
Improving Terrain Visualization Through Procedural Generation and
Hardware Tessellation

Alex Frasson ∗ Tiago Augusto Engel Cesar Tadeu Pozzer

Universidade Federal de Santa Maria, Brazil

Figure 1: Puget Sound 40 meter dataset resolution showing great amounts of detail generated by our approach.

ABSTRACT

Terrain visualization is a well discussed and documented field of re-
search. However, many issues can be faced with terrain rendering.
Applications that must cover vast areas as well as applications that
require high detailed visualization can be memory-bound since the
required dataset for meeting such demands can become extremely
large. Moreover, it is still challenging to find high-resolution real
world digital elevation data. That can be an issue when applications
such as games or simulations demand a ground-level visualization
were the lack of high frequency details have a undesirable visual
impact. There are many techniques to overcome those issues and
one of them would be to use procedural generation techniques, not
to generate the whole terrain, but to increase details by generat-
ing high frequency data to fill the gaps. In this paper we present
an approach for augmenting and improving terrain visualization by
applying procedural generation techniques to low resolution eleva-
tion data that is further subdivided by modern tessellation hardware
at runtime.
Keywords: terrain, rendering, tessellation, procedural generation,
perlin noise, fractional brownian motion.

1 INTRODUCTION

Interactive terrain visualization has been a very active computer
graphics research field due to it’s great importance in many appli-
cations such as games, simulations, film industry, computer-aided
design, etc. The goal has always been to render vaster, more accu-
rate and detailed terrain.

Terrain data can be hand made by an artist, procedurally gener-
ated or acquired from digital elevation models (DEMs) from real
world elevation data. The most common DEM representation is as

∗e-mail: afrasson@inf.ufsm.br

heightmaps, one of the most simple and used terrain representation
formats. Independently from where the data came from, in order to
produce detailed visualization, one must have a high-resolution ter-
rain which can become source of storage and performance issues.

In this paper we describe an approach that addresses highly de-
tailed terrain visualization. In order to have more details, one could
naively increase input elevation data resolution, what may be an
issue for DEMs, where, different from procedurally generated ter-
rain, there is a maximum resolution1 2. Instead, we use hardware
tessellation to dynamically subdivide lower resolution input data.
Therefore, this approach is suited for minimizing storage require-
ments, improve visualization of datasets only available at low reso-
lutions and render more realistic scenarios for applications such as
games and simulations.

On its own, tessellation adds more primitives, but not more de-
tails. We address that by using fractional Brownian motion (fBm)
in 3D space with Perlin noise [9], as described by Musgrave [4],
to displace the newly created primitives. We also use phong tessel-
lation [2], a popular technique for geometry smoothing, to smooth
mountain tops and minimize some common artifacts encountered
on low triangle count meshes.

Applying noise throughout the whole terrain does not produce
realistic results. Since this work has no intent of correctly quan-
tifying terrain roughness, we used two simple assumptions to ap-
proximate it. We assume that flat areas tend to accumulate more
sediments and for that reason are less noisy. Based on Brandon and
Pinter’s article [10], we also assume that elevation has an impact
on terrain roughness since average temperature decreases with alti-
tude, making higher peaks less likely to be protected by vegetation.

The paper is organized as follows: section 2 provides back-
ground and related works on the subject, in sections 3, 4, 5 and

1ASTER GDEM is available at 30 meter resolution at htt p :
//asterweb. jpl.nasa.gov/

2SRTM DEM is available at 30 meter resolution at htt p :
//eros.usgs.gov/

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 218

6 we propose an approach and describe its implementation. Finally,
in sections 7 and 8 we evaluate and discuss current results.

2 RELATED WORKS

Most works regarding terrain visualization try to either improve
rendering times or to generate more realistic landscapes. Some
cover both areas [8] [3] and, while presenting new level-of-detail
approaches, also address terrain synthesis. Our work focus on pro-
cedural generation, but instead of generating the whole terrain as
Genevaux et al. [5] and Hnaidi et al. [6], we target to add high fre-
quency details to an existing terrain, similar to Losasso and Hoppe
[8] and Dachsbacher and Stamminger [3]. The key difference is
that we increase details at run time independently of level-of-detail
through the use of tessellation hardware.

Losasso and Hoppe mostly cover terrain level-of-detail in their
paper [8], but they also have addressed terrain synthesis by mixing
their lod technique with procedural generation, keeping only the
coarsest level and adding fractal noise displacement to subsequent
levels.

Dachsbacher and Stamminger [3] focused on procedural detail
generation at runtime. In their terrain rendering approach, pro-
cedural displacement is partly represented in geometry and partly
accounted for during shading, similar to bump-mapping technique
[1].

