
A Software Process Simulator Machine
for Software Engineering Simulation Games

Rafael O. Chaves1 Emanuel M. da C. Tavares2 Sandro R. B. Oliveira2 Elói Luiz Favero1

1Postgraduate Program in Electrical Engineering – Instituto de Tecnologia –
Universidade Federal do Pará (UFPA)

2Postgraduate Program in Computer Science – Instituto de Ciências Exatas e Naturais –
Universidade Federal do Pará (UFPA)

Figure 1: Conceptual screens from a “working in progress” game using the Software Process Simulation Machine

Abstract

Develop new games without having to start from
scratch has been made possible by using game engines,
since they offer a number of specialized components
and optimized functions which are common in games.
However, one realizes that process simulation games
have not taken advantage of these technologies. This
paper aims to demonstrate the results of the develop-
ment of a software process simulation component
called Software Process Simulator Machine (SPSM),
which focuses on help and motivate software process
educational game development through the addressing
of main generic requirements for process simulation
software.

Keywords: software, process, simulation, engines

Authors’ contact:
{emanuelmaues,rochaves,srbo,favero}@ufpa.
br

1. Introduction

Software components reuse is a common practice in
much of the software industry. It offers advantages
such as reducing the overall time and cost of develop-
ment, higher quality and reliability in the product. Re-
garding the industry of game development, these com-
ponents are known as game engines, and its reuse
began in the late 80 [Anderson et. al. 2008].

It is possible to develop new games without having
to start from scratch by using game engines because
they offer a number of specialized components and op-
timized expected functions which are characteristics of
a genre of game, e.g. Real Time Strategy (RTS) and
First-Person Shooter (FPS) [Folmer 2007]. Thus, the
development team can focus on specific aspects of the
new game (e.g. plot, gameplay), since game common
features, such as sound and treatment of collision are
already implemented.

A game engine is usually designed for specific de-
velopment of a genre of game. However, this exclusiv-
ity brings high costs to game design when using the en-
gine to implement games from another genre [Ander-
son et. al. 2008].

Research in Software Engineering (ES) teaching
has glimpsed the potential of using games to assist de-
velopers and project managers in both academical and
professional ways. The application of simulation
games to teach software process and software project
management is primarily aimed to allow the trainee to
virtually experience real situations that he could hardly
practice during his academical life [Dantas et. al. 2004;
Wangenheim and Shull 2009]. However, through liter-
ature review presented at section 5 of this paper, one
realizes that, unlike genres as RTS and FPS games,
process simulation games have not taken advantage of
game engines or components specifically designed to

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 54

ease and improve their development, particularities re-
garded.

This study is aimed to demonstrate the results of
the development of a software process simulation com-
ponent, called Software Process Simulator Machine
(SPSM). Its implementation is based on simulation
performance requirements and literature review on pro-
cess simulation software. It is SPSM's intention to help
and motivate software process educational game devel-
opment through reusability, free software licensing and
addressing the main generic requirements for process
simulation software.

This paper is organized into five more sections:
section 2 presents the motivation and relevance of this
work, the third shows the architecture and require-
ments of SPSM, 4 describes and performs tests to val-
idate the simulation, 5 describes related work and their
relation with this article and 6 concludes with the res-
ults achieved and considerations about future work.

2. Motivation and Relevance

Education is one of the key goals of simulation [Oh
2006]. Regarding the conduct of research on software
engineering simulation games, satisfactory results have
been obtained, with some improvement of teaching,
listed ahead: Hsueh [2008] found that these games,
when employed for educational purposes, were well
accepted by students; Dantas et. al. [2004] showed that
they are suitable for testing situations that occur in pro-
ject management; and, finally, Oh [2006] found that
students successfully learn the concepts which the ES
games addressed, however, concluded that they are
more effective when they complement traditional
forms of educating.

