
A Novel Algorithm to Verify the Solution of Geometric Puzzle Games

Manoel Siqueira Júnior Rafael Alves Esteban Clua Erick Passos

Clayton da Silva Anselmo Montenegro Júlio Cesar Oliveira*

UFF, Media Lab, Brazil *UFRJ Co., Brazil

Figure 1: Example of a Tangram game, showing the algorithm verification of the player´s progress with a thermometer.

Abstract

In this paper, we present a novel algorithm to solve

the problem of correctly verifying the solution for

geometric puzzles. When compared with others, this

approach covers a satisfactory amount of cases. The

method comprises the use of sixteen possible relations

between polygon edges, which are classified to

eliminate those that are not necessarily part of the final

figure. This method provides for a precise verification

of an arranged set of polygons that must form the same

image as the desired solution, without the need of extra

meta-data. Only the vertexes themselves (also the edge

concavity and center position, when circumference arcs

are present) are used the algorithm.

Keywords: geometric puzzles, polygon contour,

Tangram

Authors’ contact:

manoeljr88@gmail.com

rafamachadoalves@yahoo.com.br

{creis,anselmo,epassos,esteban}@ic.uff.br

juliooceano@gmail.com

1. Introduction

Many games are related to puzzles and geometric

piece arrangements. For this kind of games, it is

necessary that algorithms validate the correctness of

the arrangement and also give a feedback to the player,

telling how close he is from the correct solution. Figure

1 shows the player’s progress in a geometric jigsaw

puzzle by the algorithm proposed in this work. All

geometric jigsaw puzzles presented in this paper are

based on the games proposed in Kaleff et al. [2002].

The algorithm that will be discussed in this paper is

an alternative approach to the problem of identification

if a determinate geometric jigsaw puzzle assembly

represents the intended figure. This work is an

extension of the algorithm presented by Scarlatos

[1999], which is not suitable for jigsaw puzzle that

have more than one possibility for a correct assembly.

This work is also an extension of a preliminary work

made by Siqueira et al. [2008].

The proposed algorithm use a different approach

than that presented by Scarlatos [1999], in order to

verify different arrangements of parts that lead to the

same figure, considering just the outline formed by the

pieces together and not how they are arranged within

the contour. The presented approach also analyses that

the final assembly has no holes.

When compared with pixel by pixel approaches, the

proposed algorithm has the advantage of being easier

to get the partial solution and to solve the problem with

parts that have any rotations.

It is important to note that the pieces of the

geometric jigsaw puzzle and any assembly composed

with them can be represented by a polygon, as well as

the solution figure (which indicates the solution to be

achieved in the game). For this work, the possible

outline of the polygons can be defined by edges

composed of circular arcs and/or straight segments. If a

puzzle is composed of figures that are not polygons, a

bounding polygon will be required for algorithm usage.

The remainder of this paper is organized as follows:

section 2 presents some works related to the design and

implementation of methods for the verification of

relations between edges on polygonal figures. Section

3 carries out an analysis of the problems to be handled,

while section 4 explains the proposed algorithm.

Nevertheless, section 5 talks about some special cases

where the algorithm does not correctly detect the

contour of the assembly made by the player. Finally,

the conclusion and future work associated with the

proposal are presented in section 6.

2. Related Work

In this section, we attempt to compare the proposed

technique with other implementations of mathematical

jigsaw puzzle, specifically in relation to recognition of

the solution, and works about generic methods for the

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

37

recognition of figures through the classification of

relations between edges.

There are few games of geometric jigsaw puzzle

that make the recognition of solution, in other words

the games indicate to the player if he succeeded or not

in completing the assembly. Most implementations

found, for example, shown by Jacob [2002], Martins

[2002] and Lankin [2001], only allow a passive visual

comparison by the player.

The Tangram (geometric jigsaw puzzle) presented

by Ztor [2005] makes the recognition of a solution, but

this approach does not allow assembly with rotating

alternatives. Moreover, the previews work does not

make the partial recognition of a solution, an important

feature for showing the player how far or close he is

from the final solution. The solution presented in this

paper allows both arbitrary rotation and the estimation

of partial solution, besides allowing the use of pieces

with edges composed of circumference arcs.

