
Using Mobile Phones to Control Desktop Multiplayer Games
Silvano Maneck Malfatti

malfatti@catolica-to.edu.br

Fernando Ferreira dos Santos
fernandofsan@gmail.com

Núcleo de Tecnologia da Informação Aplicada ao Desenvolvimento de Jogos – NTIGames
Faculdade Católica do Tocantins – FACTO

Av. Teotônio Segurado 1402 Sul Cj.01, 77061-002, Palmas/TO, Brazil

Selan Rodrigues dos Santos
selan@dimap.ufrn.br

Departamento de Informática e Matemática Aplicada
Universidade Federal do Rio Grande do Norte

Campus Lagoa Nova, 59072-970, Natal/RN, Brazil

Figure 1: Users playing a multiplayer car race game controlled by mobile phones.

Abstract
This work presents a multiplatform architecture to support the de-
sign and implementation of desktop multiplayer games controlled
by mobile phones with Bluetooth capability. Our main objec-
tive was to demonstrate that by harnessing technologies such as
J2ME, J2SE, and Bluetooth communication it is possible to trans-
form any mobile phone that support these technologies into a wire-
less application-independent remote controller. To demonstrate the
flexibility of this approach, we have focused on employing mobile
phones as game controllers. We developed four games in different
genres/styles that support various input modes among players. The
results gathered from our testbed games are twofold: i) in terms of
overall game performance there was no noticeable communication
delays, and; ii) in terms of gameplay, we have observed that the
nature of the game interaction supported by this communication
architecture has enhanced the social aspect of games—each game
offered a entertaining environment in which a group of people could
engage in.

Keywords: Bluetooth, desktop games, multiplayer games, mobile
phones.

1 Introduction
The steady growth and advance of the video game industry is
considered one of the most remarkable business development in
decades, having surpassed the movie industry in gross sales since
2007. Part of this success is due to the evolution of graphics cards,
which has allowed game companies to create visually rich and in-
creasingly realistic scenes.

However, since the excellent graphics quality of today’s games is
no longer a novelty, game developers and designers have started to
look for new ways to attract and entertain players. One recent trend
is to provide new forms of interaction, replacing the traditional joy-
stick for more elaborate devices, such as dance pads, guitars, drums,

pointing devices, etc. Figure 2 shows three examples of currently
available unconventional interaction devices.

Figure 2: New interaction devices, from left to right: dance pad,
guitar, and the Wiimote.

Nintendo was one of the first companies to invest on a remote
pointing device with motion sensing capabilities, called the Wi-
imote. This device enables players to interact with games by means
of their natural body movements, gesture recognition and point-
ing [Wingrave et al. 2010]. The Wiimote-based games recognise
rotations about the device’s X , Y , and Z axes done by players
holding the Wiimote, thereby tracking their hand movements. At
the heart of this innovative controller are accelerometers and optical
sensor technologies, which have been employed in Virtual Reality
for decades [Burdea and Coiffet 2003][Sherman and Craig 2002].
Similarly, Sony corporation has announced its own version of mo-
tion capture controller for PlayStationTMduring this year’s E3 press
conference.

Following a slightly different approach, Microsoft has launched

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 212

a system called Kinect, which employs cameras and sensors to cap-
ture the player’s body movement and recognise gestures. This is a
major improvement in terms of game interaction, since they have
eliminated the need for any external controller—the natural body
movement is captured and used as input data, thereby providing an
intuitive game control [Microsoft 2010].

It has become clear that the major video game manufactures are
interested in researching ways of providing new and innovative in-
teraction paradigms for games. Therefore, the level of originality
for such an user interface might be a determining factor for the ac-
tual success (or failure) of any new products.

This work proposes and evaluates a framework that enables ordi-
nary phones with Java and Bluetooth support to function as wireless
game controller for multiplayer desktop-based games. To demon-
strate the flexibility of this approach we developed four multiplayer
games that support distinct input mode. The result is a scalable
framework that fosters great social interaction, and offers a natural
interaction mechanism based on a pervasive technology, the mobile
phone.

This paper is divided as follows. Section 2 covers some related
work and Section 3 provides some background on Bluetooth com-
munication and how to integrate it into Java applications. The fol-
lowing section describes the proposed framework, while in Section
5 we presented some prototypes developed to validate our frame-
work. Finally, in the last section we offer our conclusions and men-
tion some directions for future work.

