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Figure 1: Gestures2Go

Abstract 

This paper describes a command interface for games 

based on hand gestures defined by postures, movement 

and location. The large variety of gestures thus 

possible increases usability by allowing a better match 

between gesture and action. The system uses computer 

vision requiring no sensors or markers on the user or 

background. The analysis of requirements for games, 

the architecture and implementation are discussed, as 

well as the results of several tests to evaluate how well 

each requirement is met. 
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1. Introduction 

The possibility of relaying commands to a computer 

system using one's own hands and gestures has 

interested researches and users for a long time and was 

one of the first topics in user interface research, partly 

because it uses well-developed, everyday skills 

[Bowman 2005]. With the computational capacity 

available today and widespread use of image capture 

devices, even in domestic systems it is possible to 

implement this sort of interaction using computer 

vision. This brings the benefit of leaving the user's 

hands free of any gloves, cables or sensors. 

Gestures2Go, the system described here, provides this 

functionality and its implementation (in C++, 

illustrated in figure 1) is focused on electronic games.  

Games are an ideal platform to test and popularize 

new user interface systems, for several reasons, such as 

an increased user willingness to explore in this medium 

[Starner et al. 2004]. There are many examples of 

academic research developing and studying new 

interfaces with games, particularly incorporating 

Augmented Reality [Bernardes et al., 2008]. The game 

industry has also introduced new (or of previously 

restricted use) interfaces and devices to the public. 

From the joystick to increasingly complex gamepads 

and controllers shaped as musical instruments, from 

datagloves to "pistols" that function as pointing devices 

and even haptic devices [Novint 2009], many are such 

examples, to the point that, today, some professionals 

are encouraged to play games to improve job-related 

skills [Dobnik 2004]. 

On the other hand, both the industry and academia 

acknowledge that new, more natural (and hopefully 

fun) interfaces are one way to attract new consumers to 

this economically important but still restricted market 

[Kane 2005]. And in the past few years, the search for 

these interfaces has been more widespread, continuous, 

well-publicized and commercially successful. After a 

popular gaming platform introduced motion and tilt 

detection in a simpler controller as its most innovating 

feature [AiLive 2007], motion detection was quickly 

added to other platforms and games and continues to 

be researched and improved upon. Several portable 

gaming systems, in particular, are taking advantage of 

motion and tilt sensing, touchscreens and even 

microphones in their interface. More recently still a 

project was unveiled to add interaction based on 

recognition of full-body motion, speech and faces to a 

popular platform [Snider 2009]. 
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Despite this ebullience in game interfaces, the use 

of hand gestures, especially leaving the user's hands 

free, has seen little academic or commercial research in 

this area and is usually limited to analyzing only hand 

movement or a small number of hand postures. One of 

Gestures2Go's objectives is greater flexibility, to allow 

the use of a greater variety of gestures (currently 

defined by hand postures, movement or location and 

using both hands). Another important goal is that it 

must be easy to use for both players and developers. 

Gestures2Go should also be usable with existing games 

(designed for traditional interfaces) and allow 

multimodal interaction. These and other requirements 

arose, during system design, from an analysis focusing 

specifically on gestures and on game applications. 

Many of the same requirements exist in other 

applications as well, such as education or virtual and 

augmented reality, and the authors believe this system 

may be well suited for these applications, but will 

leave this discussion outside the scope of this paper. 

2. Related Work 

A few works have been proposed recently to use free  

hand gestures in games using computer vision. A 

multimodal multiplayer gaming system [Tse et al. 

2007] combines a small number of postures, their 

location on a table-based interaction system and speech 

commands to interact with games and discusses results 

of using this platform to interact with two popular 

games. Interpreting movements or postures of the arms 

or the whole body is also usual. A body-driven 

multiplayer game system [Laakso & Laakso 2006] uses 

8 postures of the two arms viewed from above, plus 

player location, to design and test the interaction in 

several games. Going further, tests with both functional 

prototypes and Wizard of Oz prototypes indicate that 

body movement patterns (such as running, swimming 

or flying), rather than specific gestures or trajectories, 

may be used to trigger similar actions on game 

characters [Hoysniemi et al. 2005]. 