In Flashkit [1999], it is possible to find a great

repository of source code, tutorials and other materials

for developing games in Flash, including many

examples of Tangrans, as those available in Lankin

[2001], Jacob [2002], Martins [2002], Kunovi [2001]

and Texas [2000]. However, none of these examples

presents algorithms for verification of solution, serving

only as a reference for implementation of the basic

mechanics.

In Scarlatos [1999], it is shown a method to

recognize a figure formed by several polygons

juxtaposed through exact relations formed by their

edges. This solution, however, supports only edges

composed of straight segments and only recognize

individually each possible solution. A figure that can

be formed by more than one combination of parts may

have multiple representations, making it impossible to

use for puzzles that may have thousands of possible

solutions even for simple instances. Although not

satisfactory, the work referenced served as the basis for

the method developed.

A situation in which different arrangements of

pieces form the same figure is illustrated in Figure 2. In

this example, the square figure formed by the union of

polygons 2 and 3 may be attached to the polygon 1 in

different rotations. While the method referenced by

Scarlatos [1999] generates two different

representations, the mechanism that is proposed in this

paper recognizes both figures as equals, and therefore

is more appropriate to the problem of verification of

solutions of geometric jigsaw puzzle.

Figure 2: Two different arrangements that represent the same

figure.

The authors did not found any other works that, at

least using polygons with edges composed of straight

segments, provide a general method for the recognition

of solution of geometric jigsaw puzzle from the

comparison with the figure solution.

3. Problem Considerations

For the arrangement of the pieces during the game

to be verified, relations between the edges of different

polygons, proposed in the work of Scarlatos (1999),

are considered to assist in identifying the contours of

the current figure mounted by the player. Besides the

basic relations between edges, adjustments are made so

that the final result of this assembly is adequately

compared with the figure solution.

Both the representation of the solution and the

assembly made by the player are composed of circular

lists of edges, which describe appropriately the final

design of each. It is important to note that the polygons

formed during the game may contain holes and it does

not interfere in the analysis of the solution proposed by

the player.

For a correct usage of the algorithm it is necessary that:

 There is no overlap between the pieces of the

geometric jigsaw puzzle, since the elimination

of edges can not happen in some cases it was

necessary

 Each of the pieces and the solution figure has

to be designed either in a clockwise or anti-

clockwise direction; in other words, all must

be designed in the same direction at the

definition of its vertices constituents. Thus,

comparison of the assembly by the player

with the correct solution is made with the

same sense of drawing

 It must be kept in memory the coordinates of

the vertices that form the polygons, and if the

representation of edges is composed of

circumference arcs, it is also necessary the

center of the circumference arc and its

concavity (concave or convex). Such as it is

illustrated on Figure 3, the vertices A, B, C

and D; the center and the concavity of

circumference arc BC and DA should be

stored in memory

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

38

Figure 3: Example of a polygon with edges composed

of straight segments and circumference arcs.

.

 The solution polygon can not have holes,

since it is not taken into consideration by the

algorithm the position in the figure that the

hole is located. The presence of holes will

only be checked by the player itself. A

solution polygon with a hole is shown in

Figure 4

Figure 4: The solution can not contain holes, such as it is

represented by the white rectangle.

 The game must be composed only of closed

polygons without holes, and formed only by

borders consisting of straight segments and

circumference arcs, not supporting other types

of curves

Despite these restrictions, infinity of forms of pieces is

permitted so that the proposed algorithm properly

analyzes the solution set by the player during the

assembly of geometric jigsaw puzzle.

4. Heuristic for Verification

This heuristic for the verification of the solution of

a geometric jigsaw puzzle uses the relations described

in Scarlatos [1999]. Thus, it is added the verification of

edges composed of circumference arcs, besides

interpreting relations separately, removing the edges

that are not part of the contour of the result obtained by

the relations, so that only the edges of the contour

remain. The edges of the contours are then rearranged

so that the figure is represented in a unique way.

4.1 Relations

Only the relations between edges of different

polygons will be considered. What characterizes each

relation between a pair of edges is the verification of

the vertices of each edge, checking if it belongs or not

to the other analyzed edge.

Initially, it is supposed that only edges composed of

straight segments are analyzed and that one of the

edges is formed by the points a1 and a2 and the other by

b1 and b2. For each of the four corners, if it belongs to

the other edge, it will be assigned value 1, otherwise,

value 0. Concatenated values of a1, a2, b1 and b2, in that

order, has the representation of the relationship

between two edges expressed in a binary system,

converted into a decimal system.