Various types of games have been proposed to im-
prove ES teaching: card games [Baker et. al. 2003],
board games [Taran 2007], quiz games [Wang et. al.
2007] and simulation games [Drappa and Ludewig
2000; Oh 2006; Dantas et. al. 2004]. The last two, in
particular, are the most applied to ES education [Wan-
genheim and Shull 2009]. However, very little has
been researched about components and architectural is-
sues for its development; one of the few papers found
which is concerned with these aspects is from Guedes
[2006]. Generally, software process simulation ma-
chines, such as Hector [2001] and SESAM [2000], do
not have natively support elements, structure and spe-
cific behaviors of software processes. In these ma-
chines, for each simulation model, the tutor shall pro-
gram its elements, their relationships, attributes and be-
haviors.

Analogous to how games, from genres like RTS
and FPS, receive support from specialized components
to improve its development [Folmer 2007], it is expec-
ted that software process simulation games make simil-
ar use of these components.

3. Architecture and Requirements of
Software Process Simulation Machine

The implementation of SPSM is an adaptation of eX-
tensible Software Process Engineering Meta-Model
(xSPEM) [Brendaou et. al. 2007], aiming to expand the
semantic of the software process models. Figure 2
shows the structure of the SPSM in the shape of a class
diagram.

Figure 2. SPSM's architecture

Criteria is needed to define the requirements of the
SPSM. These are:

1) Process Granularity and Approach: SPSM's
simulation approach is discrete-event, as it focus on
low-level details of the process [Acunha and Juristo
2005].

Processes is the granularity level chosen for SPSM,
as it allows to notice the details of the software process
[Zhang 2008], which is useful in a learning context.
This granularity level has also been employed in other
ES simulation games, such as SESAM [Draper and
Ludewig 2000], SimSE [Oh 2006] and The Incredible
Manager [Dantas et. al. 2004].

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 55

2) Software Process Elements: the software pro-
cess' elements1 were chosen so as to maintain the pro-
cess' granularity level. In a sampling of process simula-
tion games (e.g. SimSe [Oh 2006]) and software pro-
ject management (e.g. TIM [Dantas et. al. 2004], SES-
AM [Ludewig and Draper 2000]), the following soft-
ware process' elements were found in their simulation
models (Table 1). These elements are divided between
explicity defined, when it is already defined in the syn-
tax of the process model, and implicity defined, where
it must be defined, i.e. programmed by the user.

Table 1: Software process' elements (rows) and games that
define them (columns). The letters I and E mean, respect-
ively, Implicity Defined and Explicity Defined.

SimSE TIM SESAM

Task I E I

Role User E E I

Artifact E E I

Tool E E I

Client E E I

Project E E I

3) Execution flow: SPSM defines what and when
certain tasks are going to be executed according to pre-
cedence criteria and the choice between possible exe-
cution paths, establishing an execution flow. It is de-
scribed below what are these criteria:

3.1) Dependency types: execution flow allowance,
from start to the end of the process, is partially accom-
plished through the temporal order of precedence
among tasks, established by its dependencies. Depend-
ency types ground the simulation model to a closer real
project implementation.

This requirement is based on xSPEM's dependen-
cies [Brendaou et. al. 2007], specified in their enumer-
ated class WorkSequenceKind, which is comprised of
the following types: End to Start, End to End, Start to
Start and Start to End. In order to expand the simula-
tion semantics, these types have been converted into
subclasses of Dependency. Beyond these types, Feed-
backConnection was also defined (Figure 2), allowing
that, given the outcome of a certain condition in a task,
the execution flow returns to a previous task. Feed-
backConnection is based on WebAPSEE's Feedback
[Reis 2003].

3.2) Dependency relationships: summarized
between two types:

Branch: an origin task depends on more than one
destination task. Figure 3 show an example of this re-
lationship.

1 Same as software process components [Softex 2009]

Figure 3. A Branch example. T1 is an origin task; T2 and T3
are destination tasks

Join: a destination task depends on more than one
origin task. Figure 4 gives an example.

