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Figure 1: Example of a Tangram game, showing the algorithm verification of the player´s progress with a thermometer.

Abstract

In this paper, we present a novel algorithm to solve 

the problem of correctly verifying the solution for 

geometric puzzles. When compared with others, this 

approach covers a satisfactory amount of cases. The 

method comprises the use of sixteen possible relations 

between polygon edges, which are classified to 

eliminate those that are not necessarily part of the final 

figure. This method provides for a precise verification 

of an arranged set of polygons that must form the same 

image as the desired solution, without the need of extra 

meta-data. Only the vertexes themselves (also the edge 

concavity and center position, when circumference arcs 

are present) are used the algorithm. 
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1. Introduction 

Many games are related to puzzles and geometric 

piece arrangements. For this kind of games, it is 

necessary that algorithms validate the correctness of 

the arrangement and also give a feedback to the player, 

telling how close he is from the correct solution. Figure 

1 shows the player’s progress in a geometric jigsaw 

puzzle by the algorithm proposed in this work. All 

geometric jigsaw puzzles presented in this paper are 

based on the games proposed in Kaleff et al. [2002]. 

The algorithm that will be discussed in this paper is 

an alternative approach to the problem of identification 

if a determinate geometric jigsaw puzzle assembly 

represents the intended figure. This work is an 

extension of the algorithm presented by Scarlatos 

[1999], which is not suitable for jigsaw puzzle that 

have more than one possibility for a correct assembly. 

This work is also an extension of a preliminary work 

made by Siqueira et al. [2008]. 

The proposed algorithm use a different approach 

than that presented by Scarlatos [1999], in order to 

verify different arrangements of parts that lead to the 

same figure, considering just the outline formed by the 

pieces together and not how they are arranged within 

the contour. The presented approach also analyses that 

the final assembly has no holes. 

When compared with pixel by pixel approaches, the 

proposed algorithm has the advantage of being easier 

to get the partial solution and to solve the problem with 

parts that have any rotations. 

It is important to note that the pieces of the 

geometric jigsaw puzzle and any assembly composed 

with them can be represented by a polygon, as well as 

the solution figure (which indicates the solution to be 

achieved in the game). For this work, the possible 

outline of the polygons can be defined by edges 

composed of circular arcs and/or straight segments. If a 

puzzle is composed of figures that are not polygons, a 

bounding polygon will be required for algorithm usage. 

The remainder of this paper is organized as follows: 

section 2 presents some works related to the design and 

implementation of methods for the verification of 

relations between edges on polygonal figures. Section 

3 carries out an analysis of the problems to be handled, 

while section 4 explains the proposed algorithm.  

Nevertheless, section 5 talks about some special cases 

where the algorithm does not correctly detect the 

contour of the assembly made by the player. Finally, 

the conclusion and future work associated with the 

proposal are presented in section 6. 

2. Related Work 

In this section, we attempt to compare the proposed 

technique with other implementations of mathematical 

jigsaw puzzle, specifically in relation to recognition of 

the solution, and works about generic methods for the 
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recognition of figures through the classification of 

relations between edges. 

There are few games of geometric jigsaw puzzle 

that make the recognition of solution, in other words 

the games indicate to the player if he succeeded or not 

in completing the assembly. Most implementations 

found, for example, shown by Jacob [2002], Martins 

[2002] and Lankin [2001], only allow a passive visual 

comparison by the player. 

The Tangram (geometric jigsaw puzzle) presented 

by Ztor [2005] makes the recognition of a solution, but 

this approach does not allow assembly with rotating 

alternatives. Moreover, the previews work does not 

make the partial recognition of a solution, an important 

feature for showing the player how far or close he is 

from the final solution. The solution presented in this 

paper allows both arbitrary rotation and the estimation 

of partial solution, besides allowing the use of pieces 

with edges composed of circumference arcs. 

