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Figure 1: Pictures from our breaking wave animation.

Abstract

This paper presents a procedural model for ocean breaking waves in
real time. Since the growth of digital games, more ocean, coast and
beach scenarios have appeared, but these games rarely use break-
ing waves. The model proposed in this paper aims to animate waves
with minimal graphic processing unit (GPU) and computer process-
ing unit (CPU) costs. Using a few set of parameters, our procedural
model generates an unique ocean-like scenario. This model could
be employed in several types of games and applications. Results
indicate that our real time breaking waves are visually accepted and
have minimal impact on application performance.
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1 Introduction

Ocean scenarios are largely used in computer animated movies,
games and simulations. Several of these applications require, or
could be visually improved with the usage of, breaking waves. Un-
fortunately, the modeling of such ocean scenes has been a challenge
in computer graphics for a long time [Jeschke S. 2003]. The main
goal of our procedural model is to render several breaking waves in
real time that can be easily attached to any scenario representing a
minimal cost of GPU and CPU resources. Our model shows that
using the GPU, simple wave breaking effects can be rendered using
less than one millisecond. Furthermore, adding this effects to pre-
viously build scenarios are an easy task using maps and procedural
techniques.

In our procedural model, a set of parameters are used to create a
structure called wave map, which represents the waves locations,
behaviors and colors in the scene. Simple mathematical functions
are used to animate the wave in function of time. Shaders1 have
been used for the waves animation and rendering, allowing the
CPU to be responsible for other tasks, such as a particle system
for the wave splash and terrain rendering. The main contributions
are a procedural model for generating breaking waves through wave

1Set of software instructions primarily used to calculate rendering effects
in the GPU with a high degree of flexibility.

maps and a high performance computing animation and rendering,
providing approximately 1200 waves in real time.

The paper is organized as follows: related work are described in the
next section, followed by the description of our model in Section 3.
Some results are shown in Section 4 while in Section 5 some future
work is mentioned as well as final considerations.

2 Related Work

Reeves and Fournier [Fournier 1986] present a simple model for
the surface of the ocean. Their model is suitable for modeling and
rendering waves when disturbing forces from the wind and gravity
exists. In their work it is possible to determine position, direction
and speed of the breaking waves. The foam existing in waves is
modeled by particle systems and the waves are varied according to
orbits parameters, this orbits are described in Rankine work [Rank-
ine 1863].

Jeschke et al. [Jeschke S. 2003] describe a procedural model for an
interactive animation of breaking ocean waves. The fact of being an
interactive model implies that their simulation has at least a frame
rate of 5 frames per second. Using a procedural approach, they are
capable of a continuous surface description in time and space that
enables to calculate the ocean surface without any previous time
steps information. In order to create the wave life cycle, it is used
a parametric function that is blended over time and it is divided in
three major constants: round, breaking and collapsing.

Metaxas et al. [Metaxas D. 2004] developed an application to con-
trol breaking waves, and focus on the ideal of freedom to choose
how the free surface of a liquid will look at a specific moment in
time. In order to achieve this goal, object animators responsible for
controlling the wave behavior are used. Their application also uses
a library of waves behaviors and generates the subsequent evolution
by flowing forward in time based on the 3D Navier-Stokes equation.

Another important work in ocean rendering was developed by
Velho et al. [Velho 2006]. Their main goal is to render realistic
ocean waves in real time. In order to achieve this goal, several tech-
niques are employed in a system. Using a view-dependently geom-
etry for waves, a dynamic bump map and an illumination model that
includes reflection, refraction and Fresnel effects [Heidrich 1999] to
create an immersive looking water. The system developed by Velho
et al. is divided into two stages: preprocessing and rendering. The
first stage is responsible for generating two dynamic maps and con-
structing the view-dependent wave geometry representation. The
rendering stage takes four passes in the GPU for the reflection, re-
fraction, shadow and Fresnel generation.