Figure 4. A Join example. T1 and T2 are origin tasks;T3 is a
destination task.

Dependency relationships were based on BPMN's
dependencies (gateway): AND, OR and XOR [2010].
They behave like a Branch (Decision, Parallel Forking)
or like a Join (Merge, Parallel Joining). Both Branch
and Join possess a logical operator, e.g. true or false,
that allows the execution path to choose the next tasks
to be executed.

4) Simulation parameters: attributes of the pro-
cess' elements that establish the temporal relationship
between tasks and define their execution states. This
SPSM requirement is adapted from xSPEM's package
xSPEM_ProcessObservability [Brendaou et. al. 2007].
The adjustments are listed below:

1 – ExecutionState class (Figure 2) shares the same
types of ActivityState from xSPEM, with the addition
of Ready type, which defines that a certain task can be-
come Active when all its dependencies are satisfied or
simply do not exist.

2 – Activity class from xSPEM, defined as Task in
SPSM, is branched in two subclasses:

2.1 – Continuous Task: It is a task in which its exe-
cution duration (range between expectedStartTime and
expectedEndTime) is measured with a percentual
value.

2.2 – Stochastic Task: A origin task in which its ex-
ecution flow might proceed to one of two destination
tasks depending on the outcome of a probabilistic de-
cision that varies between true or false.

The definition of a task's time state in relation to
the simulation's overall time comes from TimeState
class, that shares the same states of ActivityTime class
from xSPEM: tooEarly, tooLate and onTime. The state

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 56

informs if a task is delayed, rushed or running exactly
on time after checking the difference between the ex-
pected start/end times and real start/end times.

5) Adherence to the SPIDER_ML syntax:
Moody [1994] suggests that graphical modeling tools
can be used to partially model process that will be ex-
ecuted by a process engine. Huff [1996] states that pro-
cess modeling languages have been developed with
syntax constructors specifically designed to address
software process' particularities.

The employment of process modeling languages
manages to abstract only the relevant points of the pro-
cess model that will be executed, which eases its defin-
ition. Regarding this paper, it was decided that the sim-
ulated process must be, first, described using the soft-
ware process modeling tool SPIDER_PM, which uses
SPIDER_ML as its process modeling language [Oli-
veira 2009]. Reasons for SPIDER_ML's usage in this
work concern it being a profile of SPEM 2.0 [OMG
2010] and have almost all process' elements necessary
for simulation defined at processes granularity level.
Table 2 shows the relationship between SPIDER_PM's
defined elements and SPSM's.

Table 2. Comparison between SPIDER_PM's defined ele-
ments and SPSM's.

SPIDER_PM SPSM

Task Defined Defined

Role Defined Defined

Artifact Defined Defined

Tool Defined Not defined

Client Not defined Not defined

Project Defined Defined

It is emphasized that SPSM's main objective is to
simulate software processes according to the criteria
defined above. The behavior and interactions of re-
sources allocated to the process (e.g. system dynamics,
intelligent agents [Guedes 2006]) are outside its scope.

While SPSM contemplates most of the component
elements and requirements for implementing software
process to provide a greater realism to the simulation,
its accuracy is not sufficient to simulate evaluative or
predictive models. At its current stage, its only purpose
is education and training, according to Kellner et. al.
[1999] classification.

4. Tests

To demonstrate the SPSM capabilities as a process
simulator component, tests were conducted to validate
the following simulation aspects: execution flow, synt-
atic correctness and process instantiation. These tests
consist of software processes that are simulated by
SPSM to validate its established requirements and fea-

tures. As a consequence of size limitation, only tests
with at most three tasks are presented.

The simulated software processes' graphical nota-
tion is SPIDER_ML. Table 3 describes the modeling
language's elements applied in this work.

Table 3. List of SPIDER_ML elements employed in this
work. Adapted from Oliveira [2009].
Name Graphical

Notation
Description

Instantiated
Task

A defined task in the
process which has in-
formation about when
they will be initiated,
completed, its type
and its contribution to
the process.

