
Evaluation of 3D applications on mobile gaming consoles using
Client-Server architecture

Alejandro Onatra Caro
Multimedia Research Group

Universidad Militar Nueva Granada
Bogotá, Colombia

Wilson J. Sarmiento
Multimedia Research Group

Universidad Militar Nueva Granada
Bogotá, Colombia

Abstract

Within the mobile devices, the gaming consoles have the greatest
graphic processing capabilities, in this category can be find the Nin-
tendo DS and Sony PSP. Despite their resources there is minimal
use of client-server architectures. This situation opens the possibil-
ity of testing this kind of platforms using client-server based appli-
cations. In this work was evaluated the performance and develop-
ment possibilities of a gaming console using a client-server system
that updates a 3D world in real time and displays it in the graphic
terminal, with the geometric information transmitted by the server
in response to the user actions, it is also presented a benchmark test
to verify the performance capabilities of gaming consoles.

Keywords:: 3D World, Client-server systems, Mobile Gaming
Console, Play Station Portable

1 Introduction

For many years desktop computers had been the main 3D devel-
opment platforms in the world. But a few years ago that began
to change with the development of mobile devices with greater
graphic capacities [Chang and Ger 2002] and efficient libraries for
3D mobile development. This context encouraged science and in-
dustry to develop and research in different areas of IT based on
mobile devices [Canali et al. 2009]. The main reasons for this
are: mobility and connectivity1, because unlike desktop comput-
ers [Cha et al. 2009], mobile devices allow users to carry them all
day long without being an obstacle to their activities and they can
be connected to different platforms, including other mobile devices
or desktop-like platforms [Gui et al. 2009]. But only until 2007
mobile applications and libraries development began to growth in a
representative rate [Tseng et al. 2007], both on gaming consoles and
mobile phones in industry and science [Noguera et al. 2010]. With
better tools on gaming devices, appeared new ways of developing
application based on client-server architecture, allowing consoles to
process more tasks in parallel because the server handle partially or
totally the graphic processing.In order to implement a client-server
architecture in mobile devices, two methods had been used, the first
one render the scene on the server and streams it to the client [Gu
and Xie 2010], the second one render the scene on the client using
the information provided by the server [Lamberti and Sanna 2007].

This work evaluates the performance of a gaming platform using
client-server architecture, in order to explore the possibles applica-
tions that can be develop in such systems. The evaluation process
use a test application focusing the graphic processing on the gam-
ing platform that acts as a client, allowing it to storage only the
currently visualized scene, and the probably next scene. For this
purpose we used the platform created by Sony Corporation, called
Play Station Portable, this one has the highest graphic processing
potential, and that is why it was chosen for the construction of the
system proposed in this work. Unlike previous work the client had
had low graphic processing power compared to the PSP(Play Sta-
tion Portable), but in this project all the advantages given by the
high graphic processing capabilities of the client were used.

2 Related Work

Nishino et al. develop an Ubiquitous 3D Graphics Modeler for
Mobile Devices using the first of the two approaches mentioned
in the section 1, that allows the user to display virtual models in

1Wi-Fi, Bluetooth, IrDA, etc.

real spaces on the screen, where the server renders the scene and
send it frame by frame to the client [Nishino et al. 2008]. Lamberti
and Sanna develop a system that sends the renderized scenes trough
compress images to the client. The data processed is streamed to
the client, and then it is decompressed by it [Lamberti and Sanna
2007]. One of the main restrictions of this method is the bandwidth
to achieve at least 30 FPS(Frames per Second), that is the minimum
frame rate recommended for the human eye to see continuous im-
age visualization. If the bandwidth decreased it would be harder for
the system to achieve 30 FPS.

Sterk and Palacio compared also two related methods, the first one
render a scene on the server and streams it to the client, and the
second one renders a fraction of the scene on the client [Moser and
Weiskopf 2008], and use a impostor box or skybox to replace the
landscape. Their main conclusion is that each method has its advan-
tages and disadvantages, but they determine that the graphic prop-
erties of the mobile devices are decisive for choosing which method
is the right one for the project. In their case, when the render was
made in the client, the visualization was smoother, but maintaining
a system like that, was more expensive and less scalable than the
system rendering the scene in the server[Sterk and Palacio 2009].

Riley and Decker build a client-server system where a mobile client
can received repetitions of a baseball game [Riley and Decker
2006]. This application doesn’t stream images from the client to
the server, instead the images were sent one by one and displayed
when they were all loaded on the client. This kind of system its
not real time based but show other possibilities that can be explored
with the client-server architecture.

