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Figure 1: Conceptual screens from a “working in progress” game using the Software Process Simulation Machine 

Abstract

Develop  new  games  without  having  to  start  from 
scratch has been made possible by using game engines, 
since they offer  a number of specialized components 
and optimized functions which are common in games. 
However,  one realizes that process  simulation games 
have not taken advantage of these technologies.  This 
paper aims to demonstrate the results of the develop-
ment  of  a  software  process  simulation  component 
called  Software  Process  Simulator  Machine (SPSM), 
which focuses on help and motivate software process 
educational game development through the addressing 
of  main  generic  requirements  for  process  simulation 
software.
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1. Introduction

Software  components  reuse  is  a  common practice  in 
much  of  the  software  industry.  It  offers  advantages 
such as reducing the overall time and cost of develop-
ment, higher quality and reliability in the product. Re-
garding the industry of game development, these com-
ponents  are  known  as  game  engines,  and  its  reuse 
began in the late 80 [Anderson et. al. 2008].

It is possible to develop new games without having 
to start  from scratch by using game engines  because 
they offer a number of specialized components and op-
timized expected functions which are characteristics of 
a genre of game, e.g.  Real Time Strategy (RTS) and 
First-Person Shooter  (FPS)  [Folmer 2007].  Thus,  the 
development team can focus on specific aspects of the 
new game (e.g. plot, gameplay),  since game common 
features, such as sound and treatment of collision are 
already implemented. 

A game engine is usually designed for specific de-
velopment of a genre of game. However, this exclusiv-
ity brings high costs to game design when using the en-
gine to implement games from another genre [Ander-
son et. al. 2008]. 

Research  in  Software  Engineering  (ES)  teaching 
has glimpsed the potential of using games to assist de-
velopers and project managers in both academical and 
professional  ways.  The  application of  simulation 
games to teach software process and software project 
management is primarily aimed to allow the trainee to 
virtually experience real situations that he could hardly 
practice during his academical life [Dantas et. al. 2004; 
Wangenheim and Shull 2009]. However, through liter-
ature review presented at section 5 of this paper, one 
realizes  that,  unlike  genres  as  RTS and  FPS games, 
process simulation games have not taken advantage of 
game engines or components specifically designed to 
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ease and improve their development, particularities re-
garded.

This study is  aimed to demonstrate  the results  of 
the development of a software process simulation com-
ponent,  called  Software  Process  Simulator  Machine 
(SPSM).  Its  implementation  is  based  on  simulation 
performance requirements and literature review on pro-
cess simulation software. It is SPSM's intention to help 
and motivate software process educational game devel-
opment through reusability, free software licensing and 
addressing the main generic requirements for process 
simulation software.

This  paper  is  organized  into  five  more  sections: 
section 2 presents the motivation and relevance of this 
work,  the  third  shows  the  architecture  and  require-
ments of SPSM, 4 describes and performs tests to val-
idate the simulation, 5 describes related work and their 
relation with this article and 6 concludes with the res-
ults achieved and considerations about future work. 

2. Motivation and Relevance

Education is  one of the key goals  of simulation [Oh 
2006].  Regarding the conduct of research on software 
engineering simulation games, satisfactory results have 
been  obtained,  with  some  improvement  of  teaching, 
listed  ahead:  Hsueh  [2008]  found  that  these  games, 
when  employed  for  educational  purposes,  were  well 
accepted by students; Dantas et. al. [2004] showed that 
they are suitable for testing situations that occur in pro-
ject  management;  and,  finally,  Oh [2006] found that 
students successfully learn the concepts which the ES 
games  addressed,  however,  concluded  that  they  are 
more  effective  when  they  complement  traditional 
forms of educating.