Table 1 (attached at end of paper) shows the

possible relations between edges, where the polygons

were drawn in a clockwise direction. The arrows of

one vertex to another indicate the direction of the edge

they represent. The relations are presented in decimal

form and are located just below the figure to which

they belong.

To deal with edges composed of arcs, in addition to

the vertices, it is also necessary the center of the

circumference and its concavity (concave or convex)

information. Therefore, different data structures are

generated to be associated with two types of edges

(straight segments and circumference arcs). Thus,

relations are established for identifying the type of

edge that each one has.

There are three groups of relations: those that split

an edge, those that are null and those that totally or

partially eliminate the edges. When it includes edges

which are circumference arcs in the verification of

relations, the interpretation obtained can be more

comprehensive. Therefore, to simplify the algorithm,

the relations are considered void, in cases where there

are not explained in subsections 4.1.1, 4.1.2 and 4.1.3,

without even checking the number of the result.

It is important to note that a relation may belong to

different groups, since as it comes from the comparison

between two edges. This can lead to an individually

and differently treatment. For instance, the relation that

has the number 12 in Table 1 has one of the edges

eliminated completely and the other splitted.

In all cases presented in subsections 4.1.1, 4.1.2

and 4.1.3, the pair of edges can only be analyzed as

follows:

 Both edges are straight segments

 Both edges are circumference arcs with equals

radius and global center coordinate but with

different concavities

Table 2 (attached at end of article) shows the

possible relations between edges represented by

circumference arcs in the described case immediately

above, in which the polygons were drawn clockwise.

The arrows from one vertex to another indicate the

direction of the edge they represent and the point "c"

indicates the center of both edges. The relations are

presented in decimal form and are located just below

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

39

the figure to which they relate. As can be noted, not all

relations are possible.

4.1.1 Split Relation

This type of relations occurs either when only one

vertex is tangential to the edge examined or when two

vertices that belong to one edge are contained in

another edge but not touching in the extreme points of

this. These cases are illustrated in Table 1: the relation

1 for the first case and the relation 12 for the second

case. Table 2 illustrates the second case using the

relation 12.

Based on the points a1, a2, b1 and b2, below a

description of the relations in that group can be:

 Relation 1 (a1 = 0; a2 = 0; b1 = 0; b2 = 1): edge

formed by the points a1 and a2 is subdivided to

point b2

 Relation 2 (a1 = 0; a2 = 0; b1 = 1; b2 = 0): edge

formed by the points a1 and a2 is subdivided to

point b1

 Relation 3 (a1 = 0; a2 = 0; b1 = 1; b2 = 1):

subdivides the edge formed by the points a1

and a2 in two: one whose extreme points are a1

and b2 and the other, b1 and a2, in this order,

since that way the direction of edges is

preserved

 Relation 4 (a1 = 0; a2 = 1; b1 = 0; b2 = 0): edge

formed by the points b1 e b2 is subdivided in

point a2

 Relation 8 (a1 = 1; a2 = 0; b1 = 0; b2 = 0):

formed by the points b1 e b2 is subdivided in

point a1

 Relation 12 (a1 = 1; a2 = 1; b1 = 0; b2 = 0):

subdivides the edge formed by the points b1

and b2 in two: one whose extreme points are

b1 e a2 and the other, a1 e b2, in this order,

because that way the direction of edges is

preserved

4.1.2 Null Relation

This type of relation occurs in the verified edge’s

vertex either when the vertex do not touch the other, or

the intersection between these two edges result only in

a vertex in common. Both cases are illustrated in Table

1. For example, the relation 0 for the first case and the

relation 6 for the second case. Table 2 uses the relation

0 to illustrate the first case.

Similarly to the previous subsection, below there is

a description of the relations contained in that group:

