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Abstract

In this work, we focus on flow animation in elastic surfaces de-
scribed by mass-spring models for computer game applications.
We propose the combination of an efficient fluid model, that does
not require solution of complicated equations, with a mass-spring
approach to simulate the deformable surface. Firstly, we describe
the fluid model for simulating the flow and its GPU implementa-
tion. The simulation method is based on a particle system, that
evolves over a lattice. This lattice is defined over the surface do-
main. A set of local rules determine the interaction between parti-
cles. The elastic surface is simulated by a GPU based mass-spring
system, geometrically represented by a regular mesh. The fluid
particles are guided by the surface topography interacting with the
elastic mesh due to external, elastic and damping forces. In the
experimental results we emphasize the fact that physically plausi-
ble flow/deformation phenomena can be efficiently reproduced and
animated in real time by the combined technique.

1 Introduction

Physically-based techniques for the animation of natural elements
like fluids (gas or liquids), flood, elastic, plastic and melting objects,
among others, have taken the attention of the computer graphics
community [Iglesias 2004; Nealen et al. 2005; Deusen et al. 2004].
In particular, techniques in the field of Computational Fluid Dy-
namics (CFD) have been applied for fluid animation in applications
that involve the interaction between the fluid and deformable solids
[Müller et al. 2004; Keiser et al. 2005; Genevaux et al. 2003; Chen-
tanez et al. 2006].

A common approach in this area relies on top down viewpoints that
use 2D/3D mesh based techniques in conjunction with fluid equa-
tions [Chentanez et al. 2006]. Other possibility is to apply mass-
spring systems to model the elastic solid [Genevaux et al. 2003].
Mass-spring models are well suited to animation due to its flexibil-
ity to handle non-rigid solid properties, its easy manipulation and
implementation. Besides, mass-spring models can be faster then
their counterpart in continuous mechanics, and so, more suitable
for real time applications specially when GPU capabilities are ex-
plored [Mosegaard and Sorensen 2005].

However, a common challenge is this area is the cost of the com-
putational animation of the solid-fluid interaction. Recently, it has
been demonstrated the advantages of using bottom up models for
surface water flow simulation which are inspired in Lattice Gas

Cellular Automata (LGCA) and LBM techniques [Barcellos et al.
2007; Fan et al. 2005]. These methods are cheaper than the tradi-
tional ones for fluid simulation, because there is no need to solve
Partial Differential Equations (PDEs) to obtain a high level of de-
scription [Frisch et al. 1987]. Convincing animations with real time
frame rates can be generated by lattice methods, as demonstrated
in [Judice et al. 2008] for computer game applications involving
surface flow over terrains.

In this paper we combine the mass-spring model described in
[Mosegaard and Sorensen 2005] with an extension of the surface
flow simulation proposed in [Barcellos et al. 2007] in order to get
a general system for GPU animation of fluids over elastic surfaces.
The combined technique is the main contribution of this paper. The
advantages of this method over other approaches are its simplicity
for implementation and the gain in computational efficiency allow-
ing real time frame rates. The basic data structures of the model are
a polygonal representation of the surface and a regular lattice with
nodes (i, j) ∈ L × L, where L ⊂ IN. Up to now, we consider
surface flow simulation over deformable 2D manifolds which have
a global parameterization ϕ : D → IR where ϕ(x, y, t) is the ele-
vation of the surface at point (x, y), at time t. So, each lattice node
(i, j) is a projection of a surface point (i, j, ϕ(i, j, t)). The surface
deforms as a mass-spring system, due to internal forces (elastic and
damping ones) and external forces (gravitational, etc.). Extensions
for more general parametric surfaces will be discussed in section 6.
Potential applications in games are erosion effects and deformation
of objects, modeled by elastic surfaces, under water accumulation.

The fluid model uses a LGCA approach. Therefore, particles can
only move along the edges of the lattice and their interactions
are based on local rules. Differently from traditional LGCA ap-
proaches, in our model more than one particles may share the same
node position (i, j). Particles move according to the surface to-
pography and the fluid configuration nearby. There is a counter in
each lattice node used to keep the number of particles in the corre-
sponding (i, j) position. When particles move over the lattice the
particles counters change and, consequently, the flow distribution is
updated and the surface deforms. The obtained result is a function
f(i, j, t) which gives the elevation of the free surface of the fluid,
at the point (i, j), in the simulation time t.

The paper is organized as follows. Sections 2 gives a survey of
works in interaction between fluids and elastic materials. In Sec-
tion 3 we present our technique for simulating surface water flow
over deformable surfaces. Its GPU implementation is described in
Section 4. The experimental results are presented on Section 5. Fi-
nally, we present the conclusions and future works on Section 6.

2 Interaction of Fluids with Deformable
Objects

The main focus of this work is the animation of fluids interacting
with deformable objects. Generally speaking, this subject includes:
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(1) Representation of the object geometry; (2) The modeling of me-
chanical behavior of elastic solid; (3) A suitable model for fluid
simulation; (4) A model for interaction of the flow with the object;
(5) Visualization and rendering issues.

The 3D object geometry is usually represented by mesh based
methods that offer the support for Finite Element techniques
[Müller et al. 2002; Debunne et al. 2001]. Bidimensional mani-
folds can be represented by using implicit surfaces [Zhu and Brid-
son 2005], triangulated meshes or subdivision surfaces with local
parameterization for representation [Guendelman et al. 2005; Stam
2003].