Thürey et al. [Thürey N. 2007] created a real time method that en-
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hances shallow water simulations by using breaking waves. A par-
ticular characteristic of their method is the possibility of allowing
interaction with rigid bodies. The created method starts by detect-
ing the steep wave front in the height field and then spawn sheets
of fluids in the detected area. Those fluids are created by a set of
connected particles and results in water drops and foam effects.

In contrast to previous work, our method presents a wave map rep-
resentation, allowing the breaking waves animations to be attached
in real time applications, such as electronic games. Since our waves
are represented by a low polygonal mesh and processed in the GPU,
each wave is computed in less than one millisecond.

3 Our Model for Ocean Breaking Waves

Our model can be divided in two major steps: wave map generation
and wave visualization, which includes animation and rendering.
The first step in our model consists in generating the wave based on
few parameters defined by the user. A procedural model processes
these parameters and generates a structure we call wave map, which
describes the scene including the waves behaviors, animations and
colors. The second step is related to the wave animation and ren-
dering, in this step the CPU is used for controlling the timers2 and
the particle system, as further detailed in Section 3.2. The GPU is
responsible for all the waves animations, calculated in the vertex
shader, and the rendering effects, processed in the pixel shader.

In this work the algorithms and the techniques used in our approach
are organized in modules and are explained in Sections 3.1, 3.2 and
3.3. Figure 2 illustrates an overview of our model. Wave param-
eters and map generation are explained in Section 3.1, while wave
animation and rendering are explained in Sections 3.2 and 3.3.

Figure 2: Overview of our procedural model for breaking waves.

3.1 Wave Parameters

The wave parameters are represented through intervals that defines
the waves location, behavior and color. These intervals are min
and max values defined by the user, that represents specific wave
attributes. The parameters are used to generate a structure we called
wave map and are listed bellow:

• number of waves;

• wave animation speed;

• blue color amount;

2Specialized type of clock used for controlling a sequence of an event or
process.

• wave width;

• wave length;

• wave height;

• wave location; and

• wave orientation.

In order to generate the waves, a procedural technique is respon-
sible for considering the input parameters and applying a random
process to specify values to the user. If necessary, the user can de-
fine as input equal values for min and max in the interval, forcing
the waves to have a specific attribute.

The wave animation speed is a normalized value that defines how
fast the wave geometry plane is deformed to create the breaking
wave animation, while the blue color amount parameter is used
only for rendering purposes, varying between 0 and 255. The wave
length, width and height represents the volume that the wave can
reach.

In order to create different scenes such as an island or a simple
shore, the waves must have a location zone and an orientation in
the wave map. Even that this approach provides limited position-
ing features for the wave, it presents an easy and intuitive way of
configuring most of the natural waves distributions.

The location zone is given by two points forming a rectangle where
the waves are randomly placed accordingly to the number of waves
parameter (illustrated in Figure 4). Finally, the lasts parameters are
related to the waves orientation, that can be a reference point or a
reference vector. In first case all the waves are rotated in order to
face the defined reference position. If a reference vector is used, all
the waves will have the same orientation according to the specified
vector. Figure 3 illustrates an example of a shore (using reference
vector) (a) and an island (reference point) (b).

Figure 3: Example of a shore (a) and an island (b) where waves
have different locations and orientations.

This procedural approach allows the creation of different scenes
anytime that it may be required by just rearranging the parameters
differently. After this step, since all the waves location are known,
the procedural module is able to create particle emitters for every
wave in the scene. The emitters from our particle system [Reeves
1983] use small textures as billboards that represent the wave splash
created by the waves stress, detailed in Section 3.3.1.

One contribution of this work is to structure all wave parameters
in a wave map. The wave map created as output of this step is
an image file that describes all the waves information. This file
can be used in other animations, skipping the procedural module.
In the wave map file, the rectangles indicate the waves and their
location coordinates in the scene. The RGB color channel holds
the information of the speed, height and color respectively. The
ocean RGB color channels only contains Blue information, in other
words the pixels that represent the ocean have no speed and height
information3. The shape of the wave rectangles represents the wave
width and length. Figure 4 illustrates the described wave map.