 Relation 0 (a1 = 0; a2 = 0; b1 = 0; b2 = 0): as

they are disjoint edges, there is nothing to do

 Relation 5 (a1 = 0; a2 = 1; b1 = 0; b2 = 1): as

only the points a2 and b2 touch each other,

there is no need to change the two edges, so

there is nothing to do

 Relation 6 (a1 = 0; a2 = 1; b1 = 1; b2 = 0): as

only the points a2 and b1 touch each other, no

need to change the two edges, so there is

nothing to do

 Relation 9 (a1 = 1; a2 = 0; b1 = 0; b2 = 1): as

only the points a1 and b2 touch each other, no

need to change the two edges, so there is

nothing to do

 Relation 10 (a1 = 1; a2 = 0; b1 = 1; b2 = 0): as

only the points a1 and b1 touch each other, no

need to change the two edges, so there is

nothing to do

 Relation 15 (a1 = 1; a2 = 1; b1 = 1; b2 = 1): If

the vertex a1 has the same global coordinate as

b1, a2 has the same global coordinate as b2 and

both edges are circumference arcs with same

radius and global coordinate center (Figure 5),

there is nothing to do

Figure 5: Case where relation 15 is null

4.1.3 Elimination relation

This type of relation occurs when the two vertexes of

one edge touches the examined edge or when one of

the vertices of each edge touches another, but these

points do not have the same global coordinate. Both

cases are also illustrated in Table 1 and Table 2.

Relation 3 and 5 are examples for the first and second

case, respectively.

Similarly to the previous two subsections,

following there is description of the relations contained

in that group:

 Relation 3 (a1 = 0; a2 = 0; b1 = 1; b2 = 1):

eliminates the edge b1b2

 Relation 5 (a1 = 0; a2 = 1; b1 = 0; b2 = 1): if a2

and b2 have different coordinates, it is

eliminated the parts that touch the two edges

connected

 Relation 7 (a1 = 0; a2 = 1; b1 = 1; b2 = 1): it is

eliminated the edge b1b2 and the part of the

edge a1a2 that has intersection with the edge

b1b2

 Relation 10 (a1 = 1; a2 = 0; b1 = 1; b2 = 0): if

a1 e b1 have different coordinate, it is

eliminated the parts that touch the two

connected edges

 Relation 11 (a1 = 1; a2 = 0; b1 = 1; b2 = 1): it is

eliminated the edge b1b2 and the part of the

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

40

edge a1a2 that has intersection with the edge

b1b2;

 Relation 12 (a1 = 1; a2 = 1; b1 = 0; b2 = 0): it is

eliminated the edge a1a2

 Relation 13 (a1 = 1; a2 = 1; b1 = 0; b2 = 1): it is

eliminated the edge a1a2 and the part of the

edge b1b2 that has intersection with the edge

a1a2;

 Relation 14 (a1 = 1; a2 = 1; b1 = 1; b2 = 0): it is

eliminated the edge a1a2 and the part of the

edge b1b2 that has intersection with the edge

a1a2;

 Relation 15 (a1 = 1; a2 = 1; b1 = 1; b2 = 1): it is

eliminated the two edges if they are straight

segments. If both edges are circumference

arcs with same radius and global coordinate

center, but have different concavities they will

only be partial or total removed if one of the

following conditions are met:

o The vertex a1 has the same global

coordinate b2 and b1has the same

global coordinate a2 (Table 2, relation

15). In this case, there is a complete

elimination of the edges;

o The vertex a1 has the same global

coordinate b1 and b2 has the same

global coordinate a2 (Figure 6). In this

case, there is an elimination of the

edges parts which is between the

vertexes b2 and a2;

Figure 6: Relation 15 with elimination of the edges which are

among the vertexes b2 and a2.

o The vertex a1 has not the same global

coordinate b1 and b2 has the same

global coordinate a2 (Figure 7). In this

case, there is elimination of the edges

parts which is between the vertexes b1

and a1;

Figure 7: Relation 15 with elimination of the edges which are

among the vertexes b1 and a1.

o All vertexes have different global

coordinates (Figure 8). In this case,

there is elimination of the edges parts

which are between the vertexes b1 and

a1 and between b2 and a2.

Figure 8: Relation 15 with elimination of the edges which are

among the vertexes b1 and a1 and between b2 and a2.

4.2 Adjusting Relation Outcomes

Firstly, it’s important to know that there is a data

structure that represents the list of final figures and

each figure is represented by one edge circular list. The

final figures are the contours obtained with the

assembly of player pieces.

After the relations were applied, contour edges are

found, but it’s needed to adjust them. Thus one or more

final figures are identified. This adjusting is done

selecting an edge to be added in initial position of the

circular list that represents any of the final figures.

After, the next edge to be added in this data structure is

selected. The chosen edge is that among those with a

global coordinate of initial vertex equal to the end

vertex of the last edge, added to the circular list and

has the smallest angle with the last edge inserted in the

circular list. This is done until a closed polygon is

found. During this phase are also unified adjacent

straight segments that form a 180° angle between them

and adjacent circumference arcs having the same

global coordinate center. These operations are repeated

until all contours are identified.