Various types of games have been proposed to im-
prove  ES teaching:  card  games  [Baker  et.  al.  2003], 
board games  [Taran 2007], quiz games  [Wang et. al. 
2007] and  simulation  games  [Drappa  and  Ludewig 
2000;  Oh 2006;  Dantas et. al. 2004].  The last two, in 
particular, are the most applied to ES education [Wan-
genheim  and  Shull  2009].  However,  very  little  has 
been researched about components and architectural is-
sues for its development; one of the few papers found 
which is concerned with these aspects is from Guedes 
[2006].  Generally,  software  process  simulation  ma-
chines, such as Hector [2001] and SESAM [2000], do 
not have natively support elements, structure and spe-
cific  behaviors  of  software  processes. In  these  ma-
chines, for each simulation model, the tutor shall pro-
gram its elements, their relationships, attributes and be-
haviors.

Analogous  to  how games,  from genres  like  RTS 
and FPS, receive support from specialized components 
to improve its development [Folmer 2007], it is expec-
ted that software process simulation games make simil-
ar use of these components.

3.  Architecture  and  Requirements  of 
Software Process Simulation Machine

The implementation of SPSM is an adaptation of eX-
tensible  Software  Process  Engineering  Meta-Model 
(xSPEM) [Brendaou et. al. 2007], aiming to expand the 
semantic  of  the  software  process  models.  Figure  2 
shows the structure of the SPSM in the shape of a class 
diagram.

Figure 2. SPSM's architecture

Criteria is needed to define the requirements of the 
SPSM. These are: 

1)  Process  Granularity and Approach:  SPSM's 
simulation  approach  is  discrete-event,  as  it  focus  on 
low-level  details  of  the process  [Acunha and  Juristo 
2005].

Processes is the granularity level chosen for SPSM, 
as it allows to notice the details of the software process 
[Zhang 2008],  which is  useful  in a  learning context. 
This granularity level has also been employed in other 
ES  simulation  games,  such  as  SESAM  [Draper  and 
Ludewig 2000], SimSE [Oh 2006] and The Incredible 
Manager [Dantas et. al. 2004]. 
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2) Software Process Elements: the software pro-
cess' elements1 were chosen so as to maintain the pro-
cess' granularity level. In a sampling of process simula-
tion games (e.g. SimSe [Oh 2006]) and software pro-
ject management (e.g. TIM [Dantas et. al. 2004],  SES-
AM [Ludewig and Draper 2000]), the following soft-
ware process' elements were found in their simulation 
models (Table 1). These elements are divided between 
explicity defined, when it is already defined in the syn-
tax of the process model, and implicity defined, where 
it must be defined, i.e. programmed by the user.

Table 1: Software process' elements (rows) and games that 
define them (columns).  The letters I and E mean, respect-
ively, Implicity Defined and Explicity Defined.

SimSE TIM SESAM

Task I E I

Role User E E I

Artifact E E I

Tool E E I

Client E E I

Project E E I

3) Execution flow:  SPSM defines what and when 
certain tasks are going to be executed according to pre-
cedence criteria and the choice between possible exe-
cution paths, establishing an execution flow. It  is de-
scribed below what are these criteria:

3.1) Dependency types: execution flow allowance, 
from start to the end of the process, is partially accom-
plished  through  the  temporal  order  of  precedence 
among tasks, established by its dependencies. Depend-
ency types ground the simulation model to a closer real 
project implementation. 

This requirement is based on xSPEM's dependen-
cies [Brendaou et. al. 2007], specified in their enumer-
ated class WorkSequenceKind, which is comprised of 
the following types: End to Start, End to End, Start to 
Start and Start to End. In order to expand the simula-
tion semantics,  these types  have been converted into 
subclasses of Dependency. Beyond these types, Feed-
backConnection was also defined (Figure 2), allowing 
that, given the outcome of a certain condition in a task, 
the execution  flow returns  to  a  previous  task.  Feed-
backConnection  is  based  on  WebAPSEE's  Feedback 
[Reis 2003].

3.2)  Dependency  relationships: summarized 
between two types:

Branch: an origin task depends on more than one 
destination task. Figure 3 show an example of  this re-
lationship.

1 Same as software process components [Softex 2009]

Figure 3. A Branch example. T1 is an origin task; T2 and T3 
are destination tasks

Join: a destination task depends on more than one 
origin task. Figure 4 gives an example.

Figure 4. A Join example. T1 and T2 are origin tasks;T3 is a 
destination task.