 Other tools facilitate the use of gesture recognition 

for applications in general, not only games. 

ICondensation [Isard & Blake 1998] is a probabilistic 

framework that allows the combination of different 

observation models, such as color and contours.  

HandVu [Kolsch et al. 2004] also uses condensation 

but provides a simpler interface to track hands in six 

predefined postures using skin color and a "flock" of 

Haar-like features. GART [Lyons et al. 2007] provides 

a high level interface to machine learning via Hidden 

Markov Models used to train and recognize gestures 

that consist only of movements (detected by sensors 

such as a camera, mouse or accelerometers). It is 

interesting to note that HandVu and GART can be 

combined to allow robust hand tracking and a larger 

number of gestures (combining postures and 

movement, like Gestures2Go) than either one isolated. 

Finally, EyesWeb [Camurri et al. 2003] is a framework 

with a graphical programming interface that presents 

several tools and metrics for segmentation and analysis 

of full body movements. 

 The literature regarding gesture recognition in 

general is vast and a complete review is beyond the 

scope of this paper, especially since established and 

comprehensive reviews [Pavlovic et al. 1997] as well 

as more recent but still comprehensive discussions 

[Imai et al. 2004] are available. Other works, when 

relevant to this implementation or future developments, 

are discussed in the correspondent sections. 

3. HCI and Game-specific requisites 

Both the use of gestures and having games as an 

application bring specific requirements to an interface 

and analyzing these requirements was one of the most 

important steps in designing Gestures2Go. For gesture-

based interfaces, current research [Bowman et al. 2005, 

Shneidermann et al. 1998] point out the following: 

 Gestures are most often used to relay singular 

commands or actions to the system, instead of tasks 

that may require continuous control, such as 

navigation. Therefore, it is recommended that gestures 

be part of a multimodal interface [Bowman et al. 

2005]. This also brings other advantages, such as 

decoupling different tasks in different interaction 

modalities, which may reduce the user's cognitive load. 

So, while gestures have been used for other interaction 

tasks in the past, including navigation [Mapes & 

Moshel 1995], Gestures2Go's primary requisite is to 

allow their use to issue commands. Issuing commands 

is a very important task in most games, usually 

accomplished by pressing buttons or keys. Often, 

games feature a limited number of commands, not even 

requiring all the buttons in a modern gamepad. Since 

other tasks, especially navigation, are very common as 

well, another requirement that naturally arises is that 

the system must allow multimodal interaction. 

Massively Multiplayer Online games (MMOs), in 

particular, often have much of their actual gameplay 

consisting of navigation plus the issuing of several 

commands in sequence [Fritsch et al. 2005]. 

 Gesture-based interfaces are almost always 

"invisible" to the user, i.e. they contain no visual 

indicators of which commands may be issued at any 

particular time or context. To reduce short term 

memory load, therefore, the number of possible 

gestures in any given context, but not necessarily for 

the entire application, must be limited (typically to 7±2 

[Miller 1956], or approximately 5 to 10 gestures). The 

gestures must also be highly learnable, chosen from the 

application domain so the gesture matches the intended 

command. Changing gears in a racing game, for 

instance, could be represented by pulling a fist towards 

or away from the user with the hand relatively low, as 

if driving a stick shift car, and pausing the game could 

be associated with an open palm extended forward, a 

well-known gesture meaning "stop". This means that 

while the system is not required to deal with a large 
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number of different gestures at any one time (which 

simplifies the implementation), being flexible by 

having a large number of possible gestures to choose 

from, so the interface designer may pick the most 

appropriate to associate with each user action, is indeed 

a requirement. Systems that violate either of these two 

requirements, requiring the memorization of a large 

number of gestures or limiting the space of possible 

gestures to only a few postures or movements, make 

the interface harder to learn and later to remember, 

reducing its usability. 