In the next section details of the system architecture are exposed,
the section 4 presents a benchmark evaluation and the last section
includes the conclusions of this work an recommendations.

3 System Architecture

Figure 1: Basic diagram of a Client-server architecture.

In the figure 1 it is displayed a basic model of the client-server
architecture used in this work, the client is named Graphic Terminal
(GT), PSP in this case, its job is to process polygons and lighting.
And the server is called Support and Update Terminal (SUT), this
one has to send the positioning information requested by a client
each time its needed. In the next subsections the morphology of
the system, modules, functionalities and relevant technical data are
shown and described.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November  8th-10th, 2010 132



3.1 Multiple client to server design

The system proposed in this work use a client-server architecture,
where the client acts as a GT. The graphic terminal process most
part of the graphical data, storage the current scene and the pos-
sible next scene, render the current scene including polygons and
lighting, track the user movements, request information from the
server when is needed to display the next scene. The server acts as
a SUT, its functions are: Send the 3D positioning data to the client
when requested verifying its integrity when send or received, Stor-
age the different worlds composing the application 3D Universe.
The SUT can serve many clients at a time so it is very important to
verify the data coherence. In the figure 10 it is displayed the system
architecture.

The client-server communication is implemented trough Sockets
technology using the protocol TCP/IP, so its important that the
client knows the server IP direction to initialize the conversation.
The information exchange between the client and the server is man-
aged trough a simple custom protocol.

3.2 Scene structure

The World W used in this work is compose of scenes called Box
Q, this boxes are spatially arrange like a Lworld ∗ Lworld size ma-
trix where Lworld is the size of the side of the square matrix. The
number of boxes Q composing the world W is L2

world. Each box
Q is composed of divisions called Square C spatially arrange like
a matrix of size Lbox ∗ Lbox where Lbox is the side of the matrix
size. Also has an associated integer Matrix M describing the type
of visualization needed in the related square. Each square C has a
size of l2square where lsquare is side of the squares size measured
in PSP virtual space units. In the figures 2 and 3 it is shown the
geometric distribution of the scene.

Figure 2: Structure of a world Wk with n ∗ n boxes Q.

Every square C has an associated integer value in the visualization
Matrix M of the box Q, the value represents the way a model would
be positioned on the square C. In this work there is only one type of
model that can be visualized on the scene, it is a wall-shape model
composed of 6 rectangular faces, and each rectangular face is com-
posed by two triangles. This approach allows better visualization
features. The visualizations modes are:

• Mode 0 , don’t visualize the model on this square C.

• Mode 1 , visualize the model in this square C.

3.3 Support and Update Terminal -SUT

For the server implementation the Java programming language was
used, mainly because of its multi-platform characteristics, it is

Figure 3: Structure of a Box Q of size 3 ∗ 3, 4 squares C are in
mode 0 and 4 in mode 1.

based on objects and has a extensive standard API with many pur-
pose utilities. In general the server must have the capacity to run
Java applications and the next minimum features:

• Processor Pentium IV of 1.5GHz.

• Memory RAM of 510MB.

• Hard Drive with 20GB of capacity.

• Network card with Wi-Fi IEEE 802.11b capacity.

• OS Windows XP, Linux Ubuntu 8.10 or similar, MAC OS X.

The server does the following tasks:

1. Connect to the local Wi-Fi network: The server connects
to the local wireless network and allow access for multiple
clients identified as PSP devices, trough the TCP/IP protocol
and Sockets.

2. Send the information requested: Send specific information
to the client when requested, using the specified requesting
protocol GT-SUT.

3. Storage the 3D worlds geometric information: The geomet-
ric information of the worlds W structure is storage within the
server, so that the client don’t have to had all that informa-
tion, allowing the system to change the worlds in real time,
updating the client when this apply for new information.

4. Verify the integrity of the data send and received: Since
the system can respond to multiple clients, the data integrity
needs to be verified each time is sent or received, so that
in case the data match with the server reference, this will
send confirmation to continue to the client, if the data doesn’t
match, it would be necessary to request the data again.

The figure 4 shows the structure of the server.