Dependency relationships were based on BPMN's 
dependencies (gateway):  AND, OR and XOR [2010]. 
They behave like a Branch (Decision, Parallel Forking) 
or like a Join (Merge, Parallel Joining).  Both Branch 
and Join possess a logical operator, e.g. true or false, 
that allows the execution path to choose the next tasks 
to be executed. 

4) Simulation parameters:  attributes of  the pro-
cess' elements that establish the temporal relationship 
between tasks and define their execution states.  This 
SPSM requirement is adapted from xSPEM's  package 
xSPEM_ProcessObservability [Brendaou et. al. 2007]. 
The adjustments are listed below:

1 – ExecutionState class (Figure 2) shares the same 
types of ActivityState from xSPEM, with the addition 
of Ready type, which defines that a certain task can be-
come Active when all its dependencies are satisfied or 
simply do not exist.

2 – Activity class from xSPEM, defined as Task in 
SPSM, is branched in two subclasses:

2.1 – Continuous Task: It is a task in which its exe-
cution duration (range between expectedStartTime and 
expectedEndTime)  is  measured  with  a  percentual 
value.

2.2 – Stochastic Task: A origin task in which its ex-
ecution flow might proceed to one of two destination 
tasks depending on the outcome of a probabilistic de-
cision that varies between true or false.

The definition of a task's  time state in relation to 
the  simulation's  overall  time  comes  from  TimeState 
class, that shares the same states of ActivityTime class 
from xSPEM: tooEarly, tooLate and onTime. The state 
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informs if a task is delayed, rushed or running exactly 
on time after checking the difference between the ex-
pected start/end times and real start/end times.

5)  Adherence  to  the  SPIDER_ML  syntax: 
Moody [1994] suggests that graphical modeling tools 
can be used to partially model process that will be ex-
ecuted by a process engine. Huff [1996] states that pro-
cess  modeling  languages  have  been  developed  with 
syntax  constructors  specifically  designed  to  address 
software process' particularities. 

The  employment  of  process  modeling  languages 
manages to abstract only the relevant points of the pro-
cess model that will be executed, which eases its defin-
ition. Regarding this paper, it was decided that the sim-
ulated process must be, first, described using the soft-
ware process modeling tool SPIDER_PM, which uses 
SPIDER_ML as  its  process  modeling language  [Oli-
veira 2009]. Reasons for SPIDER_ML's usage in this 
work concern it  being a profile of SPEM 2.0 [OMG 
2010] and have almost all process' elements necessary 
for  simulation defined at  processes  granularity  level. 
Table 2 shows the relationship between SPIDER_PM's 
defined elements and SPSM's.

Table  2.  Comparison  between  SPIDER_PM's  defined  ele-
ments and SPSM's.

SPIDER_PM SPSM

Task Defined Defined

Role Defined Defined

Artifact Defined Defined

Tool Defined Not defined

Client Not defined Not defined

Project Defined Defined

It is emphasized that SPSM's main objective is to 
simulate  software processes according to the criteria 
defined  above.  The  behavior  and  interactions  of  re-
sources allocated to the process (e.g. system dynamics, 
intelligent agents [Guedes 2006]) are outside its scope. 

While SPSM contemplates most of the component 
elements and requirements for implementing software 
process to provide a greater realism to the simulation, 
its accuracy is not sufficient to simulate evaluative or 
predictive models. At its current stage, its only purpose 
is education and training, according to Kellner et. al. 
[1999] classification.

4. Tests

To  demonstrate  the  SPSM  capabilities  as  a  process 
simulator component, tests were conducted to validate 
the following simulation aspects: execution flow, synt-
atic correctness  and process instantiation. These tests 
consist  of  software  processes  that  are  simulated  by 
SPSM to validate its established requirements and fea-

tures.  As a consequence of size limitation, only tests 
with at most three tasks are presented. 

The simulated software  processes'  graphical  nota-
tion is SPIDER_ML. Table 3 describes the modeling 
language's elements applied in this work.

Table  3.  List  of  SPIDER_ML  elements  employed  in  this 
work. Adapted from Oliveira [2009].
Name Graphical 

Notation
Description

Instantiated 
Task

A defined task in the 
process which has in-
formation about when 
they will be initiated, 
completed, its type 
and its contribution to 
the process. 