The mechanical behavior of elastic objects (item (2)) can be de-
scribed by the continuum elasticity theory that models how the ob-
jects deform under applied forces. In this case, constitutive laws are
used for the computation of the symmetric internal stress tensor σ,
and a conservation law gives the final PDE that governs the dynamic
of the material [Nealen et al. 2005]. Then Finite Element methods,
Boundary Element Method (BEM), Finite Differences (FDM) or
SPH techniques, are applied to solve the PDE [Müller et al. 2002;
James and Pai 1999; Terzopoulos and Witkin 1988; Debunne et al.
2000; Desbrun and Gascuel 1996]. Other possibility is to apply dis-
crete models, based on mass-spring systems [Genevaux et al. 2003;
Mosegaard and Sorensen 2005]. In this case, the object geometry
is represented by a mesh and its nodes are treated like mass points
while each edge acts like a spring connecting two adjacent nodes.
The relation between mass-spring models and the continuum elas-
ticity theory was examined in the reference [Delingette 2008]. The
conclusion is that methods that are based on the continuum me-
chanics are more realistic than their discrete counterparts. How-
ever, mass-spring models are simple to implement and can be faster
then the continuous ones, and so, more suitable for real time appli-
cations [Volino and Magnenat-Thalmann 2000; House and Breen
2000; VanGelder and Wilhelms 1997; Etzmuss et al. 2003].

The item (3) involves numerous works that can be coarsely classi-
fied in non-physically and physically based models [Iglesias 2004;
Deusen et al. 2004]. Our work belongs to the later class, which can
be subdivided in PDEs and Lattice based techniques [Frisch et al.
1987; Iglesias 2004].

PDEs methods involve continuous fluid equation, like the Navier-
Stokes ones, and numerical techniques based on discretization ap-
proaches that can be Lagrangian (Smoothed Particle Hydrodynam-
ics (SPH) [Liu and Liu 2003], method of characteristics [Stam
1999], Moving-Particle Semi-Implicit [Premoze et al. 2003]) or Eu-
lerian (Finite Element) ones [Foster and Metaxas 1997]. The for-
mer class uses particle systems for discretization while in the latter
model properties are computed for a set of stationary points, usu-
ally connected in a mesh, and updated to get the time evolution
of the continuous media. PDE based models are called top down
approaches because continuous mechanics concepts are applied to
derive the PDE, which governs the continuous dynamics, while the
particle view appears as a consequence of discretization methods.

Alternatively, lattice methods comprised by the Lattice Gas Cellular
Automata (LGCA) - FHP and HPP are the most known ones - and
Lattice Boltzmann (LBM) can be used [Frisch et al. 1987; Wei et al.
2004; Ye et al. 2004]. The basic idea behind these methods is that
the macroscopic dynamics of a fluid is the result of the collective
behavior of many microscopic particles. The LGCA will follow
this idea but simplifying the dynamics through simple and local
rules for particles interaction and displacements while LBM con-
structs a simplified kinetic model, a simplification of the Boltzmann
equation, that incorporates the essential microscopic physics so that
the macroscopic averaged properties obey the desired macroscopic
equations [Chen and Doolen 1998]. Therefore, lattice methods do
not apply PDEs to simulate fluids which can reduce the computa-
tional cost of the animation. Recently, it was demonstrated the ad-
vantages of using the philosophy behind FHP and HPP models for
computer graphics applications and for surface water flow simula-
tion [Barcellos et al. 2007]. Besides, despite of some intrinsic lim-
itations, multiscale techniques were applied to demonstrated that
the FHP and LBM models can reproduce Navier-Stokes behaviors
[Frisch et al. 1987].

Particularly, the FHP model has a number of advantages over more
traditional numerical methods, particularly when fluids mixing and
phase transitions occur [Rothman and Zaleski 1994]. The simula-
tion is always performed on a regular grid and can be efficiently
implemented on a massively parallel computer. Solid boundaries
and multiple fluids can be introduced in a straightforward manner
and the simulation is performed equally efficiently, regardless of the
complexity of the boundary or interface [Buick et al. 1998]. In ad-
dition there are not numerical instability issues because the evolu-
tion follows integer arithmetic. However, system parameterization
(viscosity, for example) is a difficult task in such lattice models and
they are less realistic than PDE based models.

The item (4), interaction between deformable solids and fluids, can
be addressed by hybrid methods (fluid is a continuum medium and
the solid is represented as a discrete one), SPH based techniques
and variational approaches [Genevaux et al. 2003; Solenthaler et al.
2007; Batty et al. 2007]. In [Genevaux et al. 2003] the interac-
tion problem is addressed by an hybrid technique in which the de-
formable solid is represented through a mass-spring network and
the fluid is simulated by Navier-Stokes equations and an Eulerian
method. The key idea is to apply spring forces to mass-less marker
particles in the fluid and the nodes of the mass-spring network. In
[Müller et al. 2004] authors proposed another hybrid method, in
which the fluid is represented by a SPH approach and the solid is
represented by polygonal meshes. To model the solid-fluid inter-
action it is used virtual boundary particles which are placed on the
surface of the solid objects according to Gaussian quadrature rules.
Such approach allows the computation of smooth interaction poten-
tials that yield stable simulations at interactive rates.

