
Sound Wave Propagation Applied in Games
Marcelo Zamith, Erick Passos, Diego Brandão,

Anselmo Montenegro, Esteban Clua, Mauricio Kischinhevsky, Regina C.P. Leal-Toledo

Figure 1: Sound wave propagation

Abstract

Many games and other interactive virtual environments are known
for their focus in rendering natural phenomena, such as accurate vi-
suals and physics, in the most believable manner. Several advances
in the aforementioned fields took place during the last decade but,
unfortunately, this effort has not been reflected in libraries for spa-
tial audio. These libraries traditionally do not accurately simulate
sound wave propagation through the virtual environment, never tak-
ing into consideration the speed of sound, reflection and absorbency
by scene geometry, phenomena whose simulation could be used to
render many interesting effects in real time. In this paper, we pro-
pose the use of a sound wave propagation simulation based on the
finite difference method, running on the GPU, that can be used to
compute how a sound pulse spreads through a virtual environment.
In the prototypes implemented, the simulation data is interactively
used to determine the perceived direction of a sound source in a
closed building, and rendering a mimic of a shock-wave in an open
scene.

Keywords:: Sound Wave Propagation, Finite Difference Method,
Real-time Effects, GPGPU

Author’s Contact:

{mzamith, epassos, dbrandao
anselmo, esteban, kisch, leal}@ic.uff.br

1 Introduction

Many electronic games, specially those that are classified as
simulation-games, rely on the modeling of natural phenomena in
order to immerse the player into a suspension of disbelief state.
However, simulating sound wave propagation has not been consid-
ered a priority, partially due to its computational complexity. It is
true that positional audio libraries are a valuable effort in this field,
but the focus of the industry, and also of many academic previous
and current research, has always been on providing for more realis-
tic graphics and, to some extent, rigid-body physics.

Although positional audio libraries are now a commodity, current
implementations focus only on calculating intensity and pan, based
on the relative position and orientation of the sound source and
the virtual listener. These libraries do not consider important is-
sues, such as the time sound takes to travel over the environment
(i.e. air) or reflection and absorbency of the objects present at the
scene. Taking scene geometry into account could greatly increase
the immersion experience, because it affects the way sound travels
through the virtual environment, possibly changing the perceived
direction from which the listener hears the generated sound. For
instance, a stealth game, such as the Metal Gear franchise [Kojima
], could use such simulation to adjust the perceived source position
of the original sound.

Besides the aforementioned example, there are many other interest-
ing applications of more accurate methods for sound wave prop-
agation simulation in games. Possible uses include, but are not
restricted to: mimicking an earthquake propagation on volume ge-
ometry, possibly generating force vectors for the physics engine;
providing animation data for particle-based effects, such as a shock-
wave; and many others.

Despite the obvious benefits, simulation methods for such phe-
nomena are computationally intensive, and running them in real-
time, concurrently with all other expensive tasks, has not been a vi-
able option. However, current GPU technology has the computing
power to run an implementation of a simulation like this in real-
time, without compromising the overall performance, i.e., the GPU
works as mathematics coprocessor. Considering the fact that GPUs
are faster than CPU, the proposed work does not aim at showing the
speed up between the technology.

In this paper, we describe how we implemented and optimized a
sound wave propagation kernel in CUDA, based on a Finite Dif-
ference Method, and used it to simulate how a sound pulse, such
as a gunshot or an explosion, propagates through a complex scene
geometry. The related works are analyzed in Section 2, the method
and details of the GPU implementation are described in Section 3.
The basic data-structures are lattices to represent the velocity field
and the sound wave amplitude of the environment.

This simulation kernel was developed to be completely independent
of the application itself, and by monitoring the amplitude data in
real time, we chose two game related problems to demonstrated the
applicability of the technique:

• Computing the perceived direction of a sound: a closed
indoor environment with two rooms and a corridor connecting
them. In this example. we use the simulation data to compute
the perceived direction of a sound, testing different positions
for the source and listener. The result can be used to adjust the
location of the sound source in the positional audio library, or
using this orientation as input data to a NPC AI. The results
from this example are analyzed in Section 4.

• Mimicking a shock-wave: an outdoor scene with some build-
ings, where we render a shock-wave effect from an explosion,
taking into account reflection by the scene geometry. Section
5 shows more details of this application and discusses other
uses of this mimicking approach.