In Flashkit [1999], it is possible to find a great 

repository of source code, tutorials and other materials 

for developing games in Flash, including many 

examples of Tangrans, as those available in Lankin 

[2001], Jacob [2002], Martins [2002], Kunovi [2001] 

and Texas [2000]. However, none of these examples 

presents algorithms for verification of solution, serving 

only as a reference for implementation of the basic 

mechanics.

In Scarlatos [1999], it is shown a method to 

recognize a figure formed by several polygons 

juxtaposed through exact relations formed by their 

edges. This solution, however, supports only edges 

composed of straight segments and only recognize 

individually each possible solution. A figure that can 

be formed by more than one combination of parts may 

have multiple representations, making it impossible to 

use for puzzles that may have thousands of possible 

solutions even for simple instances. Although not 

satisfactory, the work referenced served as the basis for 

the method developed.  

A situation in which different arrangements of 

pieces form the same figure is illustrated in Figure 2. In 

this example, the square figure formed by the union of 

polygons 2 and 3 may be attached to the polygon 1 in 

different rotations. While the method referenced by 

Scarlatos [1999] generates two different 

representations, the mechanism that is proposed in this 

paper recognizes both figures as equals, and therefore 

is more appropriate to the problem of verification of 

solutions of geometric jigsaw puzzle. 

Figure 2: Two different arrangements that represent the same 

figure.

The authors did not found any other works that, at 

least using polygons with edges composed of straight 

segments, provide a general method for the recognition 

of solution of geometric jigsaw puzzle from the 

comparison with the figure solution.  

3. Problem Considerations 

For the arrangement of the pieces during the game 

to be verified, relations between the edges of different 

polygons, proposed in the work of Scarlatos (1999), 

are considered to assist in identifying the contours of 

the current figure mounted by the player. Besides the 

basic relations between edges, adjustments are made so 

that the final result of this assembly is adequately 

compared with the figure solution. 

Both the representation of the solution and the 

assembly made by the player are composed of circular 

lists of edges, which describe appropriately the final 

design of each. It is important to note that the polygons 

formed during the game may contain holes and it does 

not interfere in the analysis of the solution proposed by 

the player. 

For a correct usage of the algorithm it is necessary that: 

 There is no overlap between the pieces of the 

geometric jigsaw puzzle, since the elimination 

of edges can not happen in some cases it was 

necessary 

 Each of the pieces and the solution figure has 

to be designed either in a clockwise or anti-

clockwise direction; in other words, all must 

be designed in the same direction at the 

definition of its vertices constituents. Thus, 

comparison of the assembly by the player 

with the correct solution is made with the 

same sense of drawing 

 It must be kept in memory the coordinates of 

the vertices that form the polygons, and if the 

representation of edges is composed of 

circumference arcs, it is also necessary the 

center of the circumference arc and its 

concavity (concave or convex). Such as it is 

illustrated on Figure 3, the vertices A, B, C 

and D; the center and the concavity of 

circumference arc BC and DA should be 

stored in memory 
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Figure 3: Example of a polygon with edges composed 

of straight segments and circumference arcs. 

.

 The solution polygon can not have holes, 

since it is not taken into consideration by the 

algorithm the position in the figure that the 

hole is located. The presence of holes will 

only be checked by the player itself. A 

solution polygon with a hole is shown in 

Figure 4 

Figure 4: The solution can not contain holes, such as it is 

represented by the white rectangle.

 The game must be composed only of closed 

polygons without holes, and formed only by 

borders consisting of straight segments and 

circumference arcs, not supporting other types 

of curves 

Despite these restrictions, infinity of forms of pieces is 

permitted so that the proposed algorithm properly 

analyzes the solution set by the player during the 

assembly of geometric jigsaw puzzle. 

4. Heuristic for Verification 

This heuristic for the verification of the solution of 

a geometric jigsaw puzzle uses the relations described 

in Scarlatos [1999]. Thus, it is added the verification of 

edges composed of circumference arcs, besides 

interpreting relations separately, removing the edges 

that are not part of the contour of the result obtained by 

the relations, so that only the edges of the contour 

remain. The edges of the contours are then rearranged 

so that the figure is represented in a unique way.