A subclass of hybrid methods deals with the interaction between
fluids and bidimensional manifolds modeled by a lower dimen-
sional (moving) triangulated surface. The fluid model is a con-
tinuous one, simulated by Navier-Stokes plus SPH or grid based
techniques. These approaches deals with the specific problem of
preventing the leaking of fluid across the thin solids. In [Guendel-
man et al. 2005] it is proposed a ray cast based visibility method
to perform this task and a new technique for properly enforcing in-
compressibility near the triangulated surface. When using the SPH
method, robust point face collisions detection algorithms must be
used to prevent fluid leaking [Bridson et al. 2002]. In addition, fluid
flows can be simulated on 2D manifolds, represented by (continu-
ous) subdivision surfaces or unstructured meshes, following tradi-
tional [Stam 2003] or LBM approaches [Fan et al. 2005]. Interac-
tion between Navier-Stokes fluids and digital terrain models is an-
other subclass of fluid-surface interaction [Ye et al. 1996]. Fluid
equation on height fields, like shallow water equations [Thürey
et al. 2006; Kass and Miller 1990], where applied for surface flow
simulation. These methods and our technique share the idea of
modeling the terrain and water surface as height fields. Besides,
a hybrid particle and implicit surface approach to simulating water
was proposed in [Foster and Fedkiw 2001], which led to the particle
level set method of [Enright et al. 2002].

The interaction fluid-solid can be seen as a simplified case of two-
phase systems. This is explored in [Solenthaler et al. 2007] where it
is presented an unified SPH framework for the simulation of melt-
ing and solidification which can be straightforward adapted for in-
teraction between fluids and deformable solids. The technique uses
the SPH method for the simulation of liquids, deformable as well
as rigid objects, which eliminates the need to define an interface for
coupling different models. Additionally, a new surface reconstruc-
tion technique, based on considering the movement of the center of
mass, is proposed to reduce rendering errors in concave regions.

Variational approach follows the usual philosophy for strong vari-
ational techniques: a functional (the Lagrangian) is defined such
that the governing equation is the Euler-Lagrange equation for min-
imizing that functional. In [Batty et al. 2007] the governing equa-
tion is the pressure PDE and the functional computes the total ki-
netic energy of the system. The solution in this formulation is the
divergence-free fluid field and compatible solid velocities that min-
imizes the total kinetic energy.

Finally, visualization and rendering techniques must be applied to
ensure the desired level of realism or visual effect. Realistic ren-
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dering methods can properly account for this task through several
algorithms including path tracing, bidirectional path tracing [Heck-
bert 1990], Metropolis light transport [Veach and Guibas 1997],
and photon mapping [Jensen and Christensen 1998]. The interested
reader is also encouraged to browse interesting reviews in this area
[Adabala and Manohar 2002; Iglesias 2004].

In this paper we focus on the interaction between fluids and de-
formable 2D manifolds modeled, respectively, by a lattice based
technique and mass-spring systems. The work is based on a fluid
model proposed in [Barcellos et al. 2007] that shares the basic fea-
tures of the HPP and FHP models. Therefore, we do not apply
PDEs, LBM or shallow water methods and the fluid evolution is
computed by integer arithmetic. The mass-spring system is sim-
ulated by the GPU implementation presented in [Mosegaard and
Sorensen 2005]. Next, we describe the proposed model and its GPU
implementation.

3 Particle-Based Simulation Model

In [Barcellos et al. 2007] we propose a particle based model for
flow simulation over static surfaces which is inspired in a lattice
gas model [Frisch et al. 1987]. In this paper we modify that model
for surface flow simulation over deformable 2D manifolds which
have a global parameterization ϕ : D → IR where ϕ(x, y, t) is the
elevation of the surface at point (x, y), at the time t. The extension
for general manifolds is discussed in Section 6.

The fluid-solid interaction model is composed by three basic ele-
ments: (1) A discretization of ϕ, composed by a regular lattice and
the value of ϕ in each lattice node (i, j); (2) A mass-spring sys-
tem to model the elastic surface; (3) A particle based water flow
simulation.

The fluid model uses a cellular automaton approach and is based on
the 2D regular lattice, a particle system and local rules for particles
displacements. The Figure 1 illustrates the surface domain and the
regular lattice which resolution is the same of that one used in the
ϕ discretization. In this figure we highlight a (i, j) node of the
lattice and its 4 neighbors given by (i− 1, j), (i, j − 1), (i + 1, j)
and (i, j + 1), numbered V1, V2, V3 and V4, respectively. Besides,
we can estimate the surface slope at point (x, y) ∈ D through the
projection of the surface normal over the domain D.

Figure 1: Neighborhood of a lattice node.

The particles movement are discrete in space and time; that means,
each particle moves from one lattice node to another one in the
neighborhood, in the time step △t. Specifically, from the lattice
topology in Figure 1, we have four directions to consider for the
red node (i, j), which can be indexed as {1, 2, 3, 4}. So, we score
these directions, as described by Algorithm 1. The output of this
algorithm is the list Flow Directions, which receives the four direc-
tions sorted according to the priorities for the flow; that means, we
have the first, second, third and forth flow direction.

