update frequency, distribution of
clients between social and action spaces, etc).Besides, more
details and results are expect, based that most of the archi-
tecture is still under development.

References
ARENANET. Guild wars. http://www.guildwars.
com/.

BHARAMBE, A., RAO, S., AND SESHAN, S. 2002. Mer-
cury: a scalable publish-subscribe system for internet
games. 1st workshop on Network and system support for
games, 3–9.

BLIZZARD. World of warcraft. http://www.
worldofwarcraft.com/.

CECIN, F., GEYER, C., RABELLO, S., AND BARBOSA, J.
2006. A peer-to-peer simulation technique for instanced
massively multiplayer games. 10th IEEE International
Symposium on Distributed Simulation and Real-Time Ap-
plications -Volume 00, 43–50.

DE VLEESCHAUWER, B., VAN DEN BOSSCHE, B.,
VERDICKT, T., DE TURCK, F., DHOEDT, B., AND DE-
MEESTER, P. 2005. Dynamic microcell assignment for
massively multiplayer online gaming. 4th ACM SIG-
COMM workshop on Network and system support for
games, 1–7.

ENTERTAINMENT, S. O. Everquest. http://www.
everquest.com/.

ENTERTAINMENT, S. O. Planetside. http://www.
planetside.com/.

GAUTHIERDICKEY, C., ZAPPALA, D., LO, V., AND
MARR, J. 2004. Low latency and cheat-proof event or-
dering for peer-to-peer games. Proceedings of the 14th in-
ternational workshop on Network and operating systems
support for digital audio and video, 134–139.

KABUS, P., TERPSTRA, W., CILIA, M., AND BUCHMANN,
A. 2005. Addressing cheating in distributed MMOGs.
4th ACM SIGCOMM workshop on Network and system
support for games, 1–6.

KNUTSSON, B., LU, H., XU, W., AND HOPKINS, B. 2004.
Peer-to-peer support for massively multiplayer games.
IEEE Infocom.

MORSE, K., BIC, L., AND DILLENCOURT, M. 2000. In-
terest Management in Large-Scale Virtual Environments.
Presence: Teleoperators and Virtual Environments 9, 1,
52–68.

ORIGIN. Ultima online. http://www.owo.com/.

SCHIELE, G., SUSELBECK, R., WACKER, A., HAHNER,
J., BECKER, C., AND WEIS, T. 2007. Requirements of
peer-to-peer-based massively multiplayer online gaming.
7th IEEE International Symposium on Cluster Computing
and the Grid, 773–782.