4.1 Relations 

Only the relations between edges of different 

polygons will be considered. What characterizes each 

relation between a pair of edges is the verification of 

the vertices of each edge, checking if it belongs or not 

to the other analyzed edge. 

Initially, it is supposed that only edges composed of 

straight segments are analyzed and that one of the 

edges is formed by the points a1 and a2 and the other by 

b1 and b2. For each of the four corners, if it belongs to 

the other edge, it will be assigned value 1, otherwise, 

value 0. Concatenated values of a1, a2, b1 and b2, in that 

order, has the representation of the relationship 

between two edges expressed in a binary system, 

converted into a decimal system. 

Table 1 (attached at end of paper) shows the 

possible relations between edges, where the polygons 

were drawn in a clockwise direction. The arrows of 

one vertex to another indicate the direction of the edge 

they represent. The relations are presented in decimal 

form and are located just below the figure to which 

they belong. 

To deal with edges composed of arcs, in addition to 

the vertices, it is also necessary the center of the 

circumference and its concavity (concave or convex) 

information. Therefore, different data structures are 

generated to be associated with two types of edges 

(straight segments and circumference arcs). Thus, 

relations are established for identifying the type of 

edge that each one has. 

There are three groups of relations: those that split

an edge, those that are null and those that totally or 

partially eliminate the edges. When it includes edges 

which are circumference arcs in the verification of 

relations, the interpretation obtained can be more 

comprehensive. Therefore, to simplify the algorithm, 

the relations are considered void, in cases where there 

are not explained in subsections 4.1.1, 4.1.2 and 4.1.3, 

without even checking the number of the result. 

It is important to note that a relation may belong to 

different groups, since as it comes from the comparison 

between two edges. This can lead to an individually 

and differently treatment. For instance, the relation that 

has the number 12 in Table 1 has one of the edges 

eliminated completely and the other splitted. 

In all cases presented in subsections 4.1.1, 4.1.2 

and 4.1.3, the pair of edges can only be analyzed as 

follows: 

 Both edges are straight segments 

 Both edges are circumference arcs with equals 

radius and global center coordinate but with 

different concavities

Table 2 (attached at end of article) shows the 

possible relations between edges represented by 

circumference arcs in the described case immediately 

above, in which the polygons were drawn clockwise. 

The arrows from one vertex to another indicate the 

direction of the edge they represent and the point "c" 

indicates the center of both edges. The relations are 

presented in decimal form and are located just below 
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the figure to which they relate. As can be noted, not all 

relations are possible. 

4.1.1 Split Relation  

This type of relations occurs either when only one 

vertex is tangential to the edge examined or when two 

vertices that belong to one edge are contained in 

another edge but not touching in the extreme points of 

this. These cases are illustrated in Table 1: the relation 

1 for the first case and the relation 12 for the second 

case. Table 2 illustrates the second case using the 

relation 12. 

Based on the points a1, a2, b1 and b2, below a 

description of the relations in that group can be: 

 Relation 1 (a1 = 0; a2 = 0; b1 = 0; b2 = 1): edge 

formed by the points a1 and a2 is subdivided to 

point b2

 Relation 2 (a1 = 0; a2 = 0; b1 = 1; b2 = 0): edge  

formed by the points a1 and a2 is subdivided to 

point b1

 Relation 3 (a1 = 0; a2 = 0; b1 = 1; b2 = 1): 

subdivides the edge formed by the points a1

and a2 in two: one whose extreme points are a1

and b2 and the other, b1 and a2, in this order, 

since that way the direction of edges is 

preserved 

 Relation 4 (a1 = 0; a2 = 1; b1 = 0; b2 = 0): edge  

formed by the points b1 e b2 is subdivided in 

point a2

 Relation 8 (a1 = 1; a2 = 0; b1 = 0; b2 = 0): 

formed by the points b1 e b2 is subdivided in 

point a1

 Relation 12 (a1 = 1; a2 = 1; b1 = 0; b2 = 0): 

subdivides the edge formed by the points b1

and b2 in two: one whose extreme points are 

b1 e a2 and the other, a1 e b2, in this order, 

because that way the direction of edges is 

preserved 

4.1.2 Null Relation  

This type of relation occurs in the verified edge’s 

vertex either when the vertex do not touch the other, or 

the intersection between these two edges result only in 

a vertex in common. Both cases are illustrated in Table 

1. For example, the relation 0 for the first case and the 

relation 6 for the second case. Table 2 uses the relation 

0 to illustrate the first case.  

