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e de Computação - ICMC
Universidade de São Paulo
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Abstract

Computer games are attracting increasing interest in the Artificial
Intelligence (AI) research community, mainly because games in-
volve reasoning, planning and learning [Fürnkranz 2007]. One
area of particular interest in the last years is the creation of adap-
tive game AI. Adaptive game AI is the implementation of AI in
computer games that holds the ability to adapt to changing circum-
stances, i.e., to exhibit adaptive behavior during the play. This kind
of adaptation can be created using Machine Learning techniques,
such as neural networks, reinforcement learning and bioinspired
methods. In order to learn online, a system needs to overcome the
main difficulties imposed by games: processing time and memory
requirements. Learning in a game needs to be fast and the memory
available is usually not enough to store a large number of train-
ing examples to a traditional Machine Learning technique. In this
context, methods for mining data streams seem to be a natural ap-
proach. Data streams are, by definition, sequences of training ex-
amples that arrive over time [Gama and Rodrigues 2009]. In the
data stream scenario, algorithms are usually incremental and capa-
ble of adapting the decision model when a change in the distribution
of the training examples is detected. One particularly interesting
algorithm for mining data streams is the Very Fast Decision Tree
(VFDT) [Domingos and Hulten 2000]. VFDTs are incremental de-
cision trees designed specifically to meet the data stream problem
requirements. In this paper, we analyse the use of VFDTs in the
task of learning in a Computer RolePlaying Game context. First, we
simulate data from manually designed tactics for a Computer Role-
Playing Game, based on Spronck’s static tactics [Spronck 2005],
and test the suitability of VFDT to rapid learn these tactics. After-
wards, we conduct an experiment in order to simulate a data stream
of examples where changes of tactics occur over time, and analyse
how VFDT and some of its variations respond to these changes in
the target concept.
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1 Introduction

In the recent years, the interest of game developers and researchers
have shifted from realistic graphics to more believable AI. The rea-
son is that over the last decades, computer games have become very
realistic in terms of graphics and sound effects, leaving AI as an
underexplored part of the development. Because of that, game AI
is basically constructed using a variety of nonadaptive techniques,
which has the well known disadvantage of being static [Bakkes
et al. 2009]. In order to produce next level game AI, researchers
have focused their attention in Machine Learning (ML) techniques,
with the objective of producing adaptive game AI, i.e., the capabil-
ity of adapting the behavior of AI controlled characters for better
responding to changes in the game environment.

Several ML techniques have been applied to the games scenario. In
spite of that, game developers are still concerned about introduc-
ing these techniques in a real game, mainly because the traditional
ML algorithms usually need numerous trials to learn an effective
model. Additionally, some of these algorithms rely on stochastic

procedures, which can result in unpredictable, and also difficult to
reproduce, behavior. As a result, the majority of ML algorithms
and techniques used in games is applied offline, which is known
as offline learning [Millington 2006]. Offline learning is employed
before the game is released for sales with the objective of exploring
and exposing possible design weaknesses and improving AI quality.
Online learning, in the counter side, allows game AI to automati-
cally detect and adapt to changing circumstances while the game is
in progress, and even repair weaknesses that have been exploited
by the human player [Spronck et al. 2003]. One of the main advan-
tages of adaptive game AI is the possibility of adapting game AI to
changing player tactics and styles.

A particular class of games where the incorporation of adaptive
game AI is more complicated is probably the Computer RolePlay-
ing Game (CRPG). This is due to the number of possible actions in
these games that ranges from hundreds to even thousands in each
turn. Because of this characteristic, CRPGs are most of the time
coded using scripts, which are a set of rules written in a high level
language that controls the behavior of the opponent characters. A
relatively novel technique is Dynamic Scripting [Spronck 2005], a
reinforcement learning technique that uses adaptive rulebases for
the formation of scripts.

In this paper, the main objective is to explore the usage of data
stream mining techniques in the context of game AI. Data stream
mining is an area of research concerned with the development of
learning algorithms for complex, dynamic environments where data
flows in a continuous way. Moreover, these algorithms have to
be able to work at non-stationary environments, i.e., environments
where the distribution generating the training examples can change
over time, also called concept changes. Because of this, algo-
rithms for mining data streams have to continuously adapt their
decision model to new examples. According to Domingos and Hul-
ten [Domingos and Hulten 2000] some of the desirable properties
of learning systems that mine data streams are: i) incrementality, ii)
online learning, iii) constant time to process an example, using fixed
memory, iv) single scan over the training data and v) taking concept
changes into account. Because of these properties of data streams
algorithms, we believe they are a natural approach for the problem
of learning in games, and more specifically, learning combat tactics
in CRPGs.