The performance results we obtained are very encouraging, and
show that our implementation is suitable for real time, even when
running in low cost hardware. We also highlight the fact that no
known previous research or game was found showing an implemen-
tation or proposing neither the use of accurate sound wave propa-
gation simulation nor the methods and approach presented in this
paper for real-time effects in games. Finally, the concludes are pre-
sented in Section 6 as well as some future work are discussed.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 197

2 Related Work

Applying sound wave propagation simulation for games is mainly
classified into one of the two categories, implementing a real phys-
ical sound wave propagation, using any suitable numeric method;
and the second technique is making use of ray-casting techniques
for sound purposes. Previous works based on numeric methods
are in general too computationally expensive for real-time use. At
the same time, approaches based on other techniques, such as ray-
casting, do not accurately represent the physics of sound.

Many related works based on heavy numerical simulation have
been developed for running on GPUs recently, but most of them
are not designed for real-time. Highlights in the set of problems
that have been solved with the help of GPUs include Protein Struc-
ture Prediction [Langdon and W.Banzhaf 2008], Solution of Linear
Equation Systems [Bolz et al. 2003], Options Pricing [Abbas-Turki
and Lapeyre 2009], Flow Simulation [Rozen et al. 2008], Wave
Propagation [Balevic et al. 2008], [Michea and D.Komatitsch 2010]
and others. These works try to simulate real physics phenomena
through the use of more or less accurate numeric methods. Al-
though using the fast stream processors of GPUs, none of these
works is designed for real-time.

In [Mazarak et al. 1999], the authors modeled a particle system
through voxels to represent of a blast wave impact on surrounding
objects. The approach of this work adopts a fracture algorithm ca-
pable of accounting for the damage of multiple explosions. At an-
other relevant work [Röber et al. 2007], an analysis of a sound wave
propagation was proposed and developed, based on the computa-
tion of acoustic energy, also highlighting the possibilities to map
these concepts to radiometry and graphics rendering equations. Al-
though the authors concentrate on ray-based techniques, they also
consider wave based sound propagation effects. These works are
based on another family of numeric method other then Finite Dif-
ference, and the applications and performance results are not com-
parable to ours.

The work presented at [Nikunj et al. 2008] uses a ray-tracing ap-
proach and describe a technique to model sound propagation accu-
rately for an arbitrary 3D scene by numerically integrating the wave
equation. The performance is guaranteed by precomputing a data-
structure, using eigenvalues from a refined mesh. A domain decom-
position approach is done, because performing a modal analysis on
the complete scene is usually not feasible. Although the proposed
technique has observed up to an order of magnitude speedup com-
pared to a standard Finite Difference technique, the processing is
not completely done in real-time, which makes impossible the use
with variable geometry or locations for the objects. With our ap-
proach, updating the velocity field of the lattice can be done locally
for each moving obstacle.

In [van den Doel et al. 2001], an algorithm to synthesize realistic
sound effects in real-time is proposed and applied for interactive
simulations, such as games and animations. The sound waves are
produced by the user and the proposed modal models are driven
by contact forces modeled at audio rates, which are much higher
than the graphics frame rate. The contact forces can be computed
from simulations as well as custom designed. Finally, the work
also presents the effectiveness of the technique by showing complex
realistic simulations. This method is also not based on accurate
modeling of the actual phenomenon.

To this date, no previous work was found that used a proper sound
wave simulation method to compute the perceived relative direction
of a sound source, one of the proposed applications of this paper.
The use of such physically accurate methods is also not common
for real-time purposes, specially in interactive applications. Most
examples found in game programming literature are actually based
on culling techniques, such as Potentially Audible Sets [Dickheiser
2006]. We believe that our prototypes have shown that using such
accurate simulations are now possible and useful for this category
of applications.

3 Sound Wave Propagation Simulation
on GPU

The wave equation is a second order linear differential equation
which describes the behavior of sound waves over time, amongst
other types of waves, where all of them describe a medium pertur-
bation. The acoustic wave field is described by P (x, y, z, t) and
u(x, y, z, t), where P is the pressure field in the medium and u is
the particle’s displacement. The relation between pressure and par-
ticle’s displacement is given by P (x, y, z, t) = −k∇u(x, y, z, t)
with k representing the volumetric compression module. One of the
hypotheses of the model considered here is that the pressure field
is constant along the z-axis, which implies that the partial deriva-
tive with respect to z is zero. Thus, the (2-D) wave equation with a
constant volumetric compression is given by:

∂2P

∂t2
= c2(x, y)

[
∂2P

∂x2
+

∂2P

∂y2

]
+ f(x, y, t) (1)

where, P = P (x, y, t), x and y are Cartesian coordinates, t is
time, c is the velocity of the acoustic wave in the medium (for
instance, 300m/s in the air) and f(x, y, t) is the source term (e.g.,
an explosion, a shotgun, etc).