2 Related Work
Likewise the game industry, the academy is also researching new
interaction paradigms for game development. This is the case, for
instance, when we consider the application of serious games to help
rehabilitation or to function as complementary therapy [Golomb
et al. 2010][Laikari 2009][Burke et al. 2009].

Another promising research topic is to use gesture recognition
to receive user input for game interaction. Generally speaking, it is
possible to point out two broad approaches to accomplish gesture
recognition:

• based on sensors, in this case the computer system may em-
ploy specialised sensors such as data gloves, or general ones,
such as motion trackers. The former are wearable gloves that
can have something between 5 to 22 sensors assigned to key
parts of a human hand. The latter are special sensors that mea-
sure the relative motion of objects (for instance the user’s arm
or head) in relation to a fixed system of coordinates [Machado
2010] [Teichrieb and Figueiredo 2010].

• based on computer vision, by employing regular cameras cou-
pled with computer vision algorithms to recognise fiduciary
markers or any parts of the user body such as hands, face, or
fingers [Stenger et al. 2010].

The work done by Figueiredo et al. (2009), for instance, has
introduced a framework based on gesture recognition via colour
tracking to control real time guitar-based rhythm games. In their
work, the player must wear a pair of coloured gloves to obtain a
suitable contrast with the surrounding environment. The system
continually captures images of the user playing a virtual guitar and
estimates parameters such as position of fingers and speed of hand
movements. These informations are then processed to generate a
corresponding sound. Although their work has presented good re-
sults in terms of easiness of use and robustness, we believe that their
framework has two possible drawbacks. Firstly, their gesture-based
interface eliminates the need for the prop guitar, which might be
a disadvantage since for some people it feels more natural to play
holdings something that feels real than moving their hands in the air.
Secondly, the processing time necessary for the gesture recognition
might impose a limit on the number of simultaneous participants,
depending on the processing capacity of the host computer.

Another project that has focused on an inventive way to pro-
mote player-game interaction is the CamSpace, developed by Israeli
company CEO [Cam-Trax Tech. 2010]. In this project the develop-
ers have used computer vision algorithms to transform almost any
object into a potential control. After a period of recognition and
calibration it is possible, for instance, to use a fruit or even a soda

can to interact with the game. One of the great advantages of their
approach is to allow games to be controlled by ordinary objects.
However, their system has a limitation typical of vision-based so-
lutions: the players must be within the camera’s field of view. This
restriction might limit the range of motion for the players.

Mobile phones are another example of recent interaction modal-
ity that has been drawing interest from the game community. Al-
though most of the popular mobile phones does not have enough
processing power to run games with good graphics quality, they
offer a great potential to function as a wireless remote (game) con-
trol. Mobile phones rely on Wi-Fi or Bluetooth technologies to send
and receive data to applications. This exchange of information can
be designed to follow distributed network architectures such as the
centralised server-based or the peer-to-peer (P2P) models.

In Brazil, the number of mobile phones has been growing
steadily and the government has predicted that by the end of 2011
the number of mobile phones will reach the total population of
the country [Zmoginski 2010]. Should this prediction confirm, the
game industry will have at their disposal a source of potential users
who will be happy to extend their mobile phone’s functionality by
connecting them to digital TV set top boxes, personal computers,
or even game consoles.

The Poppet framework [Vajk et al. 2008] is an example of the
potential use of mobile phones as game controllers. Through this
framework it is possible to develop games that run on large public
display and receive input from the on-board sensors present in the
player’s mobile phones. The phone-game communication is done
via Bluetooth. Their testbed game display on a large screen a shared
game environment in which the players navigate their individual
avatars with their own mobile phones. The movements applied to
their phones were captured by the on-board accelerometer and sent
back to the game controller central server.

Poppet is based on a client-server model. The client application
was implemented using C++ programming language and the Sym-
bian S60 3rd Edition SDK from Nokia. This SDK is necessary to
grant access to 3D motion sensors, and is similar in functionality to
the J2ME’s Mobile Sensor API (JSR-256). Additionally, they run
a Java application on the client side to establish the communication
between a mobile phone and the server application. Figure 3 shows
an overview of the Poppet’s architecture. To reduce compatibility
issues among different Bluetooth stacks, the server application was
developed using the Frason Bluetooth SDK for C#.

Figure 3: The Poppet’s architecture, showing the server and
client components.

Although functional, the Poppet architecture has two limitations:
i) both the client and the server applications are platform depen-
dent; on the client side, only Symbian based devices are able to run
the application, while the server application run only on Windows-
based machines; and ii) the mobile phones work only as input de-
vices; the mobile phone’s inherent potential to display information
is overlooked in their framework.