Instantiated
Artifact

Work products that 
are consumed, modi-
fied and produced by 
instantiated tasks.

Instantiated Role A process'  actor  with 
capabilities  and  skills 
that  enable  him  to 
perform  or  assist  in 
the execution of tasks.

Start Point The starting point of 
the simulated process.

End Point The finishing point of 
the simulated process.

Join Allows the execution 
flow to converge from 
one to several tasks. It 
has a logical operator 
which determines the 
execution path.

Branch Allows the execution 
flow to converge from 
several to one task. It 
has a logical operator 
which determines the 
execution path.

Dependency Represent the depend-
encies among the 
tasks.

Condition Represents the 
stochastic task's con-
dition.

In order to meet the SPSM requirements, tests were 
separated  among three categories:  1)  execution flow, 
destined to verify if the flow converges to the expected 
tasks, regarding its dependencies only; 2) syntactic cor-
rectness, to detect when the simulated process' syntax 
does not meet the requirements of the simulation; and 
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3) instantiation, to verify the behavior of the simulated 
tasks when it has and has not allocated resources. It is 
noteworthy that, at the first category of tests, role users 
and artifacts are shown for the sole purpose of syntact-
ic  correctness,  although they are  not  relevant  at  that 
context.

4.1 Execution Flow

Three  processes  are  modeled  for  this  category:  one 
with a branch structure, another with a join and the last 
with a feedback loop, as described below:

1) The first process involves three tasks: T1, which 
is  the  origin;  T2  and  T3,  both  as  destination  tasks. 
There  is  an End to Start  dependency between origin 
and destination,  establishing a  Branch  structure.  The 
logical operator is AND, meaning that, when T1  fin-
ishes, both T2 and T3 shall start. Figure 5 shows the 
simulated process in SPIDER_ML syntax.

Figure 5. First simulated process modeled in SPIDER_ML.

The duration of each task is specified by subtract-
ing  the  actual  finishing  time  and  the  actual  starting 
time, as demonstrated in (1). Table 4 presents the val-
ues assigned to the tasks.

duration = actual finishing time – actual 
starting time

(1)

Table 4. Values assigned to the tasks from the first simulated 
process.

Actual 
Starting 

Time

Actual
Finishing 

Time

Duration

T1 0 3 3

T2 3 6 3

T3 3 7 4

Most  of  the line  graphs  presented  in  this  section 
demonstrate the simulated process' execution flow em-
ploying homogeneous colored bars. Each color repres-
ents an execution state. Table 5 summarizes them:

Table 5. Execution states (columns) and their respective col-
ors (rows)

Color Execution State

Blue Waiting

Orange Ready

Yellow Active

Red Finished

Figure 6 shows the simulation's results in the shape 
of  a  line graph.  X Axis  presents  the  overall  process 
time while Y Axis shows each task and their respective 
execution states according with time.

T3

T2

T1

0 1 2 3 4 5 6 7 8

Branch Structure Test
Dependency Type: End to Start
Dependency Relantionship: AND

Overall Process Time

Ta
sk

s

Figure 6. T1, T2 and T3 task progress chart of the first test. 

The task checks its status and evaluates the logical 
conditions to change its state more than once per unit 
of overall. Acknowledging this, the task state will be 
modified  whenever  the  logical  conditions  are  met, 
without  waiting for  the addition of  a  unit  of  overall 
time. Figure 6 demonstrates this behavior, since tasks 
T1, T2 and T3 exchange state Ready to Active in the 
same unit of time. 

2) The second test involves three tasks: T1, T2 and 
T3. T1 and T2 are origin tasks and T3 are destination 
tasks. Between them, there is an End to Start depend-
ency  type,  establishing  a  Join  Structure.  The  logical 
operator is AND, meaning that, when T1 and T2  fin-
ishes, T3 shall start. Figure 7 shows the simulated pro-
cess in SPIDER_ML syntax. The duration assigned to 
T1, T2 and T3 is shown in Table 6. Figure 8 shows the 
simulation's  second  test  result  using  the  same  line 
graph from the first test.
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Figure  7.  Second  simulated  process  modeled  in 
SPIDER_ML.