Instantiated
Artifact

Work products that
are consumed, modi-
fied and produced by
instantiated tasks.

Instantiated Role A process' actor with
capabilities and skills
that enable him to
perform or assist in
the execution of tasks.

Start Point The starting point of
the simulated process.

End Point The finishing point of
the simulated process.

Join Allows the execution
flow to converge from
one to several tasks. It
has a logical operator
which determines the
execution path.

Branch Allows the execution
flow to converge from
several to one task. It
has a logical operator
which determines the
execution path.

Dependency Represent the depend-
encies among the
tasks.

Condition Represents the
stochastic task's con-
dition.

In order to meet the SPSM requirements, tests were
separated among three categories: 1) execution flow,
destined to verify if the flow converges to the expected
tasks, regarding its dependencies only; 2) syntactic cor-
rectness, to detect when the simulated process' syntax
does not meet the requirements of the simulation; and

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 57

3) instantiation, to verify the behavior of the simulated
tasks when it has and has not allocated resources. It is
noteworthy that, at the first category of tests, role users
and artifacts are shown for the sole purpose of syntact-
ic correctness, although they are not relevant at that
context.

4.1 Execution Flow

Three processes are modeled for this category: one
with a branch structure, another with a join and the last
with a feedback loop, as described below:

1) The first process involves three tasks: T1, which
is the origin; T2 and T3, both as destination tasks.
There is an End to Start dependency between origin
and destination, establishing a Branch structure. The
logical operator is AND, meaning that, when T1 fin-
ishes, both T2 and T3 shall start. Figure 5 shows the
simulated process in SPIDER_ML syntax.

Figure 5. First simulated process modeled in SPIDER_ML.

The duration of each task is specified by subtract-
ing the actual finishing time and the actual starting
time, as demonstrated in (1). Table 4 presents the val-
ues assigned to the tasks.

duration = actual finishing time – actual
starting time

(1)

Table 4. Values assigned to the tasks from the first simulated
process.

Actual
Starting

Time

Actual
Finishing

Time

Duration

T1 0 3 3

T2 3 6 3

T3 3 7 4

Most of the line graphs presented in this section
demonstrate the simulated process' execution flow em-
ploying homogeneous colored bars. Each color repres-
ents an execution state. Table 5 summarizes them:

Table 5. Execution states (columns) and their respective col-
ors (rows)

Color Execution State

Blue Waiting

Orange Ready

Yellow Active

Red Finished

Figure 6 shows the simulation's results in the shape
of a line graph. X Axis presents the overall process
time while Y Axis shows each task and their respective
execution states according with time.

T3

T2

T1

0 1 2 3 4 5 6 7 8

Branch Structure Test
Dependency Type: End to Start
Dependency Relantionship: AND

Overall Process Time

Ta
sk

s

Figure 6. T1, T2 and T3 task progress chart of the first test.

The task checks its status and evaluates the logical
conditions to change its state more than once per unit
of overall. Acknowledging this, the task state will be
modified whenever the logical conditions are met,
without waiting for the addition of a unit of overall
time. Figure 6 demonstrates this behavior, since tasks
T1, T2 and T3 exchange state Ready to Active in the
same unit of time.

2) The second test involves three tasks: T1, T2 and
T3. T1 and T2 are origin tasks and T3 are destination
tasks. Between them, there is an End to Start depend-
ency type, establishing a Join Structure. The logical
operator is AND, meaning that, when T1 and T2 fin-
ishes, T3 shall start. Figure 7 shows the simulated pro-
cess in SPIDER_ML syntax. The duration assigned to
T1, T2 and T3 is shown in Table 6. Figure 8 shows the
simulation's second test result using the same line
graph from the first test.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 58

Figure 7. Second simulated process modeled in
SPIDER_ML.

Table 6. Values assigned to the tasks from the second simu-
lated process.