The analytical solution for the problem described in Eq. 1 shall
be costly or impracticable when the propagation occurs in a non-
homogeneous medium. Approximation techniques are usually em-
ployed to deal with this issue. The most common family of approx-
imation techniques is that of Finite Difference Methods (FDM),
whose implementation is easier than, for example, that for the Fi-
nite Element Method. Thus, since efficiency is a key issue herein,
the FDM was chosen for our simulation kernel.

3.1 Simulating sound wave propagation with FDM

Finite Difference Methods (FDM) represent the discretization of an
evolutionary differential equation on a continuous region by choos-
ing a finite set of representative points. In order to choose coeffi-
cients to weigh the importance of neighboring cells in the discrete
description of the continuous problem at each point, as well as the
number of neighboring points, Taylor series expansions in space
and time variables are computed. Coefficients are chosen in order
to provide a previously specified local truncation error. The re-
sult is a difference formula that is applicable to every point of the
discretization inside the space-time domain. Such formula relates
values of the unknowns on neighboring points, in space and time.
Thus, the formula relates successive time steps, in order to account
for the evolutionary nature of the problem.

In FDM, when one value, at some time instant, is computed through
some average of the already available values at its neighboring
points, the method is said to be explicit. When the calculation of
the value requires the simultaneous calculation of the values at its
neighboring points, the method is said to be implicit. Thus, implicit
methods are often more expensive than explicit ones because they
require the solution of a linear or non-linear systems of equations
at each time step. For this reason, an explicit method to simulate
acoustic wave propagation was chosen in this work.

A central-difference approximation can be derived from Taylor se-
ries [Mitchell 1969], and a second order approximation for space
and time, assuming h = ∆x = ∆y and t = n∆t, Eq.(1) can be
written as:

Pn+1
(i,j) = 2Pn

(i,j) − Pn−1
(i,j) + A×[

Pn
(i−1,j) + Pn

(i+1,j) − 4Pn
(i,j) + Pn

(i,j−1) + Pn
(i,j+1)

]
(2)

where, A =
(

c(x,y)∆t
h

)2

and n = 1, ... represents slice time.

In the classical approach, changes in the velocity field c(x, y) re-
flect fluctuations of the medium. This gives rise to both reflection

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 198

and diffraction of waves. Another noticeable feature of this scheme,
is how open scenes can be represented, that is, non-finite domains.
When employing a computational model, the computational do-
main size and the associated number of variables must be kept as
low as possible. In order to restrict the computational domain, and
thus keeping memory requirements at a minimum, while preserv-
ing a realistic description of the phenomena, artificial boundaries
are introduced. This artificial chopping of the domain usually gives
rise to wave reflection at the borders of domain.

Aiming to simulate semi-infinite domains, this work considers the
boundary conditions proposed by [Reynolds 1978]. Such condi-
tions are determined by decomposing the one dimensional scalar
wave equation, generating the product of two terms, each represent-
ing the spread of the wavefront in one direction. Equation 3 repre-
sents this condition when the wave propagation occurs horizontally
to the right. The boundary conditions for waves moving horizon-
tally to the left can be obtained analogously [Reynolds 1978]. The
conditions at the top and bottom (maximum and minimum vertical
values) of the model are given by Dirichlet conditions [Golub and
Ortega 1991].

∂P

∂~n
=

1

c

∂P

∂t
(3)

3.2 Details of the chosen method

In this work, the discretized model is given by Eq. 2, where the
neighborhood used in computing a value at some point in time in-
stant t + 1 is composed of seven elements, six from the previous
time instant (t) and the last one is given by time instant (t − 1).
Therefore, the value at a point in time t + 1 is more influenced by
its neighboring previous instant, while the time instant t − 1 con-
tributes with only one value. Accuracy is associated with method’s
order. In this case the scheme is O(h2,∆t2). This means that the
error approaches zero when h and ∆t go to zero. More accurate
methods can be used, but they require more information about the
neighborhood. The approach chosen met this works’ goals, provid-
ing enough accuracy while keeping computational cost low.