In this work, we study the VFDT algorithm, and some of its vari-
ations, for effectively learning different combat tactics in CRPGs.
We simulated data using static tactics based on the ones present in
the work of Spronck [Spronck 2005] in order to use as training ex-
amples for the algorithms analysed. We simulated data from two of
the tactics, namely, the offensive tactic and the defensive tactic, for
both types of characters (fighter and wizard). The objective was to
analyse how fast the VFDT can learn these tactics.

We also experimented with a simulated stream of data where ex-
amples from both tactics are interchanged from time to time. The
objective of this experiment is to demonstrate the usability of data
stream mining algorithms designed to tackle concept change in the
context of computer games.

The approach conducted in this paper is mainly motivated by a
known research area in game playing called Player Modelling,
where the goal is to improve the opponent player by allowing it to
adapt to its opponent [Fürnkranz 2007]. More specifically, the ap-
proach presented here is inspired in behavioral cloning techniques,
where artificial players’s strength and credibility are increased by
imitating the strategy of a human player.
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This paper is organized as follows. In Section 2, a small discussion
on opponent AI in CRPGs is described, focusing on adaptive tech-
niques. Section 3 brings a brief introduction to data stream mining.
Section 4 presents the original VFDT algorithm and the extensions
used in this work. Next, in section 5, methods based on ensembles
of VFDTs are presented, as they were used in the experiments. Sec-
tion 6 presents the approach followed in this work. Section 7 brings
the experiments conducted and their results. Finally, section 8 con-
cludes the paper and gives some directions for future research.

2 Related Works

CRPGs are a type of game where the human player is represented in
a virtual world by a character (or a group of characters) that goes on
a quest that involves, among other things, solving puzzles, talking
to the world’s inhabitants and defeating enemies in combat. Com-
bats in CRPGs include, at each combat round, a variety of possible
choices available to the players, turning decision making in this
kind of game a complex task of reasoning.

To deal with these complex games, designers usually employ
scripts, which are lists of rules that are executed sequentially. This
scripts are usually long and complex, and are based on knowledge
domain. The major problem with scripts is their static nature. A
list of rules models an opponent behavior, and this behavior will
not change until the end of the game. Because in modern CRPGs
scripts tend to be complex in order to model the desired behaviors,
they are also much more likely to contain weaknesses. Once the
human players discover one of this weaknesses, they will exploit it
to defeat opponents designed to be tough. Besides, scripts are not
adaptable and cannot deal with tactics that were not unforeseen by
the designers [Spronck et al. 2003].

One major advance to the scripting technique is Dynamic Scripting
(DS) [Spronck 2005]. DS is a reinforcement learning technique that
uses different rulebases for each type of opponent in the game. The
scripts of each opponent are created selecting rules from the corre-
sponding rulebase. The main innovation of DS is that it can adapt its
rulebases by assigning weights to the rules. By the moment a new
opponent is created, the rules that will form the opponent’s script
are selected from the corresponding rulebase. The probability of a
rule being selected is proportional to its weight. The adaptation of
the rulebases are carried out by updating the weights of the rules,
depending on their corresponding sucess or failure. Some works
have extended the basic idea of DS, including extra steps [Szita
et al. 2009].

In the work of Crocomo et al [Crocomo et al. 2007], a Genetic Al-
gorithm (GA) is used to learn effective combat behavior in CRPGs.
Each chromosome in the GA’s population if formed by a set of
rules, defining the behavior of a group of characters. These chromo-
somes are evaluated in the game environment, and a fitness is given
to each one depending on their success on combats. A new popu-
lation is generated, using crossover and mutation operators, and the
process repeats until a stopping criteria is met.

3 Data Stream Mining

Data streams are sequences of examples that arrive at a high rate
and that, frequently, can be read only once using a small amount
of processing time and memory. Since it is not possible to store all
the examples that arrive in a stream, learning algorithms designed
to learn in this context analyse the training examples only once.
Besides, it is necessary that this algorithms be capable of updating
the decision model every time new examples become available.

In the context of data stream mining, we cannot assume that the
examples are generated according to a stationary probability dis-
tribution. Since in these problems the distribution gererating the
examples is non-stationary, the concept underlying the examples
can change over time. Therefore, old information that determined
the behabior of the decision model is no more appropriate to repre-
sent this probability distribution. This is referred in the literature as
concept change [Gama and Rodrigues 2007; Gama et al. 2004].