A particle moves from a node (i, j) to a nearest neighbor Vk =
(m, n) if k is the first element of Flow Directions that satisfies
f(Vk, t) < f(i, j, t). Besides, a four bit string n1(i, j), n2(i, j),...,
n4(i, j) is assigned to each node (i, j) of the lattice. We set

Algorithm 1 : Build Flows Directions ()

1: Initialization:
2: L = {1, 2, 3, 4}
3: while L not null; do
4: m← arg

k

min{arc(−→s , Vk − (i, j)), k ∈ L};

5: Remove m from L;
6: Insert m in Flow Directions;
7: end while

nk(i, j) = 1 if the node (i, j) has one particle to send to the neigh-
bor k. In the actual implementation each lattice node can send at
most one particle at a time, and consequently, can receive at most 4
particles in each simulation time.

For each grid node (i, j) a particle counter is associated, which is
used to define the high of the free surface of the flow. The particle
system is used in order to update the field of counters. The result is
a function

f(i, j, t) = ϕ(i, j) + β · counter(i, j, t), (1)

which gives the elevation of the free surface flow f, at the point
(i, j) in the simulation time t (β is a scale parameter).

In this work, the surface deforms as a mass-spring system, subject
to internal forces (elastic and damping ones) and external forces.
Therefore, the surface elevation ϕ and slope field −→s are non-
stationary fields (as well as the f in Expression (1)).

The mass-spring system follows the reference [Mosegaard and
Sorensen 2005]. The surface nodes works as masses and the edges
defines the linear springs with damping. So, given a particle i
with mass mi and position vector xi, the force system is composed
by the elastic (fielastic), gravitational (figrav) and damping (fidamp)
forces, defined respectively, by:

f
i
elastic =

4
∑

j=1

kij (lij − ‖xi − xj‖)
(xi − xj)

‖xi − xj‖
, (2)

where kij is the stiffness of the spring linking the nodes xi and xj

and lij the spring rest length;

f
i
grav = (βicounter(i))z + mig, (3)

f
i
damp = γiẋi, (4)

where βi is a scale parameter, g is the gravity field, γi is the damp-
ing factor and counter(i) holds the number of particles accumu-
lated in the corresponding position. Following Newton’s Laws, we
get the following evolution equation:

miẍi = f
i
elastic + f

i
damp + f

i
grav. (5)

This system of ordinary differential equations can be effi-
ciently solved by the Verlet integration technique [Mosegaard and
Sorensen 2005]:

xi (t + h) = 2xi (t)− xi (t− h) + ẍi (t) h
2
. (6)

Now, let us put the fluid model and the mass-spring together to ren-
der the basic algorithm. At the initialization, the particle counters
field, the initial surface geometry and velocity of the nodes must
be defined. Then, in the simulation loop, the forces in Expressions
(2)-(4) are computed and the differential Equation (5) is integrated
through the Verlet scheme in Equation (6). Next, the new normal
field is computed and projected to get the new field −→s . Then, the
Algorithm 1 is applied to obtain the Flow Directions field. Based on
the free surface high and on the Flow Direction, the nk field is built.
This field is used to compute the number of particles that each node
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(i, j) sends and receives from the neighbors, and, consequently, the
particles counter field is updated. Finally, the deformable surface
and the surface flow are visualized and the next simulation step
starts. At each interaction, we re-compute the free surface eleva-
tion, given by expression (1), in order to mimic the transference of
velocity from the terrain to the particles.

Besides, we can include physical effects like evaporation E (i, j, t)
and precipitation P (i, j, t) by using an intuitive balance model
given by:

counter (i, j, t)← counter (i, j, t) + (P − E) . (7)

This model is based on local rules which try to simulate some as-
pects of overland flows [Ye et al. 1996].

We shall emphasize that the fluid simulation algorithm does not suf-
fer from numerical stability issues because the floating-point oper-
ations are simple (normal field and computation of expressions (1))
and the update of the counter field is based on simple comparisons
and integer arithmetic. Besides, volume conservation is straightfor-
ward verified because all operations are conservative with respect
to the number of particles.

4 GPU Implementation

The algorithm described in Section 3, for surface flow simulation
over deformable surfaces, is based on a regular lattice and local
rules for surface deformation and fluid animation. Therefore, it
may be very suitable for a GPU implementation. The main idea
is to encode the information needed in the simulation as textures
into the video memory. The Algorithm 2 gives an overview of the
whole GPU processing. The initialization step computes the ini-
tial values to the nodes particle counters, the surface geometry and
the initial velocity to each node. These values are computed in the
CPU and stored in different matrixes. Then, the simulation loop
starts, performing, for each time step, the simulation and visualiza-
tion processes. The simulation process update of the surface ge-
ometry, based on the mass-spring simulation, and the fluid simula-
tion updates the fluid particles distribution among the lattice nodes.
Finally, the visualization step begins, drawing the surface and the
water surface. The loop process, involving simulation and visual-
ization is completely performed on the GPU.

Algorithm 2 : GPU Simulation and Visualization()

1: Initialization:
2: Compute
3: Particles Counters.
4: Surface Geometry.
5: Velocity.
6: Transfer Data to GPU.
7: loop
8: Simulation:
9: GPU-Based Mass-Spring Simulation();

10: GPU-Based Fluid Simulation();
11: Visualization:
12: Draw Mass-Spring Surface;
13: Draw Water Free Surface;
14: end loop

Like others GPU-based algorithms, all data needed to simulation
and visualization processes are stored in GPU memory, mapped as
textures. The data flow of algorithm 2 is illustrated by Figure 2.