The lessons learnt from this review have helped us to define
some requirements that guided the design of a novel communica-
tion framework architecture called BlueWave. The requirements
were:

• Improved accessibility: to achieve improved accessibility for
both client and server applications, the framework should be
implemented entirely with the Java language. This simple
strategy enables anyone who owns a mobile phone with Blue-
tooth and Java support to participate in games.

• Platform independence: the server should be able to run on
a variety of operational systems, such as Windows, Mac OS,
Linux, etc.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 213

• Two-way communicability: the mobile phone should transmit
data both ways. This means that a mobile phone can also
receive information, store it locally and display user-specific
information on the mobile screen (e.g. the player score or
game status).

• Scalability: the architecture should afford the design of mul-
tiplayer games.

The next section briefly describes how Bluetooth communica-
tions works, which will help to understand a more detailed view of
the BlueWave architecture that follows.

3 The Bluetooth Technology Standard
Bluetooth is an international standard for open wireless communi-
cation. It has the (theoretical) maximum data transfer speed vary-
ing from 1 to 24 Mbit/s, depending on the version. Bluetooth
utilises short length radio waves to exchange voice or data over
short distances among different categories of devices [Thompson
et al. 2008]. The complete specification for the Java Application
Programming Interface (API) for Bluetooth can be found in the
JSR-82 [Milikich 2010].

Two valuable features of Bluetooth devices are its reduced power
consumption and relatively low technology cost, when compared
to Wi-Fi or infrared, for instance. These features are factors that
encourage the inclusion of Bluetooth support in mobile phones,
whose design is usually concerned with power management issues
and cost reduction of its components.

Another advantage of Bluetooth over other wireless communica-
tion technologies is the ability to create dynamic networks without
the need for an access point nearby. A Bluetooth network operates
under the concept of master-slave: one device acts as master and
manages the connection with up to seven slave devices [Huang and
Rudolph 2007].

The implementation of Bluetooth communication is based on a
protocol stack. The protocol stack provides a standard approach to
the design of system architectures for radio communication among
Bluetooth devices. According to the Bluetooth specification, the
protocol stack is divided into two levels: the upper stack and the
lower stack [Huang and Rudolph 2007].

The lower stack controls the physical functionality of the device,
and it is composed of the radio, the baseband, and the Link Manager
(LM) and Link Controller (LC) layers. The lower stack determines
how to manage the low level operations such as the conversion of
the data from the upper stack into radio signal and vice versa [Kam-
mer et al. 2002].

Considering the programmer’s perspective, the upper stack de-
fine higher-level protocols that perform services such as the Service
Discovery Protocol (SDP), which allows devices to gather informa-
tion about the capabilities of other Bluetooth devices present in the
area of connection; and the exchange of data or objects (OBEX)
such as files, videos and pictures among connected devices. Hence,
to create a Bluetooth enabled application it is necessary to utilise an
API that implements the protocol stack, or at least part of it.

Programming a Bluetooth based application targeted for mobile
phones may fall into two possibilities. The first option would be
to use the development libraries provided by the manufacturer of
the device. The advantage of this approach is to have full access
to the resources offered by the device, though this might restrict
the application in such a way that it would run only on a particular
brand or model.

The second option is to use the Java language through the Java
2 Platform Micro Edition (J2ME). Although the J2ME does not
implement the complete Bluetooth protocol stack, the applications
implemented within the J2ME environment will have access to the
most common Bluetooth features. As a bonus, J2ME based appli-
cation ensure a standard and portable way to run across devices that
support both the Bluetooth and the Java Virtual Machine (JVM).

Despite the Bluetooth programming support granted by the
J2ME, the same does not hold true for its desktop counterpart, the
Java 2 Platform Standard Edition (J2SE) [Goelzer 2006]. J2SE does
not natively implement the Bluetooth protocol stack, therefore to
develop a Bluetooth compliant application it is necessary to resort
to an external API.

To overcome the aforementioned issue with the J2SE, there exist
various API that implement the JSR-82 specification for particular

operational systems. Nonetheless, just a few of them are cross-
platform and open source libraries, as shown in Table 1.

Table 1: List of APIs that implement the JSR-82 for j2SE.

API Supported OS Licensing

Avetana Win, Mac, Linux, Pocket PC Open source1

Bluecove Win, Mac, Linux free (LGPL)
JavaBluetooth.org Win, Linux, QNX free
Harald any system where Java runs free
1: only linux.