Genevaux et al. [5] present a framework for terrain modelling
where rivers and rules from hydrology are used to generate a contin-
uous terrain. Their work applies Perlin noise to modulate terrain’s
shape. They use distance to rivers and elevation data as input for
the noise procedure.

Hnaidi et al. presents a method for generating terrains from a set
of curves which represent terrain features [6]. They use noise func-
tion controlled by the diffused amplitude and roughness attributes
to generate details.

3 DISPLACEMENT PROCESS

We propose an approach where all detail generation process is done
on the GPU at runtime. For that we use modern graphics pipeline
features, where the backbone of our approach are the tessellation
stages. The core algorithm is implemented in the Domain Shader
(OpenGL’s Evaluation Shader), where vertex displacement is cal-
culated. Figure 2 shows the process we apply for each Domain
Shader’s input vertex and Figure 4 shows an illustration of this pro-
cess on a single primitive. Moreover, all texturing and lighting is
done on the Pixel Shader stage.

Figure 2: Domain shader displacement process.

4 TERRAIN SMOOTHING

The most distinguishable visual artifacts one can notice when ren-
dering terrains are sharp transitions between samples in the shape
of sharp peaks and large flat triangles. These issues are usually
caused by low resolution input datasets. Some datasets even though

available at high resolutions are still not detailed enough for some
applications since they cover vast areas resulting in low sample
density e.g., Puget Sound, the dataset used in this work, is avail-
able at 16385x16385 samples but covers an area of approximately
163kmx163km.

In order to reduce these undesired visual artifacts, we used phong
tessellation [2], which is the geometric version of phong normal in-
terpolation, to successfully reduce sharp transitions between sam-
ples. Figure 3 shows how phong tessellation can improve visual
quality.

Figure 3: Terrain rendered without (top) and with (bottom) phong tes-
sellation. Notice how sharp peaks are sucessfully minimized.

5 ADDING DETAILS

Our implementation is based on Musgraves simple fBm and mul-
tifractal algorithm [4], both based on Perlin’s noise algorithm [9].
Algorithm 1 shows the fBm procedure used by our system. The
output from these methods is used to perturb the tessellated terrain
mesh as shown on Figures 4 and 5.

Figure 4: Iterative displacement process. We start with the original
surface (top) wich is tessellated and displaced by phong tessellation
(middle). Noise displacement is applied at the end on top of phong
tessellation (bottom). Green circles represent vertices and arrows its
normals.

Regarding the noise procedure, initially we were using Perlin2D
noise considering only X and Z components. However, it was re-
sulting in stretched noise whenever applied to steep surfaces (see
Figure 6), since the Y component has a slower rate of change on
these surfaces. One simple solution to this problem is the use of
Perlin3D noise instead. With the three dimensional Perlin noise we
can use all vertex components, X, Y and Z, ensuring that the value
will not be distorted by steep slopes. Since we want to add details
and not fully generate a new terrain, fBm’s parameter must be ad-
justed so that the base terrain shape won’t be excessively modified.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 219

Figure 5: Terrain rendered without (left) and with (right) fbm displace-
ment modulated by slope and elevation.

Input: p← world space vertex
Input: frequency← initial frequency
Input: octaves← number of octaves
Input: lacunarity← frequency multiplier
Input: gain← amplitude multiplier
sum← noise(p, f requency)
amplitude← 1.0
range← 1.0
o← 1
while o < octaves do

f requency← f requency× lacunarity
amplitude← amplitude×gain
range← range+amplitude
sum← sum+noise(p, f requency)×amplitude
o← o+1

end
sum← sum÷ range
return sum

Algorithm 1: FBM procedure.

Finally, we textured the terrain, also at runtime, according to two
parameters: slope and elevation. The slope determines if the surface
should be textured with rock texture (steep slopes), grass or snow
texture, the two available low-slope textures. Furthermore, these
low-slope textures are chosen according to the elevation and a user
defined threshold. Surfaces below the threshold are textured with
grass texture and surfaces above with snow texture. Results can be
seen on Figures 5, 6 and 7. Even though terrain is initially correctly
mapped with texture coordinates, steep slopes distort textures since
there is a considerable amount of displacement. An solution to up-
date texture coordinates according to the displacement applied on
each vertex should be further investigated.

6 RESULTS AND DISCUSSION

Throughout the development of this project the main test bench was
the Puget Sound dataset3 which covers an area of approximately
163kmx163km and is available at several resolutions. In our tests
we used the 40 meter resolution dataset. We chose this dataset be-
cause it was previously used in other terrain rendering researches
[7] [8], and includes both smooth and rough topology. Most tests
were done around Mount Rainier location (Figure 7) and compared
to real pictures4.