The GPU-based mass-spring simulation follows the reference
[Mosegaard and Sorensen 2005]. At each interaction of the main
loop a 2D texture, represented in Figure 2 as Properties texture,
encoding the automaton configuration is generated as follows. To
each texture point (i, j) it is associated the index k, such that
each color channel represents a different data: the terrain eleva-
tion ϕ(i, j) and a particle counter, respectively channels R and B.
The connectivity among masses can be implicitly represented be-
cause surface samples are organized in a regular lattice with a sim-
ple fixed 4-connected neighborhood rule. Surface textures stores

the particles positions. In fact, as long as Verlet integration method
is used (equation 6)), three surface stages must be stored during the
simulation, each one representing a different time step: current (t),
backward (t−1) and forward (t+1). The output of the spring-mass
simulation includes the new surface geometry (t + 1) and the flow
texture. The Flow data encodes the four flow directions in each
node (i, j) of the lattice, as described in section 3 and algorithm 1.
Based on the flow directions and the particle counters from previous
simulation step, the fluid simulation begins.

Figure 2: The data flow involved in the simulation and visualization
processes. The gray boxes represent data mapped in GPU using
texture memory.

During the fluid simulation an Upward Flow is build, where the
nk(i, j) bit string associated with each lattice node is generated as
described in section 3. In this process, given a lattice node (i, j),
we sequentially check the Flow Direction texture values and take
the first one, say k, that satisfies f(Vk, t) < f(i, j, t).

Using the Upward Flow and the Particle Counter at interaction t,
a new Particle Counter is generated at time t + 1. The elevations
of the free surface flow f(i, j, t) at each (i, j) node of the lattice is
also calculated, as Figures 2 illustrate.

The particle counters are updated evaluating the number of particles
that the node (i, j) receives and sends, respectively. The value of
received particles in a node (i, j) is computed by adding the suitable
values of the Upward Flows at the neighbors (V1, V2, V3, V4). The
number of particles the node (i, j) sends is obtained by adding the
nk(i, j) values.

The elevation of the free surface at a lattice node (i, j) is finally
obtained by adding the terrain elevation and the particle counter
value, weighted by a scale factor at that node (equation 1). The new
elevation is used to generate the Free Surface texture.

The two textures Surface(t+1) and Free Surface, which contains,
respectively, the terrain and the water surfaces, must be sent to an
Frame-Buffer Object (FBO) [Woo et al. 1999], in order to be used
to update data for visualization process.

It is important to emphasize that we need a new Particle Counter
Texture to encode the configuration at time t+1 due to the restric-
tion of the shader-based implementation, using GLSL (OpenGL
Shading Language) [Rost 2004]. In context of a shader, a texture
can be strictly read-only or write-only, and the GPU parallel ar-
chitecture uses several processing units to compute a field. Also,
the fragment processors are able to update more than one texture in
parallel through the technique called Multiple Render Target [Rost
2004].

The Surface and the Free Surface textures are used as input to the
Vertex Buffer Object (VBO). The VBO will be managed as a Ver-
tex Array to render the final visualization of the free surface of the

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

122



fluid. Therefore, the whole computation (simulation and visualiza-
tion) is performed in the GPU. This scheme allows us to minimize
the information flow between the CPU and the GPU and improves
the performance of the application.

5 Experimental Results

We developed a software in C + + language that allows a user to
deposit densities on the surfaces as well as to control parameters
of the simulation. The pictures included in this paper are snap-
shots obtained from that program. The corresponding videos can
be found in: http://virtual01.lncc.br/˜barcellos/
videosSBGames2009.zip. The rendering is implemented by
standard OpenGL calls and the shaders with OpenGL Shading Lan-
guage. The experiments were performed in a Intel Core 2 Duo 2.66
GHz, with 4 GB of RAM and a Video Card NVidia GeForce 8800
GTX, running Windows XP.

In these experiments we highlight aspects of our model that can
be useful for computer graphics applications: simple to simulate
complex configurations and computational efficiency.

We apply 2 kinds of external forces: vertical ones and wave-like
forces (Section 5.1). Surface configurations include multiply con-
nected domains (Section 5.2) and complex geometries (Section
5.3). Besides we simulate effects like evaporation and precipitation
(Section 5.3) and present the CPU and GPU performance compari-
son (section 5.4).

The lattice resolution is 256 × 256 and the number of particles
used in each test is given in Table 1. The intensity of the vertical
forces are scaled according to the requirements of each example.
The masses and springs located at the boundary of the domain are
kept rigid and we set m = 1.0 everywhere. The time step h of the
simulation was set to h = 0.1. We render the terrain and the wa-
ter surface as height fields. The visualization was implemented in
OpenGL. To increase the scene realism we applied the environment
mapping technique and Fresnel effects to incorporate the physical
laws of reflection and refraction for the water free surface render-
ing. The shaders was implemented in OpenGL Shading Language.

Table 1: Number of particles for the experiments of Sections 5.1,
5.2, 5.3.