To implement the BlueWave framework, we have chosen the
Bluecove API for several reasons: it is a free API, maintained by a
community of developers, has extensive documentation, is a mature
API (firs released on 2004), supports the OBEX protocol, and does
not depend on the Java Communication API (javax.comm).

The Bluecove is a JSR-82 JSE implementation that interfaces
with various platforms, namely the Mac OS X, WIDCOMM,
BlueSoleil, and Microsoft Bluetooth stack. The Bluecove works
as an intermediate layer between the J2SE applications and the op-
erational system’s native Bluetooth protocol stack, as illustrated in
Figure 4.

Figure 4: Schematic representation of a J2SE application that
access Bluetooth communication via Bluecove API.

4 The BlueWave framework
This section describes the BlueWave, a generic framework aimed
at designing cross-platform multiplayer games based on the Client-
Server model for distributed applications. The server application
runs on a host computer, whereas the client side may run on mobile
phones or any portable device that have Bluetooth communication
capabilities and run Java based applications.

The BlueWave design has been guided by the requirements listed
at the end of Section 2, and shall be described in detail in the next
subsections.

4.1 The structure of the client application
Before we describe how the BlueWave client application is organ-
ised, it is important to understand how the communication process
among Bluetooth devices actually happens.

Because most of the devices that utilises Bluetooth are mobile,
Bluetooth networks are often ad-hoc and also mobile. At any given
time, a Bluetooth device might detect a new device entering or leav-
ing its covering area. When a group of Bluetooth devices are linked,
they form a computer network known as piconet. A piconet can in-
terconnect a user group of up to eight devices. One device plays the
role of master, while the others are considered slave devices. The
devices can switch roles, by agreement, thereby allowing any slave
to become the master. At any given time, data can be transferred be-
tween the master and any other slave device. Finally, the Bluetooth

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 214

specification defines the concept of a scatternet as the interconnec-
tion among two or more piconets. To interconnect two piconets, a
device (either the master or one of the slaves) shall simultaneously
act as slave in another separate piconet.

The first step to establish a JSR-82 compliant piconet is to search
for possible connections within the range of the master device. This
process is called Inquirity.

The discovery process also depends on the discovery mode set
for each Bluetooth device within the reachable range of the mas-
ter device. Each Bluetooth device may assume three mutually ex-
clusive discovery modes, namely i) LIAC (limited inquiry access
code), this grants a temporary access mode that will revert back
to previous mode after 1 minute; ii) GIAC (general inquiry access
code), this makes the device visible to any inquiring device; and, or
NOT DISCOVERABLE, which disables the device visibility to any
other device. In the BlueWave framework, the host on which the
server will run shall be set to the GIAC mode, enabling the clients
to discover it at any time and request a connection.

After the discovery process has been finished, it is necessary to
provide a mechanism to allow the clients to choose which of the
discovered devices they want to establish a connection to. Besides
defining to whom the clients want to connect, they also have to de-
fine which service they wish to utilise. This is necessary because
a device may offer several services simultaneously, such as data
exchange or voice transmission. The entire process can be com-
pared to establishing a connection between two host using sockets:
the device name is equivalent to the IP address, while the list of
services available are equivalent to the port numbers accepting a
communication link.

The client application of our framework is based on three major
classes that represent some of the entities and concepts discussed
so far in this section. The threes classes are: CBBlueClient,
CDeviceList, and CClientCanvas.

The first class represents the MIDlet2 application and
provides the methods startApp(), pauseApp(), and
destroyApp(), typical of a J2ME application. This class also
keeps a reference to the device display that manages the content to
be shown on the client’s screen.

The second class, CDeviceList, is responsible for displaying
a list with the names of the devices that have been found during
the inquiry stage, and allowing the user to select one of them to
be the server (master). For that reason, this class implements two
interfaces: List and DiscoveryListenner. The first inter-
face defines methods to display an option list on the device dis-
play, whereas the second one defines methods to search for devices
within the range of connection.

After the searching stage is completed, a CDeviceList object
exhibits the list of device names found (see Figure 5 for an exam-
ple). It is up to the user to choose the device the client application
will connect to. Because of the secure nature of Bluetooth connec-
tions, it is no possible to establish a connection without the user
explicitly determining which device he or she wants to connect to.

Once the server device has been chosen, the client application
shows on its screen a CClientCanvas object. This class has
three purposes: to receive and identify keyboard or touchscreen
events, to display the graphical user interface to the player, and to
manage the communication channel for message exchanging be-
tween the client and server applications.