 The examples above (changing gears and stop) also 

show that the choice of each gesture for the interface 

depends not only on the application, context and 

command, but is also heavily culture-dependant, 

because the cognitive meaning of gestures may vary. In 

the case of gesture-based games, therefore, and with 

games being such a global market, localization could 

also entail changing which gesture is associated with 

each action [Bernal-Merino 2007]. All this leads to the 

requirement that the vocabulary of gestures in each 

context of the interface, while small, must be as simply 

and quickly modifiable as possible. Systems that 

require retraining for each set of possible gestures, for 

instance, could prove problematic in this case, unless 

such training could be easily automated. 

 The interface should also accept small variations 

for each gesture. Demanding that postures and 

movements be precise, while possibly making the 

recognition task easier, makes the interaction 

considerably harder to use and learn, demanding not 

only that the user remember the gestures and their 

meanings but also train how to do them precisely, 

greatly reducing usability. 

 It could be argued that, for particular games, 

reducing the usability could actually be part of the 

challenge presented to the player (the challenge could 

be remembering a large number of gestures, or learning 

how to execute them precisely, for instance). While the 

discussion of whether that is a good game design 

practice or not is beyond the scope of this paper, 

Gestures2Go opts for the more general goal of 

increasing usability as much as possible. This agrees 

with the principle that, for home and entertainment 

applications, ease of learning, reducing user errors, 

satisfaction and low cost are among the most important 

design goals [Shneidermann et al. 1998]. 

 The system should also allow playing at home with 

minimal setup time required. Players prefer games 

where they can be introduced to the action as soon as 

possible, even while still learning the game and the 

interface [Hong 2008]. Therefore, the system should 

not require specific background or lighting conditions, 

complex calibration or repeated training. Allowing the 

use of the gesture-based interface with conventional 

games is also advantageous to the user, providing new 

options to enjoy a larger number of games. From the 

developer point of view, the system should be as easy 

as possible to integrate within a game, without 

requiring specific knowledge of areas such as computer 

vision or machine learning. 

 Finally, processing and response times are 

important requirements. Despite the growing 

availability of multi-core gaming platforms, it is still 

desirable that gesture recognition processing time be as 

low as possible, freeing processing power to other 

tasks such as artificial intelligence and physical 

simulation. It is limited by the acceptable response 

time, which, in turn, depends on the game. Performing 

a gesture, for instance, will almost always be slower 

than pressing a button or key, so this sort of interface is 

probably not a good choice for reflex-based games 

such as first person shooters. A genre that has already 

been mentioned as a good match for this sort of 

interface is MMOs. Not only much of their gameplay 

consists of navigation and issuing commands, MMOs 

use several strategies to deal with network latency 

[Fritsch et al. 2005] that also result in not penalizing 

the slower input from gestures, when compared, for 

instance, with button pressing. Such strategies include 

reducing the number of commands necessary in a fixed 

amount of time (for instance, it is common to "enter or 

exit attack mode", instead of repeating a command for 

each attack) and accepting the queuing of only one new 

command while the action triggered by the last one has 

not finished (and actions are set up to take some time, 

usually spent with animations or special graphical 

effects). In the game Everquest 2, for instance, Fritsch 

et al. report that the use of these strategies, with actions 

usually taking 1000ms, makes the game playable with 

latencies of up to 1250ms. A more practical bound, 

however, pointed after the analysis of several related 

works, is around 250ms for interactive games 

[Henderson & Bhatti 2003]. In a setup such as the one 

described above, that would leave one second to be 

divided between gesture performance and system 

response time and this is the parameter that will be 

used for Gestures2Go. This applies, of course, even for 

games designed for regular interfaces. When designing 

a game specifically to explore gestures, similar game 

design strategies or even new ones could be adopted to 

compensate for the time the user spends performing the 

gesture. 