In the data stream literature there are two main approaches to deal

with concept changes. The first one updates the decision model
in fixed intervals and does not take into account if changes have
really happened. Many algorithms that fall into this approach use
time windows, where the decision model is induced only with the
examples contained in this window. The main concern with the use
of time windows is the definition of the windows’s size [Gama and
Rodrigues 2007].

The second approach monitors some indicators in order to detect
possible concept changes. If a change is detected, the algorithm
takes appropriate actions to adjust the decision model according to
the change. One possible action is to adjust the size of the time win-
dow used. The methods following this approach are often referred
in the literature as drift detection methods.

Many methods for detecting and reacting to concept drift are re-
ported in the literature. One of these methods is proposed by Gama
et al [Gama et al. 2004] and is here referred as DDM (from Drift
Detection Method). The idea behind DDM is to control the online
error-rate of the algorithm. When a new training example is avail-
able, it is classified using the actual model and the error-rate of the
model can be calculated. The authors define a warning level and a
drift level. A new context is declared if, in a sequence of examples,
the error-rate increases reaching the warning level at example kw

and the drift level at example kd. The algorithm then learns a new
model using only the examples since kw. Another method, EDDM
(Extended Drift Detection Method) [Baena-Garcı́a et al. 2006] ex-
tends DDM. In EDDM, the estimated distribution of the distances
between classification errors is used in order to improve the window
resize method used in DDM.

4 Very Fast Decision Trees

VFDTs are incremental decision tree learners that build decision
models from extremely large datasets, making it possible to di-
rectly mine data streams without ever needing to store the exam-
ples. These systems were designed to build potentially very com-
plex trees with an acceptable computational cost.

As stated by Catlett [Catlett 1991], in order to find the best split
attribute at a given tree’s node it is only necessary to consider a
subset of the training examples that reach this node. In this man-
ner, VFDTs build decision tree models by recursively changing leaf
nodes by decision nodes.

Each leaf in the tree stores the so-called sufficient statistics about
attribute-values. These statistics are the ones necessary to calculate
an heuristic evaluation function used to evaluate the merit of insert-
ing a split decision based on attribute-values. Examples of heuristic
functions are the Gini Index and the Information Gain. The labeled
examples that come in the stream traverses the tree from the root
to a leaf node, testing the appropriate split attributes in the way.
When the example reaches a leaf node, all the sufficient statistics
are updated. When a minimum number of examples visit a leaf
each possible splitting test based on attributes-values is verified. If
there is enough statistical support in favor of one splitting test over
the others, then the leaf is transformed into a decision node and two
new descendant empty leaves are created.

VFDTs use the Hoeffding bound to decide how many examples a
leaf should observe before installing a decision node. Suppose n in-
dependent observations of a random variable r, whose range is R,
were performed. The Hoeffding bound states that, with probability
1 − δ, the true average of r, denoted by r, is in the interval r ± ε,

where ε =

√
R2 ln( 1

δ
)

2n
. Next, let H be the heuristic evaluation

function of an attribute. For the Information Gain, the maximum
value R of H is equal to log2(#classes). Let xa be the attribute
with highest value of H , xb the attribute with second-highest value
of H and ∆H = H(xa) −H(xb) the difference between the two
best attributes. Then, if ∆H > εwith n training examples observed
at the leaf, the Hoeffding bound states that, with probability 1− δ,
xa is really the attribute with highest value of the heuristic evalua-
tion function. This means that the leaf node should be transformed
into a decision node that splits on xa.
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VFDTs use a constant, τ , for run-off in the case where the Hoeffd-
ing bound would not decide for an attribute over the others. This
situation can happen when two or more attributes have very similar
values ofH , even with a large number of examples observed. Then,
if ∆H < ε < τ , the leaf is transformed into a decision node and
the split attribute is the one with highest value of H .

The basic VFDT algorithm has been extended to process continu-
ous attributes, to allow the use of the Naive-Bayes classifier at the
leaves and to detect and react to concept drift [Gama et al. 2006]. In
this work, we consider the algorithm with the two first extensions
and, therefore, not able to react to concept changes. This algorithm
will be referred in the rest of this paper as VFDT-NB.