The complexity of the method is also defined by the discretization
and neighborhood features. Thus, the lower the ∆h, the greater is
the number of unknows for the matrices involved. In the case of a
2D domain, for instance, given a domain of 100×100m and ∆h =
1m, then matrices of size (number of rows and columns) 101×101
are involved in the solution of linear or non-linear systems. Finally,
using Eq. 1, the complexity is O(m × n × 6), where m and n
are the Width and Height of the domain (that generates a lattice),
respectively, and the constant 6 is the number of neighboring points
for each point of the discretization.

The explicit scheme described above is less expensive than implicit
methods. It is, however, conditionally stable. The stability of the
explicit FDM for second order 2D wave propagation is given by
the CFL (CourantFriedrichsLewy) condition. The CFL condition
requires that the domain of dependence of the PDE must remain
within the domain of dependence of the finite difference scheme
for each mesh point of an explicit finite difference scheme. Thus,
the CFL condition that guarantees the stability in the case of an
acoustic wave equation is [Mitchell 1969]:

√
A =

(
c∆t

h

)
≤ 1√

s
(4)

where s is the dimensionality. In the present case, s = 2. On the
other hand, being the CFL condition broken, the simulation fail and
produce wildly incorrect results.

3.3 GPU Implementation

The Finite Difference Method chosen for our simulation is very
well suited for a GPU implementation, since it is strongly based
on data-locality (lattice based velocity and amplitude fields). Be-
sides this, this work also made use of some features of the CUDA
programming model, such as shared memory, to achieve maximum

performance from the underlying hardware. This section describes
some details of our GPU implementation of the aforementioned
FDM.

Current GPU architectures favor arrays as data structures, as they
are able to store 1D, 2D, 3D or n-dimensional versions. In this
work, one only needs to use 2D arrays, because our simulation was
run for matrices, and the data-structures used consist only of the
amplitude field for two time instants, and a velocity field to rep-
resent the medium. These matrices must be previously allocated
in the GPU dedicated memory, and must not be resized during the
simulation. The corresponding memory space can be released only
when the simulation ends. For instance, given the domain for a spe-
cific experiment or application, the discretization granularity must
be defined before invoking the kernel, and all memory must be al-
located and filled for the velocity field. The amplitude field can be
initialized with zeros at the first simulation step.

The developed kernel makes heavy use of shared memory to help
minimize the processing time. Hence, the kernel is divided in two
steps: The first copies the pressure values in the current time for
each discretized point Pn

(i,j) from global to shared memory; the
second one uses the Eq.2 to calculate the values for the next time
step at each point Pn+1

(i,j) . Besides, in accordance to the same equa-
tion, only points in the current time instant t need to be loaded in
shared memory.

The approach used maps the computation of each new value Pn+1
(i,j)

to a single thread. Hence, the 2D domain is divided in blocks (and
threads per blocks) observing the constrains described in [NVIDIA
2010]. For instance, the maximum number of blocks that can be
allocated is 65, 535, with 512 threads at each one, given a total of
33, 553, 920 possible points on a grid with our approach.

The kernel configuration chosen uses a 2D block with 32 threads in
one dimension and 16 threads in the other. Besides, shared mem-
orys size is based on the number of threads plus a region called
buffer border whose size is two times the neighborhood size, corre-
sponding to the 2D stencils size. One should be aware that there is
a hardware limit in the size of the shared memory per block, 16KB
in the hardware used to run the tests described in this work.

The size of the shared memory is based on the number of threads
plus one times the neighborhood size, in order to guarantee the op-
timization of the time access to memory. Therefore, each thread
accesses the shared memory aligning its thread’s unique number
with shared memory positions, where these positions are neighbors
of other threads. The boundaries considered for the shared memory
must go beyond the number of threads to guarantee that all of them
are able to access data from time instant t − 1 from shared mem-
ory. Thus, the edges threads copy and access data from the global
memory aligned with the neighboring edge threads of other blocks.

Each thread copies its data in the current time from the global mem-
ory to the shared memory. Besides, the threads at the border of a
block also copy data corresponding to the data of its own neighbors
which belong to a neighboring block. By doing this, the shared
memory structure has all the data necessary to compute new val-
ues of the points inside a block without any additional access to
the global memory. In other words, it guarantees that all threads
are able to access the memory addresses corresponding to instant t
from shared memory.