With this method, the contours are defined and it is

possible to have representations of holes. For this, it is

necessary that filled polygons have a direction

(clockwise, for example) and holes have the opposite

(in the case of Figure 9, counterclockwise).

Figure 9: Differences between a filled polygon and a

polygon with hole.

To identify the direction of a contour, it is simply

necessary to be used the formula of area found in

Bourke [1998], which returns positive if the figure is

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

41

drawn counterclockwise, and negative if the figure is

drawn in another direction.

To verify if a filled polygon represents the solution,

there is a circular list in which each element stored is

represented by one of the following data structures:

one containing the distance between the edge vertexes

and the angle between this edge and the next on the

list, while the other structure contains this information

and the radius and the concavity of the circumference

arc. These structures must follow the same order of the

circular edge list that represents the solution submitted

by the player. The same kind of list is made for

solution figure of the game.

Once these lists are ready with the previous

structures, the game solution is compared with the

player solution. If any filled polygon forms the solution

figure, the next step consists on verifying the existence

of a hole in this polygon. One strategy suggested for

this is presented in solution 2 described by Bourke

[1987], which shows how to verify if a point is in a

polygon. To identify if a hole belongs to a filled

polygon, it is necessary only to apply this solution in

all vertexes of the candidate hole.

If the filled polygon is equal to the solution figure

and it doesn’t have holes, it is possible to conclude that

the player set the correct solution.

4.3 Completeness Level

For the calculation of the completeness level, it

obtained the minimum between the completeness of

the polygon contour assembled by the player that has

most proximity to the polygon solution and the filled

area of this contour. This measurement of progress is

more a motivation of usability than of accuracy, since

it allows a progress perception of the player.

5. Special Cases

There is infinity of geometric forms that the verifying

heuristic presented in subsection 4 treats correctly.

Although there are special cases that the contour isn’t

identified properly, depending on the manner that the

pieces are designed, many of these cases are solved.

A possible special case would be a geometric

jigsaw puzzle that has a solution figure illustrated in

Figure 10. This solution is drawn in clockwise and

composed of edges AB, BC, CE, EB, BF and FA,

being AB and BF convexes and centered in point G;

BC and EB are convexes and centered in point D.

Figure 10: Solution figure of a special case.

It is supposed the available pieces for the solution

assembly are two pieces shown in Figure 11. These

two pieces were drawn clockwise. One of them is

composed of edges AB, BA, being AB convex and

centered in point C. The other is composed of edges

DF, FD, being FD convex and centered in point E.

Figure 11: Available pieces for the solution figure

assembly.

When the pieces of Figure 11 form the solution

figure shown in Figure 10, the edges AB and FD won’t

be subdivided because the resulting relation between

them will be null. Consequently, the contour of the

solution figure won’t be found.

 Meanwhile, this problem can be solved, creating

with a differently way the game pieces. Figure 12

shows an alternative of creation pieces that allows the

correct assembly of the solution figure. The pieces

shown in Figure 12 were drawn clockwise. One of

them is composed of edges AB, BC and CA, being AB

and BC convexes and centered in point D. The other is

composed of edges EG, GH and HE, being GH and HE

convexes and centered in point F.

Figure 12: Alternative set of available pieces to

assembly the solution figure.

 When the pieces of Figure 12 intersect the vertexes

B and H, forming the solution figure shown in Figure

10, the figure solution contour will be identified

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

42

because the responsible edges for the problem of the

null relation of Figure 11 will already be subdivided. In

other words, AC was subdivided in AB and BC and

GE was subdivided in GH and HE.

Another special case example, similar to previous

one, is a geometric puzzle that has the solution figure

illustrated in Figure 13. This solution is drawn

clockwise and composed of edges AB, BC, CD, DE,

EG, GD, DH and HA, being DE and GH convexes and

centered in point F.

Figure 13: Solution figure of a special case.

Figure 14 shows a possible assembly for the pieces

of this geometric puzzle. The pieces shown in this

figure were drawn in clockwise. One of them is

composed of edges AB, BC, CD and DA. The other is

composed of edges EF and FE, being EF convex and

centered in point G.

Figure 14: Available pieces for the assembly of the

solution figure.