3.4 The graphic terminal - GT

The graphic terminal chosen for this work was the Sony mobile
gaming platform, PSP. This platform main chip is composed of a
CPU based on MIPS32 Rk-4 of 32 bits with a speed of 333MHz,
a FPU for operations on floating point numbers, a VFPU for vec-
tor processing, a DSP for signal processing and a special processor
known as Media Engine also based on MIPS32 Rk-4 of 32 bits dedi-
cated to audio and video processing trough hardware. It has a 32MB
main memory capacity and 4MB of embedded DRAM. The graphic
chip has a speed of 166MHz using 2MB of the 4Mb of DRAM and
Bus of 512 bits, can process up to 33 millions of polygons with

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November  8th-10th, 2010 133



Figure 4: Structure of the Server.

transformations and lighting, with a rate of 664 Megapixels per sec-
ond. Also has a sound chip with 3D capacity and y 7.1 audio chan-
nels, 4.3 inch Widescreen TFT LCD, Memory card reader Memory
Stick, Supports Ad-HOC and AP connection trough Wireless LAN
card IEEE 802.11b, Bluetooth and Mini USB 2.0. In the gaming
mobile console world it has bigger processing power than any other
and all basic multimedia equipment for a basic entertainment sys-
tem. In the figure 5 it is shown the client structure.

The client does the following tasks:

1. Connect to the local Wi-Fi network: The GT connects to
the local wireless network and let the user choose the server
IP to begin communication and the data request.

2. Request information of the scene: When needed send a re-
quest to the server, for geometric information about the scene
to be rendered using the protocol GT-SUT.

3. Render the current scene: With the information of the box
Q obtained from the server, render and display the scene on
the screen.

4. Updates the current scene: Evaluate the user movements us-
ing the tracking method and request the data from the next
scene when needed.

Figure 5: Structure of the Client.

For implement the client it was used the free SDK Creative Com-
mons, minPSPW2, created by Paulo Lopes. Also the Eclipse Galileo
IDE, with the C++ programming language.

3.5 User position evaluation - Tracking Algorithm

To evaluate the user position inside a box Qi,j (where i,j are coor-
dinates on (x,y) on a discrete space) currently rendered, a simple
tracking algorithm was used. The box Qi,j will have maximum 8

2http://minpspw.sourceforge.net/

neighbour boxes Q, but the corner boxes were not taken into ac-
count in this work, like can be seen in the figure 6 corners , so
each box have maximum 4 neighbour boxes. The algorithm de-
tects when the user is within a predefined load distance distance
from a border of the box Qi,j associated to the green area of the
figure 6 of size e ∗ l(square), and which border is. The border
options are: Qi+1,j , Qi,j+1, Qi−1,j and Qi,j−1. Then every time
a user is within a distance load distance from any border of Qi,j ,
the client will request the information of the closest border to the
user and loads it into memory, in case the user position is within
a load distance distance of a scene, the latter will be rendered
by the system with the advantage of being previously loaded in the
PSP memory. In the figure 6 there’s a scheme of the geometry taken
account for the tracking algorithm.

Figure 6: A box Q neighbourhood showing loading area and paths
that can be taken to go to another box.

The algorithm 1 or Tracking Algorithm evaluates the position
of the user frame per frame, calculating the minimum distance
distancexy between the user position and the border of the 4 possi-
ble borders borderi. When the distance is less than load distance,
the system make a request for parameters to the server, and load
the data of the Box Q associated to that border, if the loading pro-
cess ends up successfully, the load variable is set to true if not, to
false. If the user position is within min distance of a border and
the Box Q data associated to this is loaded, the system renders this
info, and show it to the user.

Algorithm 1 Tracking algorithm

Require: load distance >> min distance
for i = 0 to 3 do

distancexy = minDistance(position, borderi)
if distancexy < load distance then

if load == false then
load = LoadScene(borderi)

end if
else

load = UnloadScene()
end if
if distancexy < min distance and load == true then

RenderScene()
end if

end for

3.6 Protocol GT-SUT for requesting information

The communication between GT and SUT its based on the ex-
change of messages in ASCII coded strings. This strings or mes-
sages follow the next rules:

• Every platform that wants to connect to the server(in this case

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November  8th-10th, 2010 134



the PSP)has to be identified with an @ followed by the system
name( i.e @PSP).

• Every string should end with a closing character, in this case
# was chosen.

• Any exchange of information should be followed by a confir-
mation from the receiver, that confirmation should begin with
the character C.

To verify that the strings are well constructed, a simple protocol was
designed. The protocol is divided in three parts, the first one find
the type of device trying to connect and what kind of information is
requested. The second one is focused on the information manage-
ment, in the figure 9 after the Device-Action-Request sequence, the
server reach a Send World Parameter state trough the W# string,
this state keep waiting for a Wn string where the W means its a
world parameter and n is the number of the parameter, in this case
number 0 is Lworld and 1 lbox. After these, the server send the
string CWn# to confirm the end of the world parameters and go to
the Waiting Request state. When the client send B# to the server it
change its state to Send Box Parameters this state waits for a Bn#
string, where the B means its a box parameter and n is the number
of the parameter, in this case 0 is lsquare and 1 is the matrix M ,
in this case the server keeps sending the information of the matrix
one item at a time, all the items are confirmed by the server. If any
parameter is unconfirmed, the box o world process is started again.
The last section of the protocol is shutting off the connection, in the
figure 9 is represented this state as Terminate Protocol.