Since this work aimed at adding details by tessellating an ex-
isting terrain, it was natural to use an already established terrain
rendering tool for our tests. The chosen tool was the game engine
Unity, for its popularity among game developers and for its native

3We obtained the freely available data from htt p :
//www.cc.gatech.edu/pro jects/large models/ps.html.

4Ralph Arvesen’s picture available at htt ps :
//www. f lickr.com/photos/rarvesen.

Figure 6: Terrain rendered with Perlin2D (left) and Perlin3D (right).
Notice how details are vertically stretched with Perlin2D.

terrain rendering support with a built-in level-of-detail.

Figure 7: Mount Rainier (left) and it’s 40m resolution dataset ren-
dered with our approach (right).

We set-up three different scenes for testing purposes. Figure 7
shows one of these scenes and Figure 8 its rendering performance.
We played with two different parameters: tessellation’s edge length
and the number of octaves. Edge length is used to calculate the
amount of tessellation necessary to maintain triangle’s screen size
relatively constant. Thus, lower values will demand more subdivi-
sions, generating more triangles and, as expected, decreasing per-
formance. Octaves determines the number of octaves of noise that
are added together to get the final result. The more octaves, more
details can be generated. Therefore, as shown in Figure 8, more
octaves will negatively impact performance. As reference, Figures
1, 5, 6 and 7 show details generated by 6 octaves.

7 CONCLUSION

The association of procedural generation and hardware tessella-
tion allows the use of low resolution datasets while still deliver-
ing highly detailed terrain visualization. Our approach can improve
visualization whithout any storage overhead, which is an impor-
tant feature when working with large datasets. Ideally this solution
should be used in association with an state-of-the-art level-of-detail
technique. Moreover, rendering quality can be adjusted for low-end
systems by controlling the amount of tessellation.

8 FUTURE WORKS

Slope and elevation were used to calculate the amount of displace-
ment generated by the fBm procedure. This approach ensures that
high elevations will get rougher details, which resembles rocky

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 220

233

458 460 466

59

169

334

436

29

91

193

275

18

59

132

195

0

50

100

150

200

250

300

350

400

450

500

2 5 10 15

Fr
am

es
 p

er
 s

ec
o

n
d

Tessellated edge length (pixels)

Performance Evaluation

1 Octave 5 Octaves 9 Octaves 13 Octaves

Figure 8: Performance evaluation of our detail generation approach.
Tested on a Intel Core i7-4950HQ processor along with a Nvidia
GeForce GTX 980 Ti at 1920x1080 screen resolution.

mountains. The same effect appears on steep slopes. One possi-
ble improvement would be to also modulate the noise according to
surface concavity. Valleys, which are concave, tend to accumulate
more sediments and should receive less high frequency noise. In the
other hand, mountaintops, which are convex, tend to be rougher and
thus high frequencies details should be more frequent. Textures are
also dictated by slope and elevation. One could use the same fBm
procedure to randomly distribute textures e.g., plains could display
several regions with different types of grass.

ACKNOWLEDGEMENTS

We thank the Brazilian Army for the financial support through the
SIS-ASTROS project, developed in the context of the ASTROS
2020 strategic project.

REFERENCES

[1] J. F. Blinn. Simulation of wrinkled surfaces. ACM SIGGRAPH Com-
puter Graphics, 12:286–292, 1978.

[2] T. Boubekeur and M. Alexa. Phong Tessellation. ACM Transactions
on Graphics, 27(December 2008):1, 2008.

[3] C. Dachsbacher and M. Stamminger. Rendering procedural terrain
by geometry image warping. EGSR’04 Proceedings of the Fifteenth
Eurographics conference on Rendering Techniques, pages 103–110,
2004.

[4] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley.
Texturing and Modeling: A Procedural Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 3rd edition, 2002.

[5] J.-D. Génevaux, É. Galin, E. Guérin, A. Peytavie, and B. Beneš. Ter-
rain generation using procedural models based on hydrology. ACM
Transactions on Graphics, 32(4):1, 2013.

[6] H. Hnaidi, E. Guérin, S. Akkouche, A. Peytavie, and E. Galin. Feature
based terrain generation using diffusion equation. Computer Graphics
Forum, 29(7):2179–2186, 2010.

[7] P. Lindstrom and V. Pascucci. Visualization of large terrains made
easy. Proceedings Visualization 2001 VIS 01, 2001(3):363–574, 2001.

[8] F. Losasso and H. Hoppe. Geometry clipmaps: terrain rendering using
nested regular grids. ACM Transaction on Graphics, 1(212):769–776,
2004.

[9] K. Perlin. An image synthesizer. ACM SIGGRAPH Computer Graph-
ics, 19(3):287–296, 1985.

[10] N. Pinter and M. T. Brandon. How erosion builds mountains. Scientific
American, 15:74–81, 2005.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 221

	157677
	157677