5 Ensembles of VFDTs

Ensemble methods consist of combinations of various decision
models, which individual predictions are combined according to
some strategy in order to form a unique final prediction. The indi-
vidual predictions can be combined using some voting strategy. In
general, ensembles of classifiers achieve a higher accuracy than a
single classifier and are also simpler to scale and parallelize. Be-
sides, ensembles can quickly adapt to changes by means of prun-
ing parts of the ensemble with inferior performance. These char-
acteristics make ensemble methods more suitable for solving non-
stationary problems than conventional methods [Bifet et al. 2009].

Two ensemble methods using VFDTs were proposed by Bifet et
al [Bifet et al. 2009]. The first method, Bagging Adaptive-Size Ho-
effding Trees, consists of a bag of VFDT trees each one trained
with a different sample of examples. Adaptive-Size Hoeffding Tree
(ASHT) is a direct derivation of the VFDT, imposing a limited
depth in the tree. The maximum number of decision nodes of the
first tree is equal to 2. The maximum number of decision nodes of
the nth tree is two times the maximum number of nodes of the tree
with index n − 1. Each tree has also an associated weight that is
proportional to the inverse of the square of its error. If the number
of decision nodes in a tree exceeds the maximum number of nodes
allowed, then the algorithm deletes some nodes to reduce the size
of the tree.

The second method uses Bagging VFDT in association with the
ADWIN algorithm [Bifet and Gavaldà 2007]. The Bagging algo-
rithm used is the one proposed by Oza and Russel [Oza and Rus-
sel 2001] that uses the Poisson distribution for sampling the exam-
ples used to train each tree. ADWIN is an algorithm for detecting
changes and an estimator that maintains a window of variable size
of the most recent examples. This window has the maximum pos-
sible size in order that the mean of the values inside the window
has not changed. Each individual tree uses the ADWIN algorithm
to detect changes in a data stream and to estimate the weight of the
tree itself. In their strategy, when a change is detected, the worst
classifier is removed from the ensemble and a new classifier is cre-
ated.

Pfahringer et al [Pfahringer et al. 2007] proposed a method based
on the Hoeffding Option Trees (HOT) [Kohavi and Kunz 1997].
Hoeffding Option Trees are VFDTs where some decision nodes
contain several splitting tests based on different attributes. These
nodes are designated by optional nodes. In optional nodes, each
split test has an associated subtree. The interesting thing about the
Hoeffding Option Trees is that these trees consist of several VFDTs
in the same structure. In [Pfahringer et al. 2007], a variation of
these trees is proposed, the so-called Adaptive Hoeffding Option
Trees (ASHOT), in which each leaf stores an estimative of the ac-
tual error in order to calculate the weight of each leaf in the voting
scheme. The weight of a node is proportional to the square of the
inverse of its error.

6 VFDTs for Building Decision Models in
a CRPG

In this work, we propose the use of VFDTs for building decision
models from CRPG data. The two main objectives of this work
are, first, analyse how fast a VFDT can learn static combat tactics.

Second, show the potential of VFDTs to adapt the decision model
to changing combat tactics.

For reaching the first objective, we analysed the VFDT-NB algo-
rithm in simulated CRPG data. These data were created according
to the static tactics presented in the work of Spronck. For such, two
different tactics were used, offensive and defensive, for two differ-
ent types of opponents, a fighter and a wizard.

The fighter’s offensive tactic is represented by the following rules,
where HP means health percentage:

• if (HP < 50) and (PotionHealing = yes)

then DrinkPotionH

• if (HP ≥ 50) then AttackClosestEnemy

The wizard’s offensive tactic is formed by the rules:

• if (HP < 50) and (PotionHealing = yes)

then DrinkPotionH

• if (HP ≥ 50) and (Level3SpellDG = yes)

and (TypeClosestEnemy = wizard)

then CastLevel3DGSpellCenterEnemy

• if (HP ≥ 50) and (Level2SpellDG = yes)

then CastLevel2DGSpellClosestEnemy

• if (HP ≥ 50) and (Level1SpellDG = yes)

then CastLevel1DGSpellWeakestEnemy

• if (HP ≥ 50) then AttackClosestEnemy

For the defensive tactic, a fighter uses the following rules:

• if (RoundNumber ≤ 1) and (PotionFR = yes)

then DrinkPotionFR

• if (HP < 50) and (PotionHealing = yes)

then DrinkPotionH

• if (HP ≥ 50) then AttackClosestEnemy

Finally, a wizard playing the defensive tactic uses the rules:

• if (HP < 50) and (PotionHealing = yes)

then DrinkPotionH

• if (HP ≥ 50) and (Level2SpellDF = yes)

then CastLevel2DFSpellCenterEnemy

• if (HP ≥ 50) and (Level3SpellDF = yes)

then CastLevel3DFSpell

• if (HP ≥ 50) and (Level1SpellDF = yes)

then CastLevel1DFSpellClosestEnemy

• if (HP ≥ 50) then AttackClosestEnemy

Since the tactics are written as rules, we extracted from these rules
a set of corresponding attributes and actions. Using these attributes
together with a couple more attributes added, we managed to create
all possible examples that are covered by these rules, forming train-
ing examples suitable for processing by a decision tree as VFDT.
It is important to notice that the extra attributes added are in fact
irrelevant for the tactics we want to learn, but including then in the
data generated is important because in a real CRPG a big number
of irrelevant attributes to a given tactic will be forming the training
examples, and the ML algorithm needs to deal with these attributes.
Table 1 presents all the attributes extracted from the rules and their
types. Table 2 presents the extra attributes created.
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Table 1: Set of attributes extracted from the rules forming the tactics.

Attribute Type Explanation
HP Numeric (From 1 to 100) Health percentage of the character

RoundNumber Numeric (From 1 to 20) Indicates the actual round number
PotionHealing Binary Indicates if the character has a healing potion

PotionFR Binary Indicates if the character has a fire resistance potion
Level1 Spell DG Binary Indicates if the character has a damaging spell of level 1
Level2 Spell DG Binary Indicates if the character has a damaging spell of level 2
Level3 Spell DG Binary Indicates if the character has a damaging spell of level 3
Level1 Spell DF Binary Indicates if the character has a defensive spell of level 1
Level2 Spell DF Binary Indicates if the character has a defensive spell of level 2
Level3 Spell DF Binary Indicates if the character has a defensive spell of level 3

TypeClosestEnemy Categorical Indicates the type of the closest enemy
Action Categorical The chosen action (target attribute)

Not all of these attributes are used for generating the dataset corre-
sponding to a given opponent and tactic. The set of attributes used
to generate each combination of opponent/tactic are:

• Fighter Offensive: HP, PotionHealing, PotionFR, PotionFA,
SelfInfluenceStatus, LocationStatus, DistClosestEnemy, Ac-
tion.

• Wizard Offensive: HP, PotionHealing, PotionFR, Po-
tionFA, SelfInfluenceStatus, LocationStatus, DistClosestEn-
emy, TypeClosestEnemy, Level1 Spell DG, Level2 Spell DG,
Level3 Spell DG, Action.

• Fighter Defensive: HP, RoundNumber, PotionHealing, Po-
tionFR, PotionFA, SelfInfluenceStatus, LocationStatus, Dist-
ClosestEnemy, Action.

• Wizard Defensive: HP, RoundNumber, PotionHealing, Po-
tionFR, PotionFA, SelfInfluenceStatus, LocationStatus, Dist-
ClosestEnemy, TypeClosestEnemy, Level1 Spell DF, Level2
Spell DF, Level3 Spell DF, Action.

To meet the second objective, we constructed a dataset containing
examples of the offensive and defensive tactic for a fighter oppo-
nent. The dataset simulates a data stream where the target concept
changes over time from one tactic to another. The goal of the al-
gorithms investigated is to detect the change in tactics, represented
in the examples arriving in the stream, and respond accordingly
by means of adapting the actual decision model. We investigated
two methods for detecting and reacting to concept drift, namely,
the DDM method and its extension EDDM. The ensemble methods
presented in Section 5 were also experimented with this simulated
stream because, as explained before, ensembles are known to be
quickly adaptable to changes in the distribution of the examples.

In the experiments conducted we show that the algorithms for data
stream mining investigated in this work can in fact adapt the deci-
sion model to the changes in tactics in the stream of examples.

7 Empirical Evaluation

In this section we empirically evaluate VFDTs in the simulated con-
text of a CRPG. In order to reach the objectives of this work, we
constructed four datasets representing the two static tactics for each
type of opponent (fighter and wizard). Section 7.1 presents the ex-
periments conducted to meet the first objective and analyse VFDT
in a stationary situation of learning one combat tactic. Section 7.2
presents the experiments where the second objective is met, and
show how VFDTs can be used in non-static environments where
the combat tactics change over time.