Configuration Particles

Figure 4 2377092
Figure 5 2005169
Figure 6 218700
Figure 7 218700
Figure 8 364500
Figure 9 211200

Figure 10 53550
Figure 11 218700

5.1 Vertical Forces

In this section we consider elastic surfaces over the influence of
vertical external forces, like the gravitational one, that are applied
during a time interval [t1, t2] along the simulation, as follows:

fv(t) =

{

T · z : t1 ≤ t ≤ t2
0 : otherwise

(8)

where z is the unitary vector in the vertical direction and T is a
scale factor. The Figures 3.a-b show the initial configurations used
in the experiments. Each spring has a spring rest length lij (see
Expression (2)) equal to its length at the initialization.

The Figure 4 shows some snapshots of the animation which is
generated starting from the initial configuration pictured in Figure
3.a. In this case, we apply a force given by Expression (8) with
T = 0.025 t1 = 0, t2 = 3200. Then, we turn off this force and
apply a descending one, given by T = −0.025 for t ≥ 3201 .
The mass-spring parameters are: γ = 0.05 (damping); k = 1.0

(a) (b)

Figure 3: Initial configurations that are used in the computational
experiments: (a) Flat surface with a gaussian fluid distribution. (b)
Mexican Hat surface with a uniform fluid distribution.

(stiffness). Besides force (8) we add a gravitational force computed
by:

f
i
grav = (ρ ∗ counter(i))z. (9)

with ρ = −0.00005. At the beginning of the simulation, we ob-
serve that the fluid remains at the center of the deformable surface
because the surface deformation generates a lake (Figure 4.a). The
force fv deforms the surface in the upward direction generating a
pyramid-like surface due to the fact that the surface boundary is
rigid, as it can be seem in Figures 4.a-b. The descending force
is applied and soon the surface starts a contraction process. The
Figure 4.c shows the configuration at time t = 4650 in which the
fluid spills out the top of the surface and deforms the surface at
the same time. We observe a fully coupled interactions between
three-dimensional deformation and fluid evolution. The surface ge-
ometry is modified resulting a fluid redistribution which then feed
back and influence subsequent deformation. For instance, in Figure
4.d we observe the system configuration at t = 5950 showing new
regions of fluid accumulation due to surface deformation. In these
examples, the fluid particles are not allowed to go out the simula-
tion domain. So, particles accumulate in the boundary nodes until
the surface slope points inside the domain. That is why we observe
some accumulations of fluid in the boundary of the surface.

Figure 5 shows the evolution of the same initial configuration de-
picted on Figure 3.a. However, in this case we set the damping zero
and apply the force (8) at time t = 750 with T = −20.0. Each
spring has a spring rest length lij (see Expression (2)) equal to its
length at the initialization and k = 50.0.

Figures 5.a-b depicts the time step in which the fluid volume is sus-
pended by the surface generating interesting effects of transparency
and downhill flows. This configuration needs special comments.
The mechanical behavior acts like a viscous fluid, such a gelatin,
which flows slowly and generates pics of accumulations like the one
observed. This is a consequence of our heuristic for fluid particles
motion which imposes a constant horizontal velocity for particles
displacements: the velocity of the particle projection is equal the
ratio between the lattice edge and the time step which are constants
in the model. Figure 5.c depicts the system configuration at inter-
action t = 3440. We observe a lake formation at the center of the
surface as well as a large portion of fluid going down towards the
central lake. The configuration shown in Figure 5.d occurs at time
step t = 4200 and presents a portion of the fluid volume suspended
by the surface, similarly to Figure 5.a. In fact, the video sequence
shows periodic formations as a consequence of the symmetries in
the initial configuration, the fact that we do not consider friction
between the fluid and the surface and that the damping is zero in
this case.

The Figure 6 shows a sequence of snapshots generated from the
initial configuration depicted in Figure 3.b. We applied the force
(8) with T = −30.0 at time t = 1000 and T = 35.0 at time
t = 3200. The mass-spring parameters are: γ = 0.075 (damping);
k = 20.0 (stiffness), lij is the length at the initial step. Besides
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(a) (b)

(c) (d)

Figure 4: (a) Flat surface with a gaussian fluid distribution at time
step t = 1400. (b) The spring-mass system evolves generating
a pyramid-like figure due to the fact that springs at the domain
boundary are kept rigid and the force given by Expression (8) is
applied. (c) Down hill surface flow at simulation time t = 4650.
(d) Configuration at time t = 5950.

(a) (b)

(c) (d)

Figure 5: Evolution of the initial configuration depicted in Figure
3, but without damping. (a) Frame at time step t = 1910. (b) Con-
figuration with the fluid volume suspended by the elastic surface
(time t = 2610); (c) Lake formation at time t = 3440. (d) System
evolution at time t = 4200. Energy conservation and symmetries
of the initial configuration implies periodic structures during the
evolution.

force (8) we add a gravitational force computed by expression (9)
with ρ = −0.0000025.

The Figure 6.a shows a portion of the fluid flowing towards the
boundary and another portion that generates a lake in the valley of
the surface. The Figure 6.b shows this configuration some time
further (t = 448) now depicting the fluid accumulation nearby
the surface boundary and at the center. The system evolves and
achieves the configuration shown in Figure 6.c in which the fluid
is concentrated nearby the boundary and in the valley. Then, at the
time t = 1000 the force (8) is applied with T = −30.0 deforming
the system which achieves the configuration pictured on Figure 6.d.
When the mass-spring system achieves zero kinetic energy, it starts
to go up achieving the configurations shown in Figure 6.e and 6.f at
times t = 4648 and t = 7084, respectively.