Lastly, the CClientCanvas object remains active on the de-
vice display during the entire session, unless the user decides to quit
the application or the network link is lost.

4.2 The structure of the server application
The server application is organised in two modules. The first is
the message server, whose main task is to manage all the client
connections. The graphics manager is the second module, whose
attribution is to draw all the game elements.

The message server is composed by two classes:
CServerBluetooth and CClientConnection. The
CServerBluetooth accepts connection requests sent by the
clients within range. The message server also maintains a reference

2A MIDlet is an application that uses the Mobile Information Device
Profile (MIDP) of the Connected Limited Device Configuration (CLDC)
for the Java ME environment.

Figure 5: Example of a device screen displaying a list of three
devices found during the discovery stage.

to a queue of messages, in which messages sent by all clients
linked to the server are stored to be latter processed.

For each new established connection, the
CServerBluetooth object instantiates a
CClientConnection object that, in turn, encapsulates a
thread responsible for managing that connection.

The main attribution of a CClientConnection object is to
constantly listen to the communication link, waiting for the arrival
of new messages sent by the corresponding client. As stated be-
fore, all the messages received are inserted into the server’s message
queue. The CClientConnection may also forward messages
from the graphics manager to any specific client. This is the case,
for example, when the game need to update personal information
(game status) on the screen of the player device.

4.3 The BlueWave communication protocol
We have decided for a simple communication protocol because of
the following reasons: (1) the intended client devices are mobile
phones, which are limited devices in terms of processing power and
graphics capabilities; (2) we wanted a generic solution that would
work with a great variety of game genres, eliminating the need
to adapt the protocol for each new game application; and (3) we
wanted to keep to a minimum the amount of information to be sent
through the communication channel.

Therefore, our protocol has two types of message packages: the
message sent by a client to the server, called cli2ser message
type, which requires the setting of three data fields for each message
package sent; and, the message sent by the server to a client, called
ser2climessage type, which comprises two data fields. We shall
describe them in turns next.

Every new client that connects to the main application receives
a unique identification. The first data field of a cli2ser message
type is always the client ID. The next data field is the code of a
key (alphanumeric keyboard) or an user interface component (touch
screen). The last data field is a status value denoting whether the
key or component has been pressed or released (see Figure 6a). In
this example, the message indicates that the player with ID = ‘1’
(value of the first field) has sent a keycode = ‘5’ with the status
= ‘2’, which means the key has been released.

Here we shall consider a practical issue concerning the gener-
ation of cli2ser messages. Let us assume that the player has
pressed and kept hold a key on his/her device. To avoid overloading
the communication channel by repeatedly sending redundant mes-
sages telling that the same key remains pressed, we have defined a
simple strategy: once a key on the client side has been pressed (‘key
pressed’ message sent, or keystatus = ‘1’), the graphics man-
ager will regard it as pressed until a corresponding ‘key released’
(i.e. keystatus = ‘2’) message arrives. In other words, while a
key is kept pressed, only a single message is sent from the client to
the server.

The ser2cli type message has two fields (see Figure 6b). The
first stores the destination address of a single client or a code in-
dicating that this is a broadcast message that must be sent to all
registered clients. The second field is a string that stores a generic
information that needs to be sent to the receiver of the message.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 215

In this case, the client is responsible for parsing the received string
and use this information to do any necessary update to keep the
application synchronised.

(a) The three data fields of a
cli2ser message type. This ex-
ample can be read as follows: the
client ‘1’ has released (indicated by
the code = ‘2’ in the last data field)
the key with code ‘5’.

(b) The two data fields of a
ser2cli message type. In this ex-
ample, the server ‘4’ has sent the
string “alert” to the client.

Figure 6: Graphical representation of the two types of mes-
sage packages.

The function of the graphics manager is to create and control the
desktop game application or the server application. This module is
organised into a set of classes, each of which responsible for ac-
tivities such as time management, scene graph management, sound
control e playback, and the drawing of special effects, layers and
game characters. This architecture is based on a previous work on
game engines [Malfatti et al. 2008].

The graphics manager organisation allows for the design of both
singleplayer or multiplayer games. For the latter case, it is neces-
sary to create the message queue that has to be passed as reference
to the constructor method of the Bluetooth server. Notice that the
message queue is needed so that the server application can store all
the messages sent by the clients, remove each message, parse it, and
take the suitable action, according to the message content.