4. Gestures2Go 

Because one of the requirements for this system was 

ease of use, both for the player and the developer, it 

was named Gestures2Go to imply that the gesture 

recognition is ready to go, to take home, with little 

extra work. It consists of an abstract framework that 

divides the system in modules and defines the interface 

between these modules and, currently, of a single, 

simple implementation of this framework. It is 

important to note that the requirements discussed in 

section 3 apply to the current implementation, which is 

focused on games, and not to the abstract framework. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

91



The computational task of identifying a gesture 

from a known vocabulary of possibilities is often 

divided in gesture modeling, analysis and recognition 

[Pavlovic et al. 1997]. 

Gesture modeling consists in how a gesture is 

defined by the system, from a computational point of 

view (since definitions of gesture abound in other 

areas). Gesture2Go's abstract framework defines a 

gesture as an initial hand posture, an optional 

movement of the entire hand through an arbitrary path 

and a final posture, which is optional if the movement 

is omitted but mandatory otherwise. The starting 

location of the hand, relative to the user's head (left or 

right, above, below or roughly aligned with the head), 

is also an optional parameter of this definition, since it 

often changes the meaning of a gesture. This means 

that a gesture may consist of a single posture, of an 

initial and a final posture or of an initial posture, a 

movement and a final posture, all depending or not on 

the initial hand position. It also means that changes of 

posture during the movement are not taken in 

consideration, since these changes rarely have semantic 

meaning [Quek 1994]. While the abstract framework 

also includes variable parameters in the gesture 

definition (such as speed or pointing direction), the 

simple implementation described here does not deal 

with parametric gestures. Finally, the abstract 

framework does not specify how each part of the 

gesture definition is actually modeled (each is 

identified by a string or numerical ID), so it can vary in 

each implementation. The hand posture could, for 

instance,  be modeled as a collection of values for the 

degrees of freedom of a particular hand model, or it 

could consist of a list of 2D or 3D points of the hand's 

contour. 

During the analysis phase, the gesture's spatial and 

temporal parameters (which depend on each model) are 

obtained from sensor data (in this case, from an image 

or a set of images) and this data is used during the 

recognition phase to identify the gesture within the 

vocabulary of possibilities. Analysis and recognition 

are often, but not necessarily, tightly inter-related. 

4.1 The Abstract Framework 

Figure 2 shows a UML Activity Diagram representing 

Gesture2Go's object flow model.  

G2gGesture is responsible for the gesture model, 

while G2gAnalysis and G2gRecognition define the 

interfaces for the classes that will implement gesture 

analysis and recognition. To these activities are added 

image capture and segmentation. G2gCapture provides 

an interface for capturing 2D images from one or 

multiple cameras or pre-recorded video streams 

(mostly for testing). The images must have the same 

size, but not necessarily the same color depth. A device 

could provide, for instance, one or more color images 

and a grayscale image to represent a dense depth map. 

G2gSegmentation should usually find in the original 

image(s) one or both hands and possibly the head (to 

determine relative hand position). 

 
Figure 2: Gesture2Go's Object Flow Model 

 Figure 2 shows that the usual flow of information 

in Gestures2Go in each time step is as follows: one or 

more images serve as input to the image capture 

model, which makes these images available as an 

OpenCV's IplImage object [OpenCV 2009]. The 

segmentation uses this image and provides a 

segmented image as an object of the same class (and 

same image size, but not necessarily color depth). 

Based on the segmented image, the analysis provides a 

collection of features as a G2gFeatureCol object which 

are in turn used by the recognition to output a gesture.  

G2gFeatureCol is a collection of G2gFeature 

objects. G2gFeature contains a identifier string to 

describe the feature and either a scalar and an array of 

values (more often used) or an image (useful, for 

instance, for features in the frequency domain). 

G2gFeature already defines several identifiers, for 

those features most often found in the gesture 

recognition literature, to facilitate the interface between 

analysis and recognition, but user-created identifiers 

may also be used. 