3In this paper we modified the RGB of ocean and increased the reference
point size for visualization purposes, in Figure 4
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Figure 4: Wave map output generated in the procedural model.

In this work, for terrain generation it is used a grayscale image file
that represents the heightmap of the terrain [Röttger et al. 1998],
where as whiter is the pixel, higher the related vertex should be
placed. The terrain heightmap dimensions are 256 x 256 pixels and
our wave map has a bigger dimension of 512 x 512 pixels involving
the terrain. Figure 5 (a) illustrates the terrain heightmap, followed
by our wave map combined with the terrain heightmap (b) and the
rendering result (c).

Figure 5: Terrain heightmap (a) combined with our wave map (b)
used for the scene rendering (c).

3.2 Wave Mathematical Model

The wave behavior is processed in the GPU, with a vertex shader,
using the wave map generated by the procedural model. The wave
is a geometric plane that is deformed in function of time using
mathematical functions and its behavior is divided in three stages:
Wave Forming, Wave Moving and Wave Breaking. The first

stage is responsible for folding the wave geometry, until it reaches
the desired height. After reaching the desired height, the wave en-
ters in the second stage and moves through a defined length accord-
ingly a previous determined speed. After the Wave Moving stage,
the wave geometry is rapidly deformed in the third stage, disappear-
ing under the ocean. The wave life cycle and the wave stages are
illustrated in Figure 6.

Figure 6: Wave life cycle illustrating the three wave stages.

The wave behavior uses vertex displacement, and the wave geom-
etry is a rectangular plane, formed by set of 200 vertexes. Each
vertex has three attributes: position, normal vector and texture co-
ordinates. The vertex position is modified by our algorithm, making
the plane geometry animate across the wave stages. The vertex nor-
mal vector is projected to the world and view space and then passed
to the pixel shader, where it is used for lighting calculations.

The texture coordinates are used to identify the vertex position rela-
tive to the plane. Using such vertex position, it is possible to create
effects with minimal calculations, such as the Wave Breaking. The
usage of texture coordinates is illustrated in Figure 7, where the co-
ordinates represents the vertex position (a) and the coordinates used
for creating the Wave Breaking geometry deformation (b).

Figure 7: Illustration of wave texture coordinates used for wave
geometry deformation.

The texture coordinates are used in the Wave Forming and Wave
Breaking stages. In this work the notation tx and ty refers to the
texture coordinates, used to represent the wave width and length,
respectively. These coordinates are also employed for controlling
the animation region in the plane, which is defined by the condition:
{ty ∈ R : 0.075 < ty < 0.95}. This condition assures that the
wave animation starts and ends under the ocean, avoiding animation
artifacts.

The vertex shader has a wave life cycle timer, described as lt, which
controls the activated wave stages. This timer is set to zero every
time the animation begins and it is the same data used by the parti-
cle system. Each stage has its own timer, which is responsible for
controlling stage animation and is set to zero according to the wave
life cycle time.

Our mathematical model have four variables used by the wave
stages equations: the sine based s, the cosine based c, and the ver-
texes relative positions dx and dy. The sine and cosine based vari-
ables are used for the vertical and horizontal vertex deformations,
respectively. The dx and dy variables are used for calculating the
vertexes positions relative to the plane.
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The variable s, described in Equation 1, use the sine mathematical
function and uses a starting time st, the wave life cycle timer lt, the
wave speed sp and the texture coordinate ty:

s = sin(st+ (lt · sp · (1− ty))), (1)

where ty ranges from 0 to 1.

The c variable, described in Equation 2, uses the cosine mathemat-
ical function and is calculated using Wave Forming stage timer ft
and the wave speed sp:

c = cos(ft · s
K
− π

2
), (2)

where K is empirically defined as 5 and π
2

represents the relevant
part of the cosine function, in our deformation model.