3.7 3D World navigation using a Client-server sys-
tem

The system proposed in this work is composed of a client GT that
connects to a server SUT using a wireless network and an access
point. To display the 3D world on the PSP screen, the GT request
the geometric information of the current scene to the SUT using
Sockets, this request include: Lworld,lbox,lsquare and the matrix
M of the box Q. The user can move in the 3D world linearly or
angularly in x, y or z directions.

If the user approach to one of the borders of the box Q, the GT re-
quest to the server the information of the box Q next to the specified
border. The tracking algorithm takes into account only one border
at a time,that’s why the corners where not included in the transition
of the boxes. If another client GT exist, the SUT would create an-
other thread to attend the requests of the new client. The structure
of the system is displayed in the figure 10.

4 System Benchmark Tests

In this section its shown the different kind of tests run on the sys-
tem and the different results obtained trough the different evaluation
criteria.

4.1 Performance tests

The performance test are based in Frames per Second in different
scenarios and the seconds needed to load the basic chain of data
needed to render a box Q. The tests were:

1. FPS vs Size of the box: This test compare the relation be-
tween average FPS and the size a box Q. Given that not all
the models are shown in a random scene, the matrix M was
modified allowing that all the models could be displayed, so
the box Q associated to that matrix will hold the maximum
number of polygon possible given our current model.

The maximum number of polygons Npoly in this type of
boxes is given by the formula:

Npoly = 2 ∗ l2box ∗ (nface + 1) (1)

Where nface its the number of faces per rendered model, but
given that there’s only one kind of model in this tests, there’s

only one formula needed to calculate this quantity. In this test
only a value of 30 FPS or higher its an acceptable score. The
number two in the beginning of the formula is placed because
each square face is composed of two triangles.

2. Scene time loading vs Size of the box: This test compared
the time(Measured in second) the client take to load the data
needed to render a scene in terms of the size of the box Q.

The size of the data Ndata sent from the server is l2box, because
only the information that comes from the matrix M its taken
into account.

This paper doesn’t show the tests using the size of the square C
because in earlier stages of the project it was shown that for all
sizes needed for this project or higher, doesn’t affect the FPS.

4.2 FPS vs Size of the box

For each size of the box there were taken 50 measures of the frame
rate. In the table 1 it is shown the data incrementing each time by
5 the size of the box, in the figure 8 it was used an increment of 1.
Each FPS score was approximated to the closest integer value:

lbox FPS Npoly

5 60 350
10 60 1400
15 60 3150
20 60 5600
25 30 8750
30 30 12600
35 20 17150
40 15 22400
45 12 28350

Table 1: FPS vs Size of the box.

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50

Fr
am

es
 p

er
 S

ec
on

d

Size of the Box

Figure 7: FPS vs Size of the box

In the table 1 and in the figure 7, the FPS decrease below the ac-
ceptable rate when the size of the box Q reach a value of 31, so, in
lbox = 21 the scene has an optimum size. It can be extended a little
further and use a value of lbox = 30 with a frame ratio of 30 that’s
in the limit of what is visible accepted for image continuity by the
human eye.

4.3 Scene time loading vs Size of the box

For each size of the box there were taken 50 measures of the time
tload used to load the information of the scene. In the table 2 it is
shown the data, incrementing each time by 5 the size of the box, in
the figure 7 it was used an increment of 1. Each time the score was
approximated to the closest integer value:

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November  8th-10th, 2010 135



lbox Ndata tload
5 25 3.1s
10 100 5.4s
15 225 12.3s
20 400 15.9s
25 625 18.3s
30 900 22.8s
35 1225 30.2s
40 1600 41.2s
45 2025 52.4s

Table 2: Scene time loading vs Size of the box.

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50

U
pl

oa
d 

Ti
m

e

Size of the Box

Figure 8: Scene time loading vs Size of the box.

In the table 2 and in the figure 8, can be seen a regular increment
of the loading times when the size lbox of the box is raised. So
in the loading times tload between 16.5 and 22.8 seconds the FPS
associated is between 60 and 30. These values are indeed a long
time to wait for the data to load, but that’s why the system used a
tracking algorithm, minimizing waiting time.