Similarly to the previous subsection, below there is 

a description of the relations contained in that group: 

 Relation 0 (a1 = 0; a2 = 0; b1 = 0; b2 = 0):  as 

they are disjoint edges, there is nothing to do 

 Relation 5 (a1 = 0; a2 = 1; b1 = 0; b2 = 1): as 

only the points a2 and b2 touch each other, 

there is no need to change the two edges, so 

there is nothing to do 

 Relation 6 (a1 = 0; a2 = 1; b1 = 1; b2 = 0): as 

only the points a2 and b1 touch each other, no 

need to change the two edges, so there is 

nothing to do 

 Relation 9 (a1 = 1; a2 = 0; b1 = 0; b2 = 1): as 

only the points a1 and b2 touch each other, no 

need to change the two edges, so there is 

nothing to do 

 Relation 10 (a1 = 1; a2 = 0; b1 = 1; b2 = 0): as 

only the points a1 and b1 touch each other, no 

need to change the two edges, so there is 

nothing to do 

 Relation 15 (a1 = 1; a2 = 1; b1 = 1; b2 = 1): If 

the vertex a1 has the same global coordinate as 

b1, a2 has the same global coordinate as b2 and 

both edges are circumference arcs with same 

radius and global coordinate center (Figure 5), 

there is nothing to do 

Figure 5: Case where relation 15 is null 

4.1.3 Elimination relation 

This type of relation occurs when the two vertexes of 

one edge touches the examined edge or when one of 

the vertices of each edge touches another, but these 

points do not have the same global coordinate. Both 

cases are also illustrated in Table 1 and Table 2. 

Relation 3 and 5 are examples for the first and second 

case, respectively. 

Similarly to the previous two subsections, 

following there is description of the relations contained 

in that group: 

 Relation 3 (a1 = 0; a2 = 0; b1 = 1; b2 = 1): 

eliminates the edge b1b2

 Relation 5 (a1 = 0; a2 = 1; b1 = 0; b2 = 1): if a2

and b2 have different coordinates, it is 

eliminated the parts that touch the two edges 

connected

 Relation 7 (a1 = 0; a2 = 1; b1 = 1; b2 = 1): it is 

eliminated the edge b1b2 and the part of the 

edge a1a2 that has intersection with the edge 

b1b2

 Relation 10 (a1 = 1; a2 = 0; b1 = 1; b2 = 0): if 

a1 e b1 have different coordinate, it is 

eliminated the parts that touch the two 

connected edges  

 Relation 11 (a1 = 1; a2 = 0; b1 = 1; b2 = 1): it is 

eliminated the edge b1b2 and the part of the 
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edge a1a2 that has intersection with the edge 

b1b2;

 Relation 12 (a1 = 1; a2 = 1; b1 = 0; b2 = 0): it is 

eliminated the edge a1a2

 Relation 13 (a1 = 1; a2 = 1; b1 = 0; b2 = 1): it is 

eliminated the edge a1a2 and the part of the 

edge b1b2 that has intersection with the edge 

a1a2;

 Relation 14 (a1 = 1; a2 = 1; b1 = 1; b2 = 0): it is 

eliminated the edge a1a2 and the part of the 

edge b1b2 that has intersection with the edge 

a1a2;

 Relation 15 (a1 = 1; a2 = 1; b1 = 1; b2 = 1): it is 

eliminated the two edges if they are straight 

segments. If both edges are circumference 

arcs with same radius and global coordinate 

center, but have different concavities they will 

only be partial or total removed if one of the 

following conditions are met: 

o The vertex a1 has the same global 

coordinate b2 and b1has the same 

global coordinate a2 (Table 2, relation 

15). In this case, there is a complete 

elimination of the edges; 

o The vertex a1 has the same global 

coordinate b1 and b2 has the same 

global coordinate a2 (Figure 6). In this 

case, there is an elimination of the 

edges parts which is between the 

vertexes b2 and a2;