Table 6. Values assigned to the tasks from the second simu-
lated process.

Actual 
Starting 

Time

Actual
Finishing 

Time

Duration

T1 0 3 3

T2 0 3 3

T3 3 7 4

Figura 8.  T1, T2 and T3 task progress chart of the second 
test.

3) The third process has T1 as a origin, T2 as a des-
tination and a End to Start dependency between them. 
However, T2 is a stochastic task, meaning that, if the 
condition  result  is  “yes”,  the  process  ends.  A  “no” 
forces a return to T1 throught a feedback connection, 
changing its  state  to  “Active”.  Figure  9 presents  the 
process modeled with SPIDER_ML. Table 7 shows the 
assigned values for each task present at this test.

Figure 9. Third simulated process modeled in SPIDER_ML.

Table 7. Values assigned to the tasks from the third simulated 
process.

Actual 
Starting 

Time

Actual
Finishing 

Time

Duration

T1 0 1 1

T2 0 1 1

The expected outcome of this test is that, as long as 
T2 condition results in “no”, the flow will keep return-
ing to T1, until it gives an “yes”. Figure 10 shows the 
task behaviors during the test. It is noteworthy that the 
first T2 condition result was “no”, when the overrall 
process time was “1”. The second time, it resulted in 
an “yes”, when the overall process time was “3”.

Figure 10. T1 and T2 task progress chart of the third test.
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4.2 Syntactic Correctness

At this category, tests focus to demonstrate SPSM abil-
ity to detect syntax errors inside the simulated models. 
First, it is modeled a task devoid of input and output 
artifacts. Second, its behavior is studied. 

The test is modeled to comprise three possibilities: 
task T1 has no input and output artifacts (Figure 11.a); 
only has inputs (Figure 11.b); has both (Figure 11.c). 
Table 8 presents the assigned values of the task. The 
expected result for this test is that only when T1 has 
both  input  and  output  artifacts  connected,  its  state 
changes to Active.

Figure  11.  Fourth  simulated  processes  modeled  in 
SPIDER_ML.

Table 8. Values assigned to the tasks from the fourth simu-
lated process.

Actual 
Starting 

Time

Actual
Finishing 

Time

Duration

T1 0 3 3

Figure 12 shows the test performed at a single pro-
cess  time  unit.  Four  situations  are  summarized:  the 
green bar shows a task with no input or output artifact, 
blue represents a task with no output, orange is a task 
with no input and, finally, yellow demonstrates a task 
with at least one input and one output artifact. The Y 
axis shows the task progress for each time unit of the 
overall process time. To address a better understand-
ing, Figure 12 shows the green,  blue and orange bar 
below the ordinate axis to demonstrate that the absence 
of an input or an output artifact will make the task to 
stop progressing.

Figure 12. Performance of T1 based on the number of arti-
facts owned in a single unit of time.

Figure 13 represents the performance of the task / 
number of  artifacts  in relation to  the overall  process 
time, represented in the X axis. The red line shows the 
progress of the task. The yellow and blue bars repres-
ent, respectively, the number of input and output arti-
facts owned by the task. The Y axis serves to represent 
both task execution time and its number of artifacts.

Figure 13. Task progress and its relation with input and out-
put artifacts.

4.3 Process Instantiation

This  test  category  wants  to  validate  the  requirement 
that a task can only be initiated, i.e. its state can change 
to active, when it has at least one role user assigned. If 
this role is deallocated before the task finishes, its state 
will change to paused. The importance of this require-
ment is to make the resource allocation more flexible.
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A process containing only one task is modeled. It 
considers three possible situations: a task with no roles 
(Figure 14.a), with only one (Figure 14.b), with more 
than one (Figure 14.c). The expected result is that only 
when T1 has at  least one assigned role user, its task 
state changes to “Active”. Table 9 shows the assigned 
values of T1's attributes.

Figure  14.  Fifth  simulated  processes  modeled  in 
SPIDER_ML.

Table 9. Values assigned to the task from the fifth simulated 
process.