In Figure 7 we present an overview of a generic application de-
veloped with the BlueWave framework. Notice in the image that
there are two black arrows between the J2SE and J2ME based com-
ponents, indicating that the clients are able to both send and receive
information.

From the image in Figure 7, it is possible to observe that for an
application to support multiple players it only needs to instantiate
an object of the class Server and pass a reference to the message
queue.

5 Case Studies
In this section we present four case studies, in which we have
demonstrated some of the features of the BlueWave framework. All
case studies involved a desktop based game remotely controlled by
players with mobile phones.

The first game was inspired on the classic Strikers 1945, a verti-
cal scrolling air plane shooter arcade game [Psikyo 1995]. As soon
as a participant connects to the game server, she or he receives an
air plane (with 3 lives) controlled by a set of keys on the mobile
phone. All players fly on the same arena and may collaborate to de-
stroy as many enemies as possible, although there is nothing to stop
a player from attacking any of the other players. To win the game,
a player must obtain the highest score among the participants.

Even though the game may be considered as originally collab-
orative, we observed that usually there was a lot of competition
among players to find out who would obtain the highest score. It
is worth noting that the information on remaining lives, number
of points, medals, special guns, etc., are stored in and presented

Figure 7: Overview of an application built on top of the Blue-
Wave framework. Notice the two black arrows between the
J2SE and J2ME components, indicating that the clients are
able to send and receive information.

through the player’s mobile phone. Thus, a player may hide her
score, so that others would not know how she is doing. This fact has
improved the social aspect of the game. Figure 8 shows a screen-
shot of the game and an example of the graphical user interface for
two players.

Figure 8: Screenshot of the Strikers 1945 clone, and the
graphical user interface for each mobile phone connected to
an instance of the game.

We also developed competitive games, as the prototype from
Figure 1. This is a vertical scrolling car race game, in which the
screen is divided in two lanes, one for each player. Each race car
is controlled by the player’s mobile phone. The left, right, up, and
down arrow keys are mapped, respectively, to left shift, right shift,
acceleration, and breaking of the car.

Win the game the player who reaches the finish line first. During
the race, the players have to avoid several obstacles, such as other
cars, trucks, and oil on the road. Each of these obstacles may slow
down the competitor if they come into contact with the player’s car.

The behaviour of the volunteers playing this game showed us
a frequent situation: often one competitor would hit obstacles be-
cause she was distracted, observing the performance of the other
competitor, running beside her. For us, this is evidence of the social
aspect of the game in addition to a high level of fun afforded by
presence games.

The two games described so far have in common the fact that
each participant has to have his or her own mobile phone. The next
game works differently. It is a quiz based game in which the players
are assigned to groups and share a mobile phone (per group).

The serve application, written in J2SE, randomly chooses the
questions and shows the green light for players to press a key indi-
cating their wish to answer the question first. The fastest group to
press the answer key has the right to provide an answer to the quiz.
The chosen group then proceeds to select an answer out of a list of
five alternatives. If the group gets it right they earn some points,

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 216

otherwise their score drops.
The design of the quiz game is such that the set of quizzes and

answers are read from input file. Hence, it is viable to employ this
game as a supporting tool for instructive purposes in schools.

The last game prototype introduces a mix of collaborative and
competitive aspects. It is a battle tank game in which each tank has
to be controlled by a crew of two players. One player, the navigator,
steers the tank, while the other, the gunner, controls the pivoting gun
turret and actually fires the gun. The screenshot in Figure 9 shows
that there are obstacles on the battle field that may block the shell.
As a result, the tank crew has to work together navigate through the
battlefield and fire at the opponent.

Figure 9: Screenshot of a battle tank game, in which each
tank is controlled by a crew of two players. The two mobiles of
a crew either steers the tank or controls the pivoting gun turret.

To make the game even more challenging and interesting, each
member of the tank crew receives different information on their
mobile phones, depending on their role (navigator or gunner). The
navigator, for instance, have access to information regarding the
tank current damage status and battlefield map. To avoid complete
destruction of the tank, the navigator has to occasionally look for a
tool icon on the battlefield. These icons improves the health for the
tank.

The gunner, on the other hand, has to worry about the gun tem-
perature, which tends to rise if the gunner fires repeatedly in a short
time interval. If the gun reaches the threshold temperature, it stops
shooting for a while, until the temperature drops to acceptable lev-
els.

The main remark from this game was the social aspect. Even
though each player had their own mobile phone, they had to con-
stantly talk to each other to successfully command the tank.