Figure 6: Relation 15 with elimination of the edges which are 

among the vertexes b2 and a2.

o The vertex a1 has not the same global 

coordinate b1 and b2 has the same 

global coordinate a2 (Figure 7). In this 

case, there is elimination of the edges 

parts which is between the vertexes b1

and a1;

Figure 7: Relation 15 with elimination of the edges which are 

among the vertexes b1 and a1.

o All vertexes have different global 

coordinates (Figure 8). In this case, 

there is elimination of the edges parts 

which are between the vertexes b1 and 

a1 and between b2 and a2.

Figure 8: Relation 15 with elimination of the edges which are 

among the vertexes b1 and a1 and between b2 and a2.

4.2 Adjusting Relation Outcomes 

Firstly, it’s important to know that there is a data 

structure that represents the list of final figures and 

each figure is represented by one edge circular list. The 

final figures are the contours obtained with the 

assembly of player pieces. 

After the relations were applied, contour edges are 

found, but it’s needed to adjust them. Thus one or more 

final figures are identified. This adjusting is done 

selecting an edge to be added in initial position of the 

circular list that represents any of the final figures. 

After, the next edge to be added in this data structure is 

selected. The chosen edge is that among those with a 

global coordinate of initial vertex equal to the end 

vertex of the last edge, added to the circular list and 

has the smallest angle with the last edge inserted in the 

circular list. This is done until a closed polygon is 

found. During this phase are also unified adjacent 

straight segments that form a 180° angle between them 

and adjacent circumference arcs having the same 

global coordinate center. These operations are repeated 

until all contours are identified. 

With this method, the contours are defined and it is 

possible to have representations of holes. For this, it is 

necessary that filled polygons have a direction 

(clockwise, for example) and holes have the opposite 

(in the case of Figure 9, counterclockwise). 

Figure 9: Differences between a filled polygon and a 

polygon with hole. 

To identify the direction of a contour, it is simply 

necessary to be used the formula of area found in 

Bourke [1998], which returns positive if the figure is 
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drawn counterclockwise, and negative if the figure is 

drawn in another direction. 

To verify if a filled polygon represents the solution, 

there is a circular list in which each element stored is 

represented by one of the following data structures: 

one containing the distance between the edge vertexes 

and the angle between this edge and the next on the 

list, while the other structure contains this information 

and the radius and the concavity of the circumference 

arc. These structures must follow the same order of the 

circular edge list that represents the solution submitted 

by the player. The same kind of list is made for 

solution figure of the game.  

Once these lists are ready with the previous 

structures, the game solution is compared with the 

player solution. If any filled polygon forms the solution 

figure, the next step consists on verifying the existence 

of a hole in this polygon. One strategy suggested for 

this is presented in solution 2 described by Bourke 

[1987], which shows how to verify if a point is in a 

polygon. To identify if a hole belongs to a filled 

polygon, it is necessary only to apply this solution in 

all vertexes of the candidate hole. 

If the filled polygon is equal to the solution figure 

and it doesn’t have holes, it is possible to conclude that 

the player set the correct solution. 

4.3 Completeness Level 

For the calculation of the completeness level, it 

obtained the minimum between the completeness of 

the polygon contour assembled by the player that has 

most proximity to the polygon solution and the filled 

area of this contour. This measurement of progress is 

more a motivation of usability than of accuracy, since 

it allows a progress perception of the player. 

5. Special Cases

There is infinity of geometric forms that the verifying 

heuristic presented in subsection 4 treats correctly. 

Although there are special cases that the contour isn’t 

identified properly, depending on the manner that the 

pieces are designed, many of these cases are solved. 