Desc2Input is an optional module that accompanies 

but is actually separate from Gestures2Go. It is 

responsible for facilitating, in a very simple way, both 

multimodal input and integration with games or 

engines not necessarily aware of Gesture2Go. It simply 

translates its input, which is a description (a numerical 

or string ID or a XML description, for instance) that 

may be supplied either by Gestures2Go or any other 

system (and here lies the possibility of multimodal 

interaction), into another type of input, such as a 
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system input (like a key down event) or input data to a 

particular game engine. In one of the tests, for instance, 

gestures are used for commands and a dancing mat is 

used for navigation. 

Because this architecture consists mostly of 

interfaces, it is possible to create a single class that, 

through multiple inheritance, implements the entire 

system functionality. This is usually considered a bad 

practice in object orientation (should be avoided) and 

is actually one of the reasons why aggregation is 

preferred to inheritance [Eckel 2003]. There are design 

patterns that could have been used to force the use of 

aggregation and avoid multiple inheritance, but 

Gestures2Go opts for allowing it for a reason. Gesture 

recognition may be a very costly task in terms of 

processing, and must be done in real time for the 

purpose of interaction. Many algorithms may be better 

optimized for speed when performing more than one 

task (such as segmentation and analysis) together. 

Furthermore, analysis and recognition are very tightly 

coupled in some algorithms and forcing their 

separation could be difficult. So, while it is usually 

recommended to avoid using multiple inheritance and 

to implement each task in a different class, making it 

much easier to exchange one module for the other or to 

develop modules in parallel and in teams, the option to 

do otherwise exists, and for good reason. 

Finally, all Gestures2Go classes must implement 

init( ) and cleanup( ) methods which are preferred to 

using the new and delete operators (the system is 

implemented in C++) to avoid problems with multiple 

inheritance and with synchronization. 

4.2 Implementation 

The requirement analysis pointed that an 

implementation of the abstract framework described 

above specifically for games should have the following 

characteristics: minimum need for setup, low 

processing demand even though the response time may 

be relatively high, a high number of possible gestures 

but with only a small and easily modifiable vocabulary 

in any one context, tolerance to variations in the 

execution of gestures, allow multimodal interaction 

and make development of games using gestures as easy 

as possible. With these requirements in mind and 

assuming that a single player in the scene will interact 

through gestures, this implementation attempts to find 

the simplest solution for each of the activities shown in 

figure 2. 

 Segmentation is based on skin color, to find both 

hands and the head. A G2gSimpleSkinSeg2 (a class 

which implements G2gSegmentation) object performs 

a simple threshold operation on the captured image, in 

the HSV color space, taking in account both hue and 

saturation. For most people, skin color lie in a small 

interval between the red and yellow hues, due to blood 

and melanin, respectively [Fleck & Forsyth 2009], so 

using hue is a good way to identify a large range of 

lighter or darker skin tones, even in different 

illumination conditions. Saturation is used mostly to 

remove regions that are either too light or too dark and 

may end up showing a hue similar to the skin. 

At first, fixed average values and tolerances were 

adopted for the skin's hue and saturation. Testing in 

different lighting conditions, environments and using 

different cameras, however, showed large variations 

for these values in the captured images, either due to 

different lighting conditions or differences in the white 

balance [Viggiano 2004] performed automatically by 

the cameras (and, in most cases, with no "off" option). 

G2gSimpleSkinSeg2 was then incremented with 

methods to accumulate and calculate averages and 

standard deviations for hue and saturation of several, 

arbitrary rectangular skin-colored regions. This allows 

an application to add a quick calibration step so the 

segmentation may use adequate skin hue and saturation 

values for the threshold operation. 