7.1 Learning Static Tactics

For the first experiment, we want to evaluate how fast, by means of
number of training examples, the VFDT-NB algorithm can effec-
tively learn the tactic represented in the examples, by means of the
accuracy of the induced model. It is important for the context of

this work to evaluate the behavior of VFDT-NB when a small num-
ber of training examples are available to the algorithm, because in a
real game situation, one cannot afford expending a very long time to
learn a predictive model. It is known that VFDT-NB is not severely
affected by the order in which the examples are presented to the
tree. However, this is true when we have a reasonable number of
training examples. Because in the initial state the algorithm may
be affected by the order of the examples, to have a more confident
value for the accuracy of the classifier, we carried out the following
procedure.

First, we generated all the possible examples for one type of op-
ponent’s tactic, for example a fighter playing the offensive tactic.
After that, we randomly selected 1000 examples for training and
500 examples for testing. We generated 10 pairs of training/test
sets. The VFDT-NB algorithm was run in each one of this training
sets and tested in the corresponding test set in order to calculate a
mean of the accuracy.

The metodology for evaluating VFDT-NB in a pair of training/test
sets was the same one used by Gama et al [Gama et al. 2006], evalu-
ating the accuracy on the test set with different numbers of training
examples observed by the algorithm.This methodology allows to
create a learning curve that takes into account the increasing num-
ber of examples available to the algorithm. This type of analysis
is important for a data stream algorithm in order to prove its any-
time property, i.e, the capacity of the algorithm of having a decision
model ready to make predictions at any time.

The VFDT-NB algorithm used in this experiment is the implemen-
tation from the MOA package [MOA - University of Waikato ]. The
parameters used were δ = 5×10−3, τ = 0, nmin = 1 and the min-
imum number of examples observed before permiting Naive-Bayes
application also equal to 1.

Tables 3 and 4 present the results obtained.

As can be seen by Table 3, for the fighter opponent the VFDT-NB
has a high predictive accuracy with a relative small number of ex-
amples. This was expected because the fighter’s offensive tactic is a
simple tactic, depending only on two attributes, namely HP and Po-
tionHealing. For the wizard’s offensive tactic, the tree takes longer
to achieve the same accuracy because this tactic is more compli-
cated. In spite of this, it is possible to have a model that predicts
the wizard’s tactic with approximately 85% of accuracy with 100
examples, which, in fact, is not a very large number of examples.
It is interesting to notice that as the number of training examples
increases, the mean accuracy increases and the standard deviation
decreases accordingly, showing that as the number of examples in-
creases, the order in which these examples are presented to the tree
has decreasing impact on the accuracy.

When the number of training examples is too small, for example
from 5 to 100, the accuracy of the predictions rely basically on
the Naive-Bayes classification realized on the leaves, which in this
case is the root of the tree. Because of the nature of the VFDT-
NB algorithm, the tree will not decide for installing a split node if
there is not enough statistical support in favor of that split. As we
are using a high value for δ the tree will take longer to decide for
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Table 2: Set of extra attributes created.

Attribute Type Explanation
DistClosestEnemy Numeric (From 1 to 20) Distance to the closest enemy
SelfInfluenceStatus Binary Indicates if the character is under the influence of a spell

LocationStatus Binary Indicates if the character is within the area covered by a cloud effect
PotionFA Binary Indicates if the character has a free action potion

Table 3: Mean accuracy of VFDT-NB, standard deviation, maximum and minimum values of accuracy observed for the offensive tactic.
Values calculated for different numbers of training examples and test set containing 500 examples.

Fighter Wizard
#Ex Accuracy (%) SD Max Min Accuracy (%) SD Max Min

5 76.58 1.75 79.40 74.00 30.14 10.80 43.60 12.20
10 80.06 4.33 90.00 75.40 38.54 10.65 53.40 19.00
15 83.90 7.25 95.20 75.40 46.56 6.20 53.20 35.40
20 86.76 6.02 95.80 75.40 55.42 8.36 66.00 39.80
25 88.74 4.75 96.60 82.40 60.48 5.89 74.20 54.20
30 89.04 4.03 95.00 80.80 65.84 5.18 74.20 59.60
40 91.28 3.88 97.60 84.40 72.40 3.10 77.00 68.00
50 92.50 2.29 95.40 88.60 76.44 4.74 82.40 70.00

100 96.20 1.34 98.80 93.80 84.80 3.08 87.80 80.20
200 96.16 1.27 98.20 94.60 89.78 3.59 94.20 83.40
300 96.04 1.20 97.60 94.00 92.18 2.04 94.80 88.80
400 96.74 1.57 99.00 94.00 93.58 1.47 96.00 91.60
500 96.80 1.47 99.00 94.00 93.90 1.59 96.20 92.00

1000 97.51 2.04 100.00 94.60 95.64 1.01 96.60 94.00

a split and therefore, will have to observe a reasonable amount of
examples.