In this situation, the difference with the previous

special case is the pair of edges that can originate the

contour identification error. This pair is composed of a

straight segment and a circumference arc.

Similar to the previous special case, there is a way

of creating available pieces on game that is illustrated

in Figure 15. Thus the purposed algorithm detects the

solution figure contour. The pieces shown in Figure 15

were drawn clockwise. One of them is composed of

edges AB, BC, CD, DE, EF and FA. The other is

composed of edges GH, HI and IG, being GH and HI

convexes and centered in point J.

Figure 15: Alternative set of available pieces for the

solution figure assembly.

6. Conclusion and Future Works

In this article, it was presented a new approach to the

relations between the edges of adjacent polygons. Thus

there are other ways of successfully verifying the

solution of geometric puzzles other than the ones

already established.

This approach comes along to mend faults of other

approaches that do not consider only the contour of the

solution assembled by the player, but all the

arrangement of the pieces. Also the algorithm

presented considers edges represented by

circumference arcs.

In future, many adaptations must be made in this

algorithm, such as:

 Adapting pieces and solutions with edges

represented by different kind of curves

 Adding the calculation of intersection between

edges to apply division relations of edges in

special cases and thus giving more precision

to this algorithm

 Including pieces and solutions with holes

 Adapting this algorithm for similar problem in

three dimensions

Acknowledgements

This project is founded by the Brazilian ministery

of Education and Science and Technology. Special

thanks for professor Alexsandre Machado, who helped

in the English review, and Ana Kaleff, who presented

geometric puzzles to us.

References

LANKIN, A., 2001. Tangram Implementation.

Available from:

http://www.flashkit.com/movies/Games/Full_Game_Sou

rce/Tangram-Andrew_L-5966/index.php [Accessed 03

August 2008].

JACOB, E., 2002. Tangram Implementation.

Available from:

http://www.flashkit.com/movies/Games/Full_Game_Sou

rce/Tangram-Eduardo_-8137/index.php [Accessed 03

August 2008].

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

43

FLASHKIT, 1999. Section: Movies; Subsection: Games.

Available from: http://www.flashkit.com [Acessed 03

August 2008].

MARTINS, I. F., 2002. Tangram Implementation. Available

from: http://www.flashkit.com/movies/Games/Tangram-

Ilclio_-6471/index.php [Acessed 03 August 2008].

KALEFF, A. M.; REI, D.M.; GARCIA S. S. Quebra-cabeças

geométricos e formas planas. 3 ed. Niteroi: EdUFF,

2002.

DE KUNOVI, N., 2001. Tangram Implementation.

Available from:

http://www.flashkit.com/movies/Games/Full_Game_Sou

rce/Tangram-Nicola_d-3822/index.php [Acessed 03

August 2008].

JASP, T., 2000. Tangram Implementation.

Available from:

http://www.flashkit.com/movies/Games/Full_Game_Sou

rce/Tangram-Texas_Ja-2061/index.php [Acessed 03

August 2008].

ZTOR, 2005. Tangram Implementation.

Available from:

http://www.ztor.com/index.php4?ln=&g=game&d=tang

[Acessed 03 August 2008].

SCARLATOS, L. L., 1999. Puzzle piece topology: detecting

arrangements in smart objects interfaces.

BOURKE, P., 1987. Determining if a point lies on the interior

of a polygon.

Available from:

http://local.wasp.uwa.edu.au/~pbourke/geometry/insidep

oly/ [Acessed 21 June 2008].

BOURKE, P., Determining whether or not a polygon (2D) has

its vertices ordered clockwise or counterclockwise, 1998.

Available from:

http://local.wasp.uwa.edu.au/~pbourke/geometry/clockwi

se/ [Acessed 21 June 2008].

SIQUEIRA, M. M. J.; MACHADO, R. A.; SANTOS, W. DOS;

CARVALHO, C.; SILVA, C.; MONTENEGRO, A.; PASSOS, E.;

CLUA, E. Algoritmo para Verificação da Solução de

Quebra-cabeças Geométricos. In: SBGames, 2008, Belo

Horizonte.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

44

Representation of relations considering only straight segments

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15
Table 1: Possible representations of straight segment relations, adapted of Scarlatos [1999, p. 4].

Representation of possible relations considering only circumference arcs

0 3 5 7

10 11 12 13

15 14
Table 2: Possible representations of circumference arc relations.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

45