The vertexes relative positions variables dx and dy uses the texture
coordinates tx and ty, respectively. The Equation 3 and 4 describe
dx and dy respectively. Both equations use the constant P , which
represents the relevant part of the wave geometry plane and is equal
to 0.75:

dx = (1− ‖tx− P‖), (3)

dy = (1− ‖ty − P‖). (4)

The vertical deformation in the Wave Forming stage is defined by
fv(s). This function uses s and dy, combined with the wave height
h and texture coordinate tx. This deformation is defined in Equa-
tion 5:

fv(s) = s · h · dt · tx2. (5)

For obtaining the vertex horizontal displacement in the Wave
Forming stage the function fh(c) is proposed. This function uses
three variables: cosine (c) and sine (s) based variables and vertex
relative position dx. These variables are combined with the wave
width w, wave speed sp and vertex texture coordinate ty. Function
fh(c) is defined in Equation 6:

fh(c) = c · w · (s · dy)2 · (1− ty) · π. (6)

The Wave Moving stage is active almost all the wave life cycle
and therefore has been projected to use less processing time. The
horizontal deformation uses the Wave Moving stage timer mt and
is calculated in the moving function mh(mt). The wave length l in
the moving function is used to determine the maximum horizontal
displacement as defined in Equation 7.

mh(mt) = mt · l. (7)

At last, the Wave Breaking stage has two functions: to animate
the wave in the horizontal and vertical axis. Both functions use the
Wave Breaking stage timer bt. The horizontal breaking function
bh(bt) has a constant Q that is equal to 0.02, while the vertical
breaking function bv(bt) has a constant G that is equal to 5. These
constants are empirically defined and used to establish the differ-
ent moving rate between the horizontal and vertical axis when the
wave is breaking. Equations 8 and Equation 9 define the horizontal
and vertical displacement functions for the Wave Breaking, respec-
tively.

bh(bt) = bt · s · h · dy ·Q, (8)

bv(bt) = bt2 · s · h · dy ·G. (9)

The vertex shader animates the wave geometry through all the de-
scribed stages and equations using the timers controlled by the

CPU. A pseudo-algorithm is presented in Listing 1, illustrating the
vertex shader steps used for creating the wave behavior.

1 / / C o n s t a n t s
2 f l o a t K = 5 ;
3 f l o a t P = 0 . 7 5 ;
4 f l o a t Q = 0 . 0 2 ;
5 f l o a t G = 5 ;
6
7 i f ( TCoord . y > 0 . 1 0 && TCoord . y < 0 . 9 0 )
8 {
9 f l o a t s i n e = s i n ( s t a r t T i m e + waveTimer ∗ speed ∗ (1 − TCoord . y ) ) ;

10 f l o a t c o s i n e = cos ( formTimer ∗ ( speed / K) − PI / 2 ) ;
11 f l o a t dy = 1 − abs ( TCoord . y − P ) ;
12 i f ( WaveForming )
13 {
14 / / f u n c t i o n f v
15 f l o a t vDisp = s i n e ∗ h e i g h t ∗ dy
16 pos . y += vDisp ∗ TCoord . x ∗ TCoord . x ;
17
18 / / f u n c t i o n f h
19 f l o a t hDisp = c o s i n e ∗ wid th ∗ ( s i n e ∗ dy ) ∗ ( s i n e ∗ dy ) ;
20 pos . z −= hDisp ∗ TCoord . x ∗ (1 − TCoord . y ) ∗ 2 ;
21 }
22 i f ( WaveMoving )
23 {
24 / / f u n c t i o n mh
25 pos . z −= moveTimer ∗ l e n g t h ;
26 }
27 i f ( WaveBreaking )
28 {
29 / / f u n c t i o n s bh and bv
30 pos . z −= breakTimer ∗ s i n e ∗ h e i g h t ∗ dy ∗ Q;
31 pos . y −= breakTimer ∗ breakTimer ∗ s i n e ∗ h e i g h t ∗ dy ∗ P ;
32 }
33 }

Listing 1: Pseudo-algorithm illustrating the vertex shader steps
used for creating the wave behavior.