6 Conclusion and future work
The ubiquitous nature of mobile phones affords a wide range of
user interaction applications, specially in the game industry. To use
a mobile phone as a control device, for instance, gives an opportu-
nity for people who are fairly resistant to game consoles to try (and
possibly enjoy) gaming with a tool they are accustomed to using in
their daily lives.

In our view, the use of mobile phones as remote controllers in
distributed desktop based games suggests the following advantages:

• It allows for a more natural way of interaction. Modern mo-
bile phones are equipped with accelerometers, touch screen,
Wi-Fi and Bluetooth communication. When these features are
properly combined, mobile phones may be transformed into a
powerful wireless gesture based controller.

• It enables casual players to have access to high quality game
even if they do not have a modern game console. In this
case, the casual player only needs a regular mobile phone with
Bluetooth and Java support, and a desktop computer to run the
game application.

• It eliminates the need to buy extra proprietary game con-
trollers. Most modern video game consoles are sold with only
one game controller. If a group of players want to play to-
gether they would have to buy all the extra controllers. Con-
versely, everyone having a Bluetooth enabled mobile phone
would have the potential to use it as a game controller.

• It promotes application interoperability among different man-
ufacturers, platforms, processing power, and display capabil-
ities. The use of generic games controlled by mobile phones
frees users from specific video game consoles, and widens the
game’s target audience, since most people have access to mo-
bile phones nowadays. This is a valuable feature for the game
market, which often tries to reach as many potential customers
as possible.

Considering the aforementioned advantages, we set out to de-
sign, develop, and test a multiplayer game framework, named Blue-
Wave. We focused on a distributed architecture in which mobile
phones play a central role as wireless game controllers. At the be-
ginning of our project we have defined a set of requirements to
guide our design. These requirements were defined based on our
analysis of related work concerned with novel forms of user inter-
action, rather than improved graphics quality.

To evaluate our proposal we have developed four distinct games
built on top of the BlueWave framework. We tried to apply as many
features as possible, so that most of the available functionality was
tested. We then tested our games with several volunteers and gath-
ered some observations to be analysed in terms of whether it has
fulfilled the project requirements (c.f. Section 2).

The results were quite promising. In terms of accessibility and
platform independence, the applications implemented with Java
have granted access to a large variety of devices and mobile phones
manufacturers. We have successfully tested our games with Linux,
Windows, and Mac OS X. The client application has been also test
on different mobile phones models and brands, such as Nokia, Sam-
sung, Sony Ericsson, Motorola, and LG. With respect to the com-
municability, our battle tank game demonstrated that the client can
work both as input device and as a mini display. The games we
developed were scalable in the sense that they are multiplayer. We
were able to run the battle tank game with up to 5 tanks, which
means 10 simultaneous players distributed in two piconets.

Finally, the next step will be to support the on-board accelerom-
eters of mobile phones. This would facilitate a more natural way to
control 3D games, for example. We also intend to implement the
support for the OBEX communication protocol, thereby enabling
applications built with BlueWave to send and receive more com-
plex information, such as a music or image files.

References
BERNARDES JR., J. L., NAKAMURA, R., AND TORI, R. 2009.

Design and implementation of a flexible hand gesture command
interface for games based on computer vision. In Proceedings of
the VIII Brazilian Symposium on Computer Games and Digital
Entertainment (SBGames 2009), IEEE Computer Society, Los
Alamitos, CA, USA, 64–73.

BURDEA, G. C., AND COIFFET, P. 2003. Virtual Reality Technol-
ogy, 2nd ed. Wiley-IEEE Press, June.

BURKE, J. W., MCNEILL, M., CHARLES, D., MORROW, P.,
CROSBIE, J., AND MCDONOUGH, S. 2009. Serious games
for upper limb rehabilitation following stroke. In VS-GAMES
’09: Proceedings of the 2009 Conference in Games and Virtual
Worlds for Serious Applications, IEEE Computer Society, Wash-
ington, DC, USA, 103–110.

CAM-TRAX TECH., 2010. CamSpace from cam-trax technologies.
http://camspace.com. last access on August.

FIGUEIREDO, L. S., TEIXEIRA, J. M. X. N., CAVALCANTI,
A. S., TEICHRIEB, V., AND KELNER, J. 2009. An open-
source framework for air guitar games. In Proceedings of the VIII
Brazilian Symposium on Computer Games and Digital Enter-
tainment (SBGames 2009), IEEE Computer Society, Los Alami-
tos, CA, USA, 74–82.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 217

GOELZER, M., 2006. Bluecove: Comunicando aplicativos J2ME
com J2SE através de Bluetooth. Revista Web Mobile, edição 8,
ano 02, DevMedia Group.