(a) (b)

(c) (d)

(e) (f)

Figure 6: (a) Mexican hat surface with a uniform fluid distribution
at time step t = 84. (b) Configuration at time t = 448 show-
ing the deformation of the surface nearby the surface valley; (c)
Fluid concentration nearby the domain boundary and in the valley
at time 1092. (d) Configuration at t = 1232 generated after the
descending force is applied. (e) System in ascending movement:
configuration at time t = 4648. (f) Snapshot obtained at time step
7084 of the simulation.

The Figure 7 shows some snapshots for the evolution of the initial
configuration depicted in Figure 3.b, but without damping. In this
case we set the spring rest length lij = 1.0 at the initialization.
The mass-spring parameters are: γ = 0.0 (damping); k = 50.0
(stiffness). We apply the force (8) with T = −40.0 at time t =
1500 and we add a gravitational force computed by equation (9)
with ρ = −0.00025.

Once the rest length of the springs is lij = 1.0, the elastic energy at
time t = 0 is not null. That is way we observe a little hill formation
at the center in Figure 7.a, which dissipates as shown in Figure 7.b.
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At time t = 1500 it is applied the force (8) with T = −40.0 gen-
erating the configuration pictured on Figure 6.c at time t = 2260.
When the kinetic energy becomes null, the system starts ascending
movement generating the configuration pictured on Figures 7.d.

(a) (b)

(c) (d)

Figure 7: (a) Mexican hat surface with a uniform fluid distribution
at time step 364. (b) Configuration at time 560; (c) 2260. (d) 2772.

The next example applies a force given by a periodic wave form
namely a harmonic wave:

fw (x, y, t) = A0 sin (bx− ωt) , (10)

where b is the wave number and ω is the angular frequency. This
expression represents an unaltered propagation through a linear
media in the electromagnetic theory [Corson and Lorrain 1970].
The parameters are: γ = 0.2 (damping), k = 20.0 (stiffness),
b = ω = 0.1 and A0 = 0.375. We turned off the gravitational
force ( ρ = 0.0 in expression (9)).

The obtained patterns of the surface flow can be seen in the Figure
8. The initial configuration is similar the one pictured on Figure 3.a
but now we take a uniform fluid distribution at the time t = 0. As
we turned off the influence of the weight of the fluid in the spring-
mass system we avoid surface deformation due the fluid weight. So,
the fluid is carried by the surface waves spreading a bit due to fluid
concentration (Figure 8).a. In this case the fluid is allowed to flow
out the surface domain. So we do not have mass conservation, as it
can be observed on Figure 8.b,d.

5.2 Complex Domains

Let us consider the simulation technique for a multiply connected
domain, like the one pictured in Figure 9.a. To define the initial
configuration it was generated a circular hole with radius 35.0 on
the surface and an uniform fluid distribution composed by 211200
particles. We use a texture channel in order to distinguish the lattice
nodes that are inside the surface domain from the outside nodes.

In this case, we have a boundary with two disconnected compo-
nents. It is not required any extra mathematical machinery to deal
with such topology because system rules do not undergo modifica-
tions. The parameters are: γ = 0.125 (damping), k = 5.0 (stiff-
ness). We apply the force (8) with T = −30.0 at time t = 200,
T = 45.0 at time t = 1200, T = −45.0 at time t = 2900
and we add a gravitational force computed by expression (9) with
ρ = −0.0000025.

Figure 9.b shows the fluid distribution at time t = 1120 when sys-
tem is going down. We observe a lake formation and the spring

(a) (b)

(c) (d)

Figure 8: (a) Flat surface with a uniform fluid distribution and har-
monic waves at time step 220. (b) Configuration at time 1150 with
fluid going out the domain; (c) Surface flow pattern at simulation
time 5040. (d) Snapshot at time step 6104.

mass deformation. Then, we apply the ascending force, at the time
t = 1200. The Figure 9.c pictures a snapshot of the corresponding
sequence showing a surface flow towards the surface hole. In this
case the fluid is not allowed to go out the surface. Finally, at time
t = 2900 we apply the force (8) with T = −45.0. As a result, the
fluid nearby the inner boundary flows out and lake formations are
observed, as it can be seen in Figure 9.d. If we want to predict such
effects, we need to consider Navier-Stokes equations with suitable
boundary conditions. However, if the aim is to explore the visual
effect, we can just simulate and take the desired result at its time.

5.3 Erosion and Deformation

This section illustrates the erosion effects that can be obtained with
the proposed technique. The mechanical behavior of the inviscid
substrate under erosion is modeled by the spring-mass system cou-
pled with the surface flow. The system dynamics generates a fluid
redistribution that indicates high consequence areas and influence
subsequent erosion modeled as deformation. A similar approach
was presented in [Simpson 2004] but using a continuous thin-plate
formulation.

The Figure 10 illustrates an example of erosion simulation caused
by a constant rainfall. The original surface topography is pictured
on Figure 10.a. We model the rainfall as a precipitation distri-
bution over the terrain, or some part of it, as depicted in Figure
10.b. The precipitation is constant and applied during the first time
step (P (i, j, 0) = 12 in Equation (7)). There is no evaporation
(E(i, j, t) = 0 in expression (7) ) and the parameters are: γ = 0.15
(damping), k = 1.0 (stiffness).