A possible special case would be a geometric 

jigsaw puzzle that has a solution figure illustrated in 

Figure 10. This solution is drawn in clockwise and 

composed of edges AB, BC, CE, EB, BF and FA, 

being AB and BF convexes and centered in point G; 

BC and EB are convexes and centered in point D. 

Figure 10: Solution figure of a special case. 

It is supposed the available pieces for the solution 

assembly are two pieces shown in Figure 11. These 

two pieces were drawn clockwise. One of them is 

composed of edges AB, BA, being AB convex and 

centered in point C. The other is composed of edges 

DF, FD, being FD convex and centered in point E. 

Figure 11: Available pieces for the solution figure 

assembly. 

When the pieces of Figure 11 form the solution 

figure shown in Figure 10, the edges AB and FD won’t 

be subdivided because the resulting relation between 

them will be null. Consequently, the contour of the 

solution figure won’t be found. 

 Meanwhile, this problem can be solved, creating 

with a differently way the game pieces. Figure 12 

shows an alternative of creation pieces that allows the 

correct assembly of the solution figure. The pieces 

shown in Figure 12 were drawn clockwise. One of 

them is composed of edges AB, BC and CA, being AB 

and BC convexes and centered in point D. The other is 

composed of edges EG, GH and HE, being GH and HE 

convexes and centered in point F. 

Figure 12: Alternative set of available pieces to 

assembly the solution figure. 

 When the pieces of Figure 12 intersect the vertexes 

B and H, forming the solution figure shown in Figure 

10, the figure solution contour will be identified 
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because the responsible edges for the problem of the 

null relation of Figure 11 will already be subdivided. In 

other words, AC was subdivided in AB and BC and 

GE was subdivided in GH and HE. 

Another special case example, similar to previous 

one, is a geometric puzzle that has the solution figure 

illustrated in Figure 13. This solution is drawn 

clockwise and composed of edges AB, BC, CD, DE, 

EG, GD, DH and HA, being DE and GH convexes and 

centered in point F. 

Figure 13: Solution figure of a special case. 

Figure 14 shows a possible assembly for the pieces 

of this geometric puzzle. The pieces shown in this 

figure were drawn in clockwise. One of them is 

composed of edges AB, BC, CD and DA. The other is 

composed of edges EF and FE, being EF convex and 

centered in point G. 

Figure 14: Available pieces for the assembly of the 

solution figure. 

In this situation, the difference with the previous 

special case is the pair of edges that can originate the 

contour identification error. This pair is composed of a 

straight segment and a circumference arc. 

Similar to the previous special case, there is a way 

of creating available pieces on game that is illustrated 

in Figure 15. Thus the purposed algorithm detects the 

solution figure contour. The pieces shown in Figure 15 

were drawn clockwise. One of them is composed of 

edges AB, BC, CD, DE, EF and FA. The other is 

composed of edges GH, HI and IG, being GH and HI 

convexes and centered in point J. 

Figure 15: Alternative set of available pieces for the 

solution figure assembly. 

6. Conclusion and Future Works 

In this article, it was presented a new approach to the 

relations between the edges of adjacent polygons. Thus 

there are other ways of successfully verifying the 

solution of geometric puzzles other than the ones 

already established. 

This approach comes along to mend faults of other 

approaches that do not consider only the contour of the 

solution assembled by the player, but all the 

arrangement of the pieces. Also the algorithm 

presented considers edges represented by 

circumference arcs. 

In future, many adaptations must be made in this 

algorithm, such as:  

 Adapting pieces and solutions with edges 

represented by different kind of curves 

 Adding the calculation of intersection between 

edges to apply division relations of edges in 

special cases and thus giving more precision 

to this algorithm 

 Including pieces and solutions with holes 

 Adapting this algorithm for similar problem in 

three dimensions 
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Representation of relations considering only straight segments 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 
Table 1: Possible representations of straight segment relations, adapted of Scarlatos [1999, p. 4]. 

Representation of possible relations considering only circumference arcs 

0 3 5 7 

10 11 12 13 

15 14 
Table 2: Possible representations of circumference arc relations. 
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