Actual 
Starting 

Time

Actual
Finishing 

Time

Duration

T1 0 3 3

The  line graph below (Figure 15) shows the test 
performed at a single time unit process. Its bars repres-
ent one possibility each: the green bar is the progress 
rate of a task devoid of role users; the blue bar is the 
exact opposite, as long as it has an allocated role user. 
The Y axis shows the progress of the task for each pro-
cess time unit. To address a better understanding, Fig-
ure 15 shows the green bar below the ordinate axis to 
demonstrate that the absence of an assigned role user 
will make the task to stop progressing.

The next line graph (Figure 16) represents the task 
progress  along the overall  process  time (X axis)  ac-
cordingly  with  its  assigned  role  users.  The  red  line 
shows the task progress. The blue bar is the number of 
the task's  allocated  roles.  The  Y axis  serves  both to 
represent the task progress and the number of assigned 
roles.

Figure 15. Performance of T1 based on the number of as-
signed roles in a single unit of time.

Figure 16. Task progress and its relation with the assigned 
roles.

5. Related Works

Currently,  there  are  two  software  process  simulator 
machines for educational  purposes cited by Wangen-
heim and Schull [2009], named SESAM Simulator and 
Hector. Table 10 presents a comparison between these 
and SPSM requirements.

1) SESAM Simulator: this simulator takes as input 
a  software  process  model  comprised  of:  1)  a  static 
model,  which creates  and specifies  process'  elements 
and their relationships; and 2) the rules which specifies 
the  process  behavior  through  native  conditions  and 
their consequences to the simulation.

2) Hector:  is a software process simulation envir-
onment  that  translates  a  Process  Modeling Language 
[Barros 2001] into System Dynamic constructors. Two 
types  of  complementary models  are used:  1) domain 
model,  which describes  process'  elements,  their  rela-
tionships, attributes and behaviors through an object-
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oriented paradigm approach; and 2) instantiated model, 
which instantiates the domain model's elements, result-
ing in the creation of a specific software process. Sev-
eral instantiated models can be created from the same 
domain model. Hector is responsible for the simulation 
aspects  of  The  Incredible  Manager  [Dantas  et.  al. 
2004] and Guedes' MsC thesis [2006].

Table 10. Comparison between SESAM, Hector and SPSM 
requirements.

SESAM HECTOR SPSM
Approach and 
Granularity 
Level

Process Process Process

Elements Possible to 
define

Possible to 
define

Already 
defined

Dependency 
Types

Finish to 
Start

Finish to 
Start

Finish to 
Start

Start to 
Finish

Start to 
Start

Finish to 
Finish

Feedback

Dependency 
Relationships

AND AND AND

OR

XOR

Division 
between model 
and simulator

Process must 
have the 
same domain 
of the simu-
lator

Process must 
have the 
same domain 
of the simu-
lator

Any pro-
cess model

Adherence to a 
Process Model-
ing Language

No No Yes

Simulation 
Paradigm

Discrete
Event

Discrete
Event

Continuous 
Discrete 
Event

6. Conclusions

SPSM is generic enough to simulate most of the execu-
tion flow that  may occur  in  real  software  processes. 
However, it is still unable to check for inconsistencies 
in  the  process  model,  since  there  are  many  process 
modeling possibilities. In spite of this, SPSM provides 
a high level abstraction for the process definition, redu-
cing the time spent describing it, but it brings the dis-
advantage  of  not  allowing  the  creation  of  new  ele-
ments,  attributes  and  states  beyond  those  already 
defined in the existing model. 

Currently,  two software process simulation games 
are  being  developed  employing  SPSM.  Those  are: 

SiMPS,  a  Software  Process  Improvement  Simulation 
game,  which focus on process improvement training; 
and EnactMe (Figure 1), that aims to give a comple-
mentary training to the process' role users through sim-
ulation.

Authors presented the most relevant tests to demon-
strate SPSM application as a software process simula-
tion component, although no tests were performed to 
verify  the  performance  scale  of  the  simulation.  A 
graphical  interface  for  SPSM  is  currently  being  de-
veloped as future work.
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