The second part of the kernel computes two difference equations:
the first one, Eq. 2, is used for the whole domain except for the
edges. The second equation is used for absorbing the wave ampli-
tude at the edges, by using Reynods Boundary condition [Reynolds
1978].

The method is explicit in time since it provides decoupling of data,
i.e., each value is defined for current (t) and previous (t − 1) time
instants. On the other hand, this method is conditionally stable, in
that the following condition must be true in order for the method
to converge: c(x, y) × ∆t

∆h
≤ 1√

2
, where v is the wave’s velocity,

and ∆t and ∆h are the discretization intervals in time and space,
respectively. This stability condition was proposed in an analysis
developed by [Lines et al. 1999]. Within the family of implicit

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 199

Room A Room B

Corridor

Figure 2: Blueprint of the indoor environment

methods, several schemes are not subjected to any constraint, thus
they are unconditionally stable. In other words, any values for ∆t
and ∆h can be used. Although implicit methods shall be stability
condition free, they require a higher computational cost, because
a linear system must be solved to compute the new value for each
point in time step (t + 1).

Nowadays, the consoles as well as home computers have multi-core
architectures, which are able to process different tasks simultane-
ously. In this context, the GPU can be used such mathematics co-
processor combined with a parallel game loop architecture [Zamith
et al. 2008]. Thus, the game tasks such as AI, load data from the
secondary memory and many others can be done as long as GPU
processes the physics simulation.

4 Indoor Experiment

Computing the perceived direction vector of a sound is an interest-
ing feature, specially because it can be used to augment the game
mechanics, providing an extra level of accuracy for stealth games,
such as the Metal Gear [Kojima] and Splinter Cell [Ubisoft]
series. In this genre of games, the player often must get through
complex buildings without being noticed by the enemy AI, both by
avoiding eye contact and not making noises. Traditionally, check-
ing if the AI can hear a player sound is achieved by a simple volume
threshold test based on distance.

Other techniques, such as Potentially Audible Sets [Dickheiser
2006], can be used to increase the realism, but are an adaptation
of a culling technique and not a proper simulation of how sound is
propagated through a closed environment such as a building. Our
simulation kernel is based on a proper method for computing sound
propagation and reflections.

4.1 Experiment Description

In this indoor scene experiment, whose schematic view is shown
in Figure 2, we represent two rooms connected by a side corridor,
where the walls are sound-proof (propagation velocity equals zero),
completely reflecting the sound waves.

We chose to have one sound source and two listeners at each test
setup. The sound source is a position in the lattice where we gen-
erate a sound pulse at the beginning of the simulation. The two lis-
teners are positioned at different locations at each test setup. Either
source or listeners locations could be dynamically updated based on
data extracted from a game engine. In our experiments, however,
we chose fixed locations for the simplicity of implementation.

Each listener is represented by four connected cells of the lattice,
which can be computed based on its actual position on the visual
scene. To determine the relative direction from which this listener
perceives the sound coming, once the sound pulse is started we
monitor the amplitude value of all four cells at each time-step of
the simulation. Whenever the amplitude passes a threshold level in
one or two of these four cells, it is possible to classify the perceived
direction of the sound source from eight (8) possible angles. Fig-
ure 3 shows the listener representation and some examples of the
possibly computed angles.

We ran the tests with three different setups for the relative positions
of the source and listener, as shown in Figure 4. After running

Listener 1

Listener 2

Listener 3

Angle = 315º
Angle = 270º

Angle = 225º

Figure 3: Listeners

Setup 1 Setup 2 Setup 3

Sound Source Listeners

1

2 2

1 1

2

Figure 4: Test setup for experiment 1

some initial experiments, we realized that our algorithm was suit-
able even for low-end video cards, so we decided to run all tests
reported in this paper in a consumer Macbook White, based on an
Intel Core 2 duo and a NVidia 9400GM, a GPU with only 32 stream
processors and 256MB of shared DDR3 memory. The parameters
used for indoor experiments are: ∆h = 0.25 meters , ∆t = 0.0033
seconds, domain of 64 × 32 points, representing a floor of 8 × 4
meters. In Table 1, the column (Exp.) identifies the experiment
number, the column (S. P.) represents the source position, (P. L. 1)
and (P. L. 2) are the position of listener 1 and 2, respectively, while
(A. L. 1)and (A. L. 2) show the perceived hearing angles for each
listener, as computed by the simulation.