The results in Table 4 are related to the defensive tactic. For the
fighter, the tree has a predictive accuracy of approximately 90%
with 50 examples observed. The tree takes slightly more time to
learn this tactic than it needed to learn the offensive tactic for the
fighter opponent, because for this type of character the defensive
tactic is a little more complicated than the offensive tactic. The
wizard’s defensive tactic is learned faster by the VFDT-NB than the
wizard’s offensive tactic because the defensive tactic is a simplifi-
cation of the offensive one. One interesting point can be observed
from the wizard’s results in Table 4. The accuracy value with 300
examples observed by the tree decreases significantly in compari-
son to the accuracy with 200 examples and then starts to recover
and increases as the number of examples continue to increase. The
explanation for this fact is that the tree decided to install a deci-
sion node somewhere between 200 and 300 examples. Since this
is a new node, the number of examples that reached this node is
relatively small and, consequently, the Naive-Bayes classification
at this node will not be as effective as it was in the father of this
node simply because it had more examples to consider when mak-
ing a prediction. As the number of examples that reach the new
node increases, the classification tends to be more accurate, as can
be observed in the results.

7.2 Learning with Changing Tactics

For the second experiment, we used the datasets generated for the
fighter playing the offensive tactic and the fighter playing the defen-
sive tactic. We created a new dataset using the examples contained
in this two datasets in the following way. The first sequence of
examples in the dataset were all of the offensive tactic (1000 exam-
ples), then, we simulated a concept drift by adding a new sequence
of examples from the defensive tactic (1500 examples). After that
sequence of examples, a new sequence of 1500 examples from the
offensive tactic was added to the dataset, and so on, until reaching
5.500 examples. Two test sets, each containing 50 examples, were
used to test the model at intervals of 500 training examples. Each
test set contains examples of one of the tactics and they are used
interchangeably to test the model. The test set containing examples
from the defensive tactic is used to test the model right before the
examples from the defensive tactic arrive at the stream, so the tree
did not see any defensive tactic examples before. Then we keep

this test set until reaching the moment where the offensive tactic
examples arrive at the stream. At this moment, we switch for the
offensive test set. The process repeats until the end of the examples.

We investigated the performance of VFDT-NB without drift de-
tection, VFDT-NB with DDM and VFDT-NB with EDDM. We
also investigated four ensemble methods, all of them using VFDT-
NB as the base classifier: the Bagging method by Oza and Russel
with 5 trees (OzaBag 5 VFDT-NB), the OzaBag ADWIN method
with 5 trees (OzaBag ADWIN 5 VFDT-NB), the Bagging with
Adaptive-Size Hoeffding Trees using 5 ASHT (OzaBag ASHT) and
the Adaptive Hoeffding Option Tree (ASHOT). Although it is more
common to use dozens of classifiers in the ensembles, we opted for
using only a small number of classifiers. This was motivated by
to reasons. The first is that, in the data stream scenario, smaller
ensembles are more appropriate. Ensembles for data streams are
often parallelized to work online. The higher the number of base
classifiers in the ensemble, the higher the time expended in com-
munication between processing units. The second reason is related
to applying these methods in a real game. In a real computer game,
one cannot afford the AI consuming a lot of processing power. It
is straightforward that with more classifiers in the ensemble, more
processing power will be needed. Therefore, the final purpose was
to check whether we could achieve good results with relative small
computational processing.

Figure 1 presents the results obtained by VFDT-NB, VFDT-NB
with EDDM and VFDT-NB with EDDM.

Using the Simpson’s Rule for calculating the area under the curves
we concluded that the method with better performance is VFDT-NB
with EDDM. Figure 2 presents the results of the ensemble methods.
Between these methods and VFDT-NB with EDDM, again VFDT-
NB with EDDM is the one with better performance by means of
area under the curve. The methods OzaBag 5 VFDT-NB, OzaBag
ADWIN and ASHOT achieved better accuracy then the VFDT-NB
method with no drift detection. Methods VFDT-NB with DDM and
OzaBag ASHT had inferior performance then all the other methods
investigated.

Table 5 presents the calculated areas under the curves for each
classification method.