5 Conclusions and Recommendations

The architecture used in this project was focused to multiple clients
and one server to attend to all the requests in the local wireless
network. In future work it would be convenient to think of world
models with higher complexity, so that different users, navigating
in their personalized worlds can interact with other users or their
worlds. Such system would need to manage the communication
trough the server or using P2P connections, where the mobile plat-
form acts as a server and a client at the same time. In the current
system the geometry data its storage in the server, that makes easy
the administration of this information, so to manage two worlds
coming from two different clients interacting between them, would
be better to focused the communication control on the server.

In this project the mobile platform used shows a solid performance
using client-server architecture, processing 12600 triangles with a
FPS ratio of 30 without complex optimizations. If the code was
modified to maximize the processing capacities of the platform, it
will provide better results. In the future, is advise using advance
predictive algorithms to expect the user movements and load the
information of the possibly next scene in parallel. Also, its possible
to reduce the time between requests, increasing the value of the
square size, so that the user would need more time to approach to
the borders of the scene and the predictive algorithm will have more
time to calculate the user trajectory without the frame rate being
affected. The PSP performance trough the different tests using the
evaluation application shows the great potential possessed by this
type of platforms when using server-client architectures.

The use of mobile gaming platforms for 3D applications develop-
ment using client-server is a challenge, because their are closed
system, that means that all the official development tools like the

device itself are proprietary, so all third-party tools have a lot of
technical problems in the documentation above all. But if this is
overcome, this type of consoles have a great potential to offer, ei-
ther the PSP for its graphic processing capabilities or others for
their different gadgets(Touch screens, Autostereographic Displays,
Built-in cameras, Built-in microphones, facial recognition, etc.) to
take the interaction to new levels.

References

CANALI, C., COLAJANNI, M., AND LANCELLOTTI, R. 2009.
Performance evolution of mobile web-based services. IEEE In-
ternet Computing March/April, 60.

CHA, S., KURZ, J. B., AND DU, W. 2009. Toward a unified
framework for mobile applications. In Seventh Annual Commu-
nications Networks and Services Research Conference.

CHANG, C.-F., AND GER, S.-H. 2002. Enhancing 3d graphics on
mobile devices by image based rendering. In PCM 02: Proceed-
ings of the Third IEEE Pacific Rim Conference on Multimedia.

GU, Y., AND XIE, M. 2010. A efficient architecture for semi-real-
time graphical simulation based on mobile computing devices in
wireless wms system. In Asia-Pacific Conference on Wearable
Computing Systems.

GUI, F., GUILLEN, M., RISHE, N., BARRETO, A., ANDRIAN,
J., AND ADJOUADI, M. 2009. A client-server architecture for
context-aware search application. In International Conference
on Network-Based Information Systems.

LAMBERTI, F., AND SANNA, A. 2007. A streaming-based solution
for remote visualization of 3d graphics on mobile devices. IEEE
Transactions on Visualization and Computer Graphics 13, 2.

MOSER, M., AND WEISKOPF, D. 2008. Interactive volume ren-
dering on mobile devices. In VMV 2008 - 13th International Fall
Workshop on Vision, Modelling and Visualization.

NISHINO, H., SHIIHARA, K., KAGAWA, T., AND UTSUMIYA, K.
2008. A ubiquitous 3d graphics modeler for mobile devices. In
International Symposium on Parallel and Distributed Processing
with Applications.

NOGUERA, J. M., SEGURA, R. J., OGAYAR, C. J., AND ARINYO,
R. J. 2010. A hybrid rendering technique to navigate in large
terrains using mobile devices. In Computer Graphics Interna-
tional. Singapore: 2010.

RILEY, P. F., AND DECKER, J. C. 2006. Analysis architecture
of a mobile sports replay system. In Proceedings of the 20th
International Conference on Advanced Information Networking
and Applications (AINA 06).

STERK, M., AND PALACIO, M. A. C. 2009. Virtual globe on
the android, remote vs. local rendering. In Sixth International
Conference on Information Technology: New Generations.

TSENG, Y.-M., WU, T.-Y., AND WU, J.-D. 2007. A mutual
authentication and key exchange scheme from bilinear pairings
for low power computing devices. In 31st Annual International
Computer Software and Applications Conference(COMPSAC
2007).

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November  8th-10th, 2010 136



Figure 9: The server-side protocol state diagram.

Figure 10: The proposed system scheme: 3D World navigation using a Client-server system.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November  8th-10th, 2010 137