Exp. S. P. P. L. 1 A. L. 1 P. L. 2 A. L. 2
1 (4, 4) (31,27) 0 (48,4) 135
2 (32,31) (16,4) 45 (48,4) 135
3 (63, 31) (16,4) 45 (48,4) 135

Table 1: Indoor experiments

4.2 Result Analysis

We will first describe the results in terms of the data computed
for the perceived direction angles. Figure 5 shows a sequence of
screenshots taken from the debug visualization of one of the test
instances. One can see how the sound-wave propagates through
the closed environment, finally reaching the listener. In the fi-
nal screenshot, a cone shows the computed direction vector of the
sound source.

Our simulation kernel is deterministic, so there was no need to per-
form more than one execution instance for each test setup. How-
ever, we ran and monitored several instances of the experiment,
with different hardware, in order to obtain some performance data.
The results showed that event for the low end card used (NVidia
9400GM) the time needed to compute each step was less than 1ms,
not impacting overall performance.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 200

Listener 1

Listener 2

Figure 5: Indoor experiment

5 Outdoor Experiment

With the outdoor experiment, we wanted to mimic how a shock-
wave from an explosion travels through an environment with large
obstacles, such as a city block with tall buildings. The resulting
amplitude field was used to render the propagation of a shock-wave-
like effect at each frame-step. While not exactly simulating the
physical phenomenon, a sound wave propagation is an acceptable
approximation for rendering a visual effect for gaming purposes.

The outdoor environment was represented by a lattice with larger
cells, and using Reynolds boundary condition [Reynolds 1978] to
simulate domain continuity. The buildings were represented by ze-
roing the velocity of the cells that intercepted the visual models
at the ground level. We included both perpendicular and diagonal
buildings, as illustrated in Figure 6, to show that the chosen gran-
ularity of the lattice was enough to achieve a good visual result.
The kernel parameters for this experiment are: ∆h = 1.0 meter,
∆t = 0.0033 seconds, domain of 128× 128 points, representing a
block of 128× 128 meters.

We chose to run this experiment both with and without representing
the buildings in the velocity field. We did this to show how the
simulated wave would propagate if it did not take scene geometry
into consideration. Figure 7 shows the rendered effect with the
buildings geometry influencing the propagation, while Figure 8
shows how the same simulation is rendered by ignoring the walls.

As the indoor experiment, the performance results are similar, since
we used data-structures of almost identical sizes.

6 Conclusion

In this paper we have shown how a wave propagation simulation
can be used to augment both the mechanics and the set of visual ef-
fects available to a game designer, specially in games where better
physical accuracy is a concern. We described our simulation ker-
nel, based on a Finite Difference Method, its implementation for
a CUDA-based GPU, and demonstrated its applicability with two

Explosion location

Building A

Building B Building C

Figure 6: Open environment representation

real-time experiments.

In our indoor experiment, a simple algorithm was used, in conjunc-
tion with the simulation kernel, to compute an approximation of
the perceived direction of a sound source. This technique can be
used to augment traditional positional audio libraries, providing for
a better suspension of disbelief to the player, and/or more accurate
input for the enemy AI in stealth games.

Our outdoor experiment has shown how a simple mimic of a shock-
wave, possibly originated by an explosion, propagating through a
set of buildings compares to the same effect done without consid-
ering the reflection of the waves by the buildings. We ran both
experiments with a consumer grade GPU, and the results obtained
show that our technique is indeed suitable for real-time, without
compromising the performance of the underling application.

While developing these applications, many other possibilities
emerged, such as simulating an earthquake, to show the visual
shock-wave and also computing vertical force vectors to the rigid-
body physics engine. Developing a more accurate mimic of this
effect is our current aim, possibly coupled with a 3D version of
the simulation kernel, which will provide for much more complete
amplitude data and propagation.

A weakness of our the chosen simulation kernel is that it conserves
energy, so that there is no attenuation of the sound waves, resulting
in a high entropy state, specially during the tests with our indoor
experiment. We solved this by zeroing the amplitude of the whole
field once the perceived direction vector was computed for both lis-
teners. On the outdoor experiment, the boundaries simulated the
continuation of the domain, absorbing energy and thus diminish-
ing this undesired side-effect. To better solve this issue, we plan
to apply an attenuation factor in future versions of the simulated
equation.