Analysing the curve of VFDT-NB with EDDM in Figure 2, we can
observe how this method is rearranging its decision model when
the concept underlying the training examples changes. For exam-
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Table 4: Mean accuracy of VFDT-NB, standard deviation, maximum and minimum values of accuracy observed for the defensive tactic.
Values calculated for different numbers of training examples and test set containing 500 examples.

Fighter Wizard
#Ex Accuracy (%) SD Max Min Accuracy (%) SD Max Min

5 71.90 2.02 75.00 68.80 32.58 6.85 38.60 21.20
10 72.80 1.80 75.80 70.40 40.82 9.72 49.80 23.00
15 75.72 5.23 88.40 71.00 52.46 7.22 66.40 40.00
20 79.00 6.60 93.00 71.20 60.40 7.10 69.60 49.00
25 80.38 5.47 92.20 73.20 65.58 5.55 74.40 57.20
30 84.12 3.66 90.60 78.80 70.22 5.29 75.20 60.20
40 88.66 3.55 93.80 82.40 77.36 5.34 86.00 69.60
50 89.98 4.46 95.00 83.20 84.08 5.25 93.20 77.00

100 92.86 3.48 97.00 87.00 91.60 4.37 96.60 83.00
200 94.86 1.88 97.00 91.20 95.82 1.04 97.20 93.80
300 95.64 1.97 98.80 93.00 77.12 20.73 97.60 34.60
400 96.10 1.43 98.40 93.60 84.44 12.21 94.20 58.60
500 96.44 1.54 98.60 94.20 92.78 3.87 96.20 85.00

1000 96.68 1.25 98.40 94.60 94.52 2.90 97.20 87.40

Table 5: Calculated areas under the curves for each method investigated.

Method Area
VFDT-NB 455

VFDT-NB with DDM 448
VFDT-NB with EDDM 460

OzaBag 5 VFDT-NB 459
OzaBag ADWIN 5 VFDT-NB 459

OzaBag 5 ASHT 447
ASHOT 458

Figure 1: Accuracy (%) of the classification methods in a stream of
data changing between offensive and defensive tactic for a fighter
opponent.

ple, after seeing 1000 examples, the concept in the stream changes.
This is reflected in the graph with a decrease in classification accu-
racy. The next examples in the stream represent this new context
and, therefore, the tree needs to be rearranged. At 1500 examples
observed the accuracy of the decision model has already recovered,
representing that the change in concept was detected and that the
algorithm reacted accordingly adjusting the decision model.

These results are interesting because they show that methods de-
signed to work in non-stationary problems really perform better
when the concept defining the stream of examples can change over
time, as is the case in these simulated changes of tactics in a CRPG.

8 Conclusion

In this work, we investigated the use of algorithms for mining data
streams in the context of CRPGs. More specifically, we analysed
the VFDT-NB algorithm and a collection of ensemble methods us-
ing VFDTs in simulated CRPG data. Since these algorithms are in-
cremental and designed to work online, we believe that they repre-
sent a natural approach for learning combat tactics in CRPGs. The
approach used in this work is based on Player Modelling, where

Figure 2: Accuracy (%) of the ensemble methods in a stream of
data changing between offensive and defensive tactic for a fighter
opponent.

the primary goal is to improve the opponent player by allowing it
to adapt to the human player strategies. Our experimental results
showed that VFDT-NB accurately learned static combat tactics us-
ing a small number of training examples. Building a decision model
in few learning trials is essential to any learning algorithm to be
used in a real game environment, because this applications cannot
afford expending time and resources to learn an accurate model. In
our simulated data, VFDT-NB, due to its incremental nature, pre-
sented a promising performance for computer games learning. Be-
sides, this algorithm does not need to store the examples in memory.

The experiments also showed that VFDTs designed to react to con-
cept drift can, in fact, adapt their learning models to a context where
the player changes tactics from time to time. This feature can be
usefull for online learning, where traditional ML algorithms that
learn static models are not suitable. According to the experimen-
tal results, the algorithms investigated can detect a change in the
combat tactic being used. Furthermore, they can adapt the deci-
sion model to these new data in order to better represent the target
concept.

These results show the potential of applying algorithms for data
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stream mining in real games. Further studies need to be conducted
in a real game scenario, for example, using a CRPG simulator and
not only simulated data, as we did in this work. Additionally, a
deeper investigation in how these algorithms perform in an online
situation can bring powerful insights in how to adapt the methods
to allow their use in a real game. Another possible future research
direction is to initialize the VFDT algorithm with a previously con-
structed tree.
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