Actual
Starting

Time

Actual
Finishing

Time

Duration

T1 0 3 3

T2 0 3 3

T3 3 7 4

Figura 8. T1, T2 and T3 task progress chart of the second
test.

3) The third process has T1 as a origin, T2 as a des-
tination and a End to Start dependency between them.
However, T2 is a stochastic task, meaning that, if the
condition result is “yes”, the process ends. A “no”
forces a return to T1 throught a feedback connection,
changing its state to “Active”. Figure 9 presents the
process modeled with SPIDER_ML. Table 7 shows the
assigned values for each task present at this test.

Figure 9. Third simulated process modeled in SPIDER_ML.

Table 7. Values assigned to the tasks from the third simulated
process.

Actual
Starting

Time

Actual
Finishing

Time

Duration

T1 0 1 1

T2 0 1 1

The expected outcome of this test is that, as long as
T2 condition results in “no”, the flow will keep return-
ing to T1, until it gives an “yes”. Figure 10 shows the
task behaviors during the test. It is noteworthy that the
first T2 condition result was “no”, when the overrall
process time was “1”. The second time, it resulted in
an “yes”, when the overall process time was “3”.

Figure 10. T1 and T2 task progress chart of the third test.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 59

4.2 Syntactic Correctness

At this category, tests focus to demonstrate SPSM abil-
ity to detect syntax errors inside the simulated models.
First, it is modeled a task devoid of input and output
artifacts. Second, its behavior is studied.

The test is modeled to comprise three possibilities:
task T1 has no input and output artifacts (Figure 11.a);
only has inputs (Figure 11.b); has both (Figure 11.c).
Table 8 presents the assigned values of the task. The
expected result for this test is that only when T1 has
both input and output artifacts connected, its state
changes to Active.

Figure 11. Fourth simulated processes modeled in
SPIDER_ML.

Table 8. Values assigned to the tasks from the fourth simu-
lated process.

Actual
Starting

Time

Actual
Finishing

Time

Duration

T1 0 3 3

Figure 12 shows the test performed at a single pro-
cess time unit. Four situations are summarized: the
green bar shows a task with no input or output artifact,
blue represents a task with no output, orange is a task
with no input and, finally, yellow demonstrates a task
with at least one input and one output artifact. The Y
axis shows the task progress for each time unit of the
overall process time. To address a better understand-
ing, Figure 12 shows the green, blue and orange bar
below the ordinate axis to demonstrate that the absence
of an input or an output artifact will make the task to
stop progressing.

Figure 12. Performance of T1 based on the number of arti-
facts owned in a single unit of time.

Figure 13 represents the performance of the task /
number of artifacts in relation to the overall process
time, represented in the X axis. The red line shows the
progress of the task. The yellow and blue bars repres-
ent, respectively, the number of input and output arti-
facts owned by the task. The Y axis serves to represent
both task execution time and its number of artifacts.

Figure 13. Task progress and its relation with input and out-
put artifacts.

4.3 Process Instantiation

This test category wants to validate the requirement
that a task can only be initiated, i.e. its state can change
to active, when it has at least one role user assigned. If
this role is deallocated before the task finishes, its state
will change to paused. The importance of this require-
ment is to make the resource allocation more flexible.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 60

A process containing only one task is modeled. It
considers three possible situations: a task with no roles
(Figure 14.a), with only one (Figure 14.b), with more
than one (Figure 14.c). The expected result is that only
when T1 has at least one assigned role user, its task
state changes to “Active”. Table 9 shows the assigned
values of T1's attributes.

Figure 14. Fifth simulated processes modeled in
SPIDER_ML.

Table 9. Values assigned to the task from the fifth simulated
process.