GOLOMB, M. R., MCDONALD, B. C., WARDEN, S. J.,
YONKMAN, J., SAYKIN, S. J., SHIRLEY, B., HUBER, M.,
RABIN, B., ABDELBAKY, M., NWOSU, M. E., BARKAT-
MASIH, M., AND BURDEA, G. C. 2010. In-home virtual real-
ity videogame telerehabilitation in adolescents with hemiplegic
cerebral palsy. Archives of Physical Medicine and Rehabilitation
91, 1 (January), 1–8.

HUANG, A. S., AND RUDOLPH, L. 2007. Bluetooth Essentials for
Programmers, 1st ed. Cambridge University Press.

KAMMER, D., MCNUTT, G., AND SENESE, B. 2002. Bluetooth
Application Developers Guide: The Short Range Interconnect
Solution. Syngress Publishing, Rockland, MA, USA.

LAIKARI, A. 2009. Exergaming - gaming for health: A bridge be-
tween real world and virtual communities. In Proceedings of the
13th IEEE International Symposium on Consumer Electronics
(ISCE2009), IEEE Press, Kyoto, Japan, 665–668.

MACHADO, L. S. 2010. Interação em realidade virtual e realidade
aumentada, vol. 1 of Livros de minicursos do Brazilian Sympo-
sium on Virtual and Augmented Reality 2010 (SVR2010). SBC,
Canal6 editora, May, ch. 2 – Dispositivos Não-Convencionais
para Interação e Imersão em Realidade Virtual e Aumentada,
23–34.

MALFATTI, S. M., DOS SANTOS, S. R., FRAGA, L. M.,
OLIVEIRA, J. C., AND JUSTEL, C. 2008. The design of a
graphics engine for the development of virtual reality applica-
tions. Revista de Informática Teórica e Aplicada XV, 3 (Decem-
ber), 26–45.

MICROSOFT, C., 2010. Introducing kinect for xbox 360. http:
//www.xbox.com/en-US/kinect, last visited, August.

MILIKICH, M., 2010. Jsr-000082 javaTMAPIs for blue-
tooth. http://www.jcp.org/aboutJava/
communityprocess/final/jsr082/, last access
on August.

PSIKYO, 1995. Strikers 1945. http://www.
world-of-arcades.net/1945/Strikers%201945/
Strikers1945.htm, last access on August 2010.

SHERMAN, W. R., AND CRAIG, A. B. 2002. Understanding Vir-
tual Reality: Interface, Application, and Design, 1st ed. Morgan
Kaufmann, September.

STENGER, B., WOODLEY, T., AND CIPOLLA, R. 2010. Computer
Vision Detection, Recognition and Reconstruction, vol. 285 of
Studies in Computational Intelligence. Springer-Verlag, Berlin,
Germany, ch. 6 – A Vision-Based Remote Control, 233–262.

TEICHRIEB, V., AND FIGUEIREDO, L. S. 2010. Interação em real-
idade virtual e realidade aumentada, vol. 1 of Livros de minicur-
sos do Brazilian Symposium on Virtual and Augmented Reality
2010 (SVR2010). SBC, Canal6 editora, May, ch. 1 – Interação
Natural, 9–22.

THOMPSON, T. J., KUMAR, C. B., AND KLINE, P. J. 2008.
Bluetooth Application Programming with the Java APIs, essen-
tials ed. The Morgan Kaufmann Series in Networking. Morgan
Kaufmann.

VAJK, T., COULTON, P., BAMFORD, W., AND EDWARDS, R.
2008. Using a mobile phone as a “wii-like” controller for play-
ing games on a large public display. International Journal of
Computer Games Technology 2008, 1–6.

WINGRAVE, C. A., WILLIAMSON, B., VARCHOLIK, P. D.,
ROSE, J., MILLER, A., CHARBONNEAU, E., BOTT, J., AND
JR., J. J. L. 2010. The wiimote and beyond: Spatially conve-
nient devices for 3D user interfaces. IEEE Computer Graphics
and Applications 30, 71–85.

ZMOGINSKI, F., 2010. Brasil fica perto de 1
celular por pessoa. INFO Online, http://
info.abril.com.br/noticias/mercado/
brasil-tem-175-mi-celulares-vivo-lidera-
22022010-29.shl, February, 22nd. last access on August.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 218