We consider that our goals where achieved with our current imple-
mentation, as we could systematically reproduce the tests in differ-
ent hardware and experiment setups, always getting the expected
results.

Acknowledgements

The authors gratefully acknowledge CNPq, CAPES and FAPERJ
for the financial support of this work.

References

ABBAS-TURKI, L. A., AND LAPEYRE, B. 2009. American op-

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 201

Figure 7: Outdoor - Building with reflective walls Figure 8: Outdoor - Building without reflective walls

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 202

tions pricing on multi-core graphic cards. International Con-
ference on Business Intelligence and Financial Engineering 0,
307–311.

BALEVIC, A., ROCKSTROH, L., TAUSENDFREUND, A.,
PATZELT, S., GOCH, G., AND SIMON, S. 2008. Acceler-
ating simulations of light scattering based on finite-difference
time-domain method with general purpose gpus. Computational
Science and Engineering, IEEE International Conference on 0,
327–334.

BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRÖODER, P.
2003. Sparse matrix solvers on the gpu: conjugate gradients
and multigrid. In ACM Transactions on Graphics: Proceedings
of ACM SIGGRAPH, 917–924.

DICKHEISER, M. 2006. C++ For Game Programmers. Charles
River Media, Inc., Rockland, MA, USA.

GOLUB, G., AND ORTEGA, J. 1991. Scientific Computing and
Differential Equations: an Introduction to Numerical Methods,
1 ed. Academic Press.

KOJIMA, H. Metal gear solid series website.
http://www.konami.jp/kojima pro/english/index.html, accessed
in: 07-19-2010.

LANGDON, W. B., AND W.BANZHAF. 2008. A simd interpreter
for genetic programming on gpu graphics cards. In Lecture Notes
in Computer Science: Genetic Programming. Springer Berlin-
Heidelberg, 73–85.

LINES, L. R., SLAWINSKI, R., AND BORDING, R. P. 1999. A
recipe for stability of finite-difference wave-equation computa-
tion. Geophysics 64, 967–969.

MAZARAK, O., MARTINS, C., AND AMANATIDES, J. 1999. An-
imating exploding objects. In In Proceedings of Graphics Inter-
face, Morgan Kaufmann Publishers Inc, 211-218, Ed.

MICHEA, D., AND D.KOMATITSCH. 2010. Accelerating a three-
dimensional finite-difference wave propagation code using gpu
graphics cards. Geophysical Journal International 182, 389–
402.

MITCHELL, A. 1969. Computational Methods in Partial Differen-
tial Equations. John Wiley and Sons.

NIKUNJ, R., NICO, G., AND L., M. C. 2008. Accelerated wave-
based acoustics simulation. In SPM ’08: Proceedings of the
2008 ACM symposium on Solid and physical modeling, ACM,
vol. 91-102.

NVIDIA. 2010. NVDIA - CUDA Programming Guide. NVIDIA.

REYNOLDS, A. 1978. Boundary condition for the numerical so-
lution of wave propagation problems. Geophysics 43, 1, 1099–
1110.

RÖBER, N., KAMINSKI, U., AND MASUCH, M. 2007. Ray acous-
tics using computer graphics technology. Proc. of the 10th Int.
Conference on Digital Audio Effects (september), DAFx–01–08.

ROZEN, T., BORYCZKO, K., AND ALDA, W. 2008. A gpu-based
method for approximate real-time fluid flow simulation. Ma-
chine Graphics and Vision International Journal 17, 3, 267–278.

UBISOFT. Splinter cell video game website.
http://splintercell.uk.ubi.com/conviction/, accessed in: 07-
19-2010.

VAN DEN DOEL, K., KRY, P. G., AND PAI, D. K. 2001. Foleyau-
tomatic: physically-based sound effects for interactive simula-
tion and animation. In SIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive tech-
niques, ACM, New York, NY, USA, 537–544.

ZAMITH, M. P. M., CLUA, E. W. G., CONCI, A., MONTENEGRO,
A., LEAL-TOLEDO, R. C. P., PAGLIOSA, P. A., VALENTE, L.,
AND FEIJ, B. 2008. A game loop architecture for the gpu used as
a math coprocessor in real-time applications. Comput. Entertain.
6, 3, 1–19.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 203