3.3 Wave Visualization

Since our waves are merely geometric planes, it is important that
the render technique provides a good look and feel of the ocean. In
order to achieve this goal we use specular lightning and reflection
techniques calculated in the GPU leaving only the particle system,
used for the wave splash, in the CPU. Our approach uses cylindri-
cal particle emitters combined with a timer, this timer represents
the wave movement and is also passed to the GPU. The particle
system is explained in Section 3.3.1 where we also explain the used
rendering techniques.

3.3.1 Particle System

The wave splash is a set of particles represented through billboards
[Holmberg and Wünsche 2004] that are created accordingly to a
particular emitter. The emitter has a cylindrical shape. This par-
ticular shape looks better for representing the wave splash created
from the wave stress. The emitter is displaced in the wave plane
geometry accordingly to the wave movement timer. Figure 8 illus-
trates the emitter attached to the wave geometry.

Figure 8: Illustration of the cylindrical emitter attached to the
wave geometry.

In our animation, the timer is normalized and influences the number
of particles created from the emitter. If the timer is equal to zero,
none particles are created. On the other hand, as the timer increases
so does the number of particles. Figure 9 illustrates the rendering
result of the particle system.
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Figure 9: Rendering result illustrating the particle system.

3.3.2 Pixel Shader

Since the wave animation is made in the vertex shader, the pixel
shader can be easily replaced by any other, for example a cartoon
shading. The pixel shader in our work is responsible for hiding
the wave geometry under the ocean plane and for lightning effects
composed by specular, parallax mapping and reflection techniques.
For hiding the part of wave geometry that is currently under the
ocean, it is used the distance between the wave and the ocean. This
is made by changing the pixel color, creating a smooth degrade
effect between transparent and solid state. Figure 10 illustrates the
wave without (a) and with (b) transparent degrade effect.

Figure 10: Illustration without (a) and with (b) transparent de-
grade effect.

The specular lightning is combined with parallax mapping tech-
nique which involves the usage of a normal map texture [Fournier
1992], illustrated in Figure 11, in order to achieve water visual re-
sults such as water shininess and wave foam.

Figure 11: Water normal map texture used for pixel shader effects.

The reflection is made by using a previous rendered texture of the
scene, and then passed to the pixel shader in order to create a noise
effect by rearranging the texture coordinates. Figure 12 illustrates
the pixel shader effects.

4 Results

The results are obtained using an Intel Xeon E405 equipped with
NVidia Quadro FX 4800. For rendering and animation, our proto-
type uses Irrlicht Engine4. Figure 13 illustrates the wave map and

4http://irrlicht.sourceforge.net/

Figure 12: Illustration of pixel shader effects.

the rendering result, while Figure 14 shows a different wave map
and the rendering result in a different light condition.

Figure 13: Wave map and daylight render.

Figure 14: Wave map and different light render.

Figure 15 illustrates different colors for the waves using day(a) and
night(b) illuminations. Figure 16 shows the waves evolving near a
specific island.

Since the vertex shader is responsible for the wave animation, when
removing the particle system, it is possible to render (all waves in-
side the frustum) 1200 waves simultaneously at a frame rate of 30
frames per second (FPS). Figure 17 illustrates a trade off between
number of waves and FPS, where we can see that the main advan-
tage of our model is the low processing computational usage.

5 Final Considerations

This paper presented a model for animation and generation of pro-
cedural waves. The wave animation is performed in the GPU, en-
suring that the CPU is capable of dealing with other tasks. In order
to achieve better visual and performance results the particle system
should be improved, creating a better looking and less costing wave
splash animation. Another improvement could be employed in the
wave geometry by replacing it for a volumetric one, this approach
could avoid existing artifacts when the geometry is a plane. An-
other topic of research is to modify our model to interact with rigid
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(a) Daylight scene.

(b) Night scene.

Figure 15: Wave rendering under different lightning conditions.

Figure 16: Waves in an island environment under a night light con-
dition.

bodies, this approach could be used in games that has boats, surfing
features or any other type of ocean contact.
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