Actual
Starting

Time

Actual
Finishing

Time

Duration

T1 0 3 3

The line graph below (Figure 15) shows the test
performed at a single time unit process. Its bars repres-
ent one possibility each: the green bar is the progress
rate of a task devoid of role users; the blue bar is the
exact opposite, as long as it has an allocated role user.
The Y axis shows the progress of the task for each pro-
cess time unit. To address a better understanding, Fig-
ure 15 shows the green bar below the ordinate axis to
demonstrate that the absence of an assigned role user
will make the task to stop progressing.

The next line graph (Figure 16) represents the task
progress along the overall process time (X axis) ac-
cordingly with its assigned role users. The red line
shows the task progress. The blue bar is the number of
the task's allocated roles. The Y axis serves both to
represent the task progress and the number of assigned
roles.

Figure 15. Performance of T1 based on the number of as-
signed roles in a single unit of time.

Figure 16. Task progress and its relation with the assigned
roles.

5. Related Works

Currently, there are two software process simulator
machines for educational purposes cited by Wangen-
heim and Schull [2009], named SESAM Simulator and
Hector. Table 10 presents a comparison between these
and SPSM requirements.

1) SESAM Simulator: this simulator takes as input
a software process model comprised of: 1) a static
model, which creates and specifies process' elements
and their relationships; and 2) the rules which specifies
the process behavior through native conditions and
their consequences to the simulation.

2) Hector: is a software process simulation envir-
onment that translates a Process Modeling Language
[Barros 2001] into System Dynamic constructors. Two
types of complementary models are used: 1) domain
model, which describes process' elements, their rela-
tionships, attributes and behaviors through an object-

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 61

oriented paradigm approach; and 2) instantiated model,
which instantiates the domain model's elements, result-
ing in the creation of a specific software process. Sev-
eral instantiated models can be created from the same
domain model. Hector is responsible for the simulation
aspects of The Incredible Manager [Dantas et. al.
2004] and Guedes' MsC thesis [2006].

Table 10. Comparison between SESAM, Hector and SPSM
requirements.

SESAM HECTOR SPSM
Approach and
Granularity
Level

Process Process Process

Elements Possible to
define

Possible to
define

Already
defined

Dependency
Types

Finish to
Start

Finish to
Start

Finish to
Start

Start to
Finish

Start to
Start

Finish to
Finish

Feedback

Dependency
Relationships

AND AND AND

OR

XOR

Division
between model
and simulator

Process must
have the
same domain
of the simu-
lator

Process must
have the
same domain
of the simu-
lator

Any pro-
cess model

Adherence to a
Process Model-
ing Language

No No Yes

Simulation
Paradigm

Discrete
Event

Discrete
Event

Continuous
Discrete
Event

6. Conclusions

SPSM is generic enough to simulate most of the execu-
tion flow that may occur in real software processes.
However, it is still unable to check for inconsistencies
in the process model, since there are many process
modeling possibilities. In spite of this, SPSM provides
a high level abstraction for the process definition, redu-
cing the time spent describing it, but it brings the dis-
advantage of not allowing the creation of new ele-
ments, attributes and states beyond those already
defined in the existing model.

Currently, two software process simulation games
are being developed employing SPSM. Those are:

SiMPS, a Software Process Improvement Simulation
game, which focus on process improvement training;
and EnactMe (Figure 1), that aims to give a comple-
mentary training to the process' role users through sim-
ulation.

Authors presented the most relevant tests to demon-
strate SPSM application as a software process simula-
tion component, although no tests were performed to
verify the performance scale of the simulation. A
graphical interface for SPSM is currently being de-
veloped as future work.

Acknowledgements

The authors would like to thank the Project Spider
[Oliveira 2009] staff by their collaboration at modeling
the processes applied as tests in this paper.

References

Acunha, S. T. and Juristo N. (Eds.), 2005. Software Process
Modeling. Springer Press.

Anderson, E. F., et. al., 2008. The case for research in game
engine architecture. Proceedings of the 2008 Conference
on Future Play: Research, Play, Share.