We observe in Figures 10.c-e the evolution of the terrain topography
and the formation of flooded areas over the terrain. The Figure
10.f pictures the surface topography at time t = 5300. We can
compare it with the initial configuration in Figure 10.a and observe
the deformation generated.

The model can predicts high erosion potential at the lower, concave
parts of hillslopes. If an almost flat area is encountered then the wa-
ter simply spreads out into the flat area, deforming it, without any
extra machinery. We observe this effect in the region nearby the
left-hand corner of Figures 10.c-d. We shall observe that the parti-
cle model does not incorporates dissipative forces between the flow
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(a) (b)

(c) (d)

Figure 9: (a) Multiply connected domain: Initial configuration.
(b) System is going down at time step 2380 due to the application
of force (8) with T = −30.0; (c) Configuration at time step 2380
when system is going up. (d) Snapshot at time step 4676 when
system is going down again due to application of force (8) with
T = −45.0.

and the terrain. Besides, mass transport effects are not considered
in our model.

Also, we can apply Expression (7) to include evaporation in the
simulation. The Figure 11 shows six snapshots of such animation
over the Grand Canyon topography, depicted in Figure 11.a. The
evaporation is constant (E(i, j, t0 + ∆t) = 1), for all (i, j) ∈ D,
with t0 = 2800 and ∆t = 40. The precipitation is modeled like
in the previous example. The Figure 11.b is the initial step of the
simulation. Figures 11.c-e show the fluid evolution and the sur-
face deformation. In this case, there is no mass conservation due
to the evaporation. So, the simulation stops when the fluid mass
is null, that means, in the time step t∗ in which the particle coun-
ters are zero: counter(i, j, t∗) = 0. Figure 11.f shows a snapshot
closer to the final step. The parameters are: γ = 0.15 (damping),
k = 1.0 (stiffness). In this example as well as in the Figure 10
each spring has a rest length given by its length at the time t = 0.
When the fluid volume becomes null, the spring-mass will evolve
towards its equilibrium configuration. That is way we stop the evo-
lution when the fluid vanishes. More efficient mechanisms must be
implemented to control the deformation in order to mimic erosion
more efficiently.

5.4 CPU versus GPU Animation and Real Time

In this section we compare the performance of the CPU implemen-
tation with the performance of the GPU implementation of the ani-
mation algorithm. The Table 2 shows the rate of frames per second
(FPS) obtained through these implementations, for the above ex-
amples. We observe a substantial improvement in the performance
(more than 13 times better in all cases) with frame rates suitable for
real time applications.

A major concern about using graphics hardware for general compu-
tation is the accuracy. The graphics hardware used supports 4 bytes
per color channel which fits the requirement on the accuracy of the
computation.

(a) (b)

(c) (d)

(e) (f)

Figure 10: (a) Puget Sound Model. (b) Fluid precipitation; (c)
Modified terrain topography and surface flow at time 196. (d) Con-
figuration at time step 1500. (e) Configuration at time step 3800.
(f) Snapshot at time step 5300 showing the deformed surface topog-
raphy.

Table 2: Frames per second rates (FPS) and number of particles
for the experiments of Sections 5.1, 5.2, 5.3.

Configuration Particles FPS in CPU FPS in GPU

Figure 4 2377092 5.7 81.6
Figure 5 2005169 5.6 78.3
Figure 6 218700 5.5 83.2
Figure 7 218700 5.4 81.6
Figure 8 364500 5.3 81.6
Figure 9 211200 5.7 82.0

Figure 10 53550 5.7 78.4
Figure 11 218700 5.4 83.2

Table 3: This table shows the FPSs for different numbers of parti-
cles when we use the same configuration of Figure 5.

Configuration Particles FPS in CPU FPS in GPU

Figure 5 2138306 5.5 79.9
Figure 5 706754 5.5 80.0
Figure 5 229522 5.5 80.1

6 Conclusions

In this work, we focused on surface flow animation in deformable
surfaces described by mass-spring models for computer graphics
applications. We proposed the combination of an efficient particle
model for fluid simulation with a mass-spring approach to perform
the animation. Both the CPU and GPU implementations were con-
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(a) (b)

(c) (d)

(e) (f)

Figure 11: (a) Grand Canyon model. (b) Initial precipitation area;
(c) Snapshot at simulation time 1568 showing fluid distribution and
surface deformation. (d) Configuration at time step 2500. (e) Snap-
shot at time step 4060: we observe the loss of fluid volume due to
evaporation. (f) Terrain topography when fluid mass almost be-
comes null.

sidered. In the experimental results we emphasize the abilities of
our animation technique and the real time capabilities of the GPU
implementation. Besides, we notice that the bottleneck of the whole
simulation is the mass-spring system. In fact, as we can observe in
Table 3, when the number of particles used is 2138306, 706754
or 229522, for the configuration picture on Figure 5, the measured
FPS is almost the same.

Future directions in this work are the extension of the combined
technique for general 2D manifolds represented by subdivision sur-
faces with local parameterization with special care to handle cross-
patch boundary conditions. Besides, the introduction of random
variables, to incorporate viscosity, and the comparison with a PDE-
based technique will be performed soon.
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