Baker, A., et al., 2003. An Experimental Card Game for
Teaching Software Eng. Proceedings of the 16th Conf.
Software Eng. Education and Training, IEEE CS Press,
pp. 216–223.

Barros, M de O., 2001. Gerenciamento de Projetos baseado
em Cenários: Uma Abordagem de Modelagem Dinâmica
e Simulação. Thesis (PhD) held in the Postgraduate Pro-
gram in Engineering Systems and Computing at UFRJ.

Brendaou, R., et. al., 2007. Definition of an Executable
SPEM 2.0. Procedings of the 14th Asia-Pacific Software
Engineering Conference, IEEE CS Press, pp. 390–397.

Business Process Management Iniciative. Available from:
http://www.bpmn.org/ [Acessed 13 July 2010].

Dantas, A. R., et. al.., 2004. A Simulation-Based Game for
Project Management Experiential Learning. Proceedings
of SEKE 2004, pp. 19-24.

Drappa, A. and Ludewig, J., 2000. Simulation in Software
Engineering Training. Proc. 22th Int’l Conf. Software
Eng., ACM Press, pp. 199–208.

Folmer, E., 2007. Component based game development: a
solution to escalating costs and expanding deadlines?.
Proceedings of the 10th international conference on
Component-based software engineering.

Guedes, M. S., 2006. Um Modelo Integrado para Con-
strução de Jogos de Computador aplicado à Capacit-
ação em Gestão de Projetos. Thesis (MsC) held in the
Postgraduate Program in Computer Science at UFPE.

Hsueh, N., et. al., 2008. Applying UML and software simula-
tion for process definition, verification, and validation.
Information and Software Technology.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 62

Huff, K. In: Fuggetta, A. and Wolf, A. (Eds.), 1996. Software
Process. John Wiley & Sons.

Kellner, M. I., et. al.., 1999. Software process simulation
modeling: Why? What? How?. Journal of Systems and
Software, v. 46, pp. 91-105.

Moody, S. A., 1994. The STARS process engine: language
and architecture to support process capture and multi-
user execution. Proceedings of the conference on TRI-
Ada '94.

Object Management Group. Available from:
http://www.omg.org/ [Acessed 12 July 2010].

Oh, E. N., 2006. SimSE: A Software Engineering Simulation
Environment for Software Process Education. Thesis
(PhD) held in the Postgraduate Program in Information
and Computer Science at University of California, Irvine.

Oliveira, S. R. B., 2009. SPIDER - Uma Proposta de Solução
Sistêmica de um Suite de Ferramentas de Software Livre
de apoio à implementação do modelo MPS.BR. Research
Project. Instituto de Ciências Exatas e Naturais, Univer-
sidade Federal do Pará, Belém.

Reis, C. A. L., 2003. Uma Abordagem Flexível para Ex-
ecução de Processos de Software Evolutivos. Thesis
(PhD) held in the Postgraduate Program in Computer
Science at UFRGS.

Softex, 2009. Guia Geral do MPS.BR. Available from:
http://www.softex.br/mpsbr/_guias/guias/MPS.BR_Guia
_Geral_2009.pdf. [Acessed 12 July 2010].

Taran, G., 2007. Using Games in Software Engineering Edu-
cation to Teach Risk Management. Proc. 20th Conf.
Software Eng. Education and Training, IEEE CS Press,
pp. 211–220.

Wang, A. I., et. al., 2007. LECTURE QUIZ - A Mobile
Game Concept for Lectures. The 11th IASTED Interna-
tional Conference on Software Engineering and Applica-
tion. SEA 2007, Cambridge, Massachusetts, USA..

Wangenheim, C. G. V. and Shull, F. 2009. To Game or Not
to Game. IEEE Software, vol. 26, no. 2, pp. 92-94.

Zhang, H., et. al., 2008. Software Process Simulation Over
the Past Decade: Trends Discovery from a Systematic
Review. Proceedings of the Second ACM-IEEE interna-
tional symposium on Empirical software engineering and
measurement.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 63