Finally, after tests in an environment where the 

background actually has a hue very similar to the 

skin's, a fixed background removal operation was 

added as an option. Figure 1 shows a sample result of 

this operation. Even with a color tolerance of 50 in a 

256x256x256 RGB space, about half of the pixels do 

not match the recorded background (not showing as 

black), even when this background is far enough that 

its actual appearance is unlikely to change due to the 

presence of the hand. This problem is minimized by 

applying a 3x3 erosion operation after the background 

removal, also illustrated in figure 1, but due to local 

corrections imposed by the camera a region around the 

foreground elements still shows, looking like an "aura" 

around the color segmented hand images in figure 1. 

The system, currently, does not segment the arm 

from the hand, which imposes the limitation that users 

must wear long sleeves. This is considered a serious 

limitation. Even without any information about hand 

posture, for most of them the arm could be segmented 

by finding the direction of its major axis, finding the 

point of minimum width or abrupt change in direction 

along this axis (the wrist) and segmenting there [Yoon 

et al. 2006]. This does not work well if only a small 

length of arm is showing, however, or for certain 

postures (such as preparing a "karate chop"). 

Other segmentation strategies that do not require 

knowledge of the hand's posture were attempted, such 

as using color histograms and probabilities instead of 

the simple average and deviation, as well as the use 

contour information, but so far showed little 

improvement and more computational cost. 

 The first step of the analysis activity, implemented 

in the G2gSCMAnalysis class, is to find the connected 

components in the segmented image. The system does 

not assume that the background is fixed or that there 

are no other skin colored regions in the image, but it 

does presume that the player using gestures is the 
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closest person to the camera, so it can assume that the 

three largest connected components correspond to the 

user's hands and face. There is also a minimum number 

of pixels for a connected component to be accepted as 

a region of interest. If only 2 components above this 

minimum size are found, the system assumes that the 

missing component corresponds to the user's non-

dominant hand and if only one is present, it is assumed 

to be the head (the head was cropped from figures 1 

and 3). To further simplify the identification of the 

hands and head, this implementation assumes that the 

left hand is the leftmost region with the head in the 

middle and the right hand to the right. While this 

certainly limits user movements and the number of 

possible gestures, it was considered a valid limitation 

in this case and, during informal testing, was accepted 

with no complaint from the users, who obeyed it most 

of the time even when not informed of it. This first step 

also reduces noise left after the segmentation and 

eliminates from the analysis other people who might 

wander in the background. 

 Analysis and recognition of the gestures themselves 

adopt a divide and conquer strategy [Wu & Huang 

1999], separating the recognition of hand posture and 

hand movements. Postures are recognized through 

estimation by synthesis (ES), i.e. the real hand's image 

is compared with images synthesized from a 3D hand 

model so that 3D posture information (the parameters 

used to model the hand's posture) is obtained 

comparing only 2D images, instead of trying to match 

a 3D model to the real image, which can be accurate 

but computationally expensive and complicated by the 

presence of postures with self occlusion [Imai et al. 

2004]. Unlike most applications of ES methods, 

however, here it is not necessary to determine hand 

posture continuously and differentiate between 

postures with only small differences. Because tolerance 

of variation in postures is one of the system's 

requirements, it is not only acceptable but necessary 

that small differences in posture be disregarded. This 

implementation, therefore, may sidestep one of the 

most serious complication of ES methods. It only 

needs to compare the real hand image with a small 

number of possible postures, instead of thousands of 

possibilities. When no acceptable match is found, the 

system simply assumes the user is not performing a 

command gesture. 

 As in other ES methods [Shimada et al. 2001, Imai 

et al. 2004], the features G2gSCMAnalysis provides are 

based on the hand's 2D contour. The most important 

feature is a vector of the distances between the hand's 

centroid and a fixed number of points on the contour. 

These points are shown in figure 1. This vector is 

normalized in the analysis, so the maximum distance 

always corresponds to the same value and the features 

are scale-invariant, reducing the influence of the 

distance between the hand and the camera. All features 

for the vocabulary of possible, modeled postures are 

pre-calculated so only those for the real hand need to 

be determined in each execution step. Currently the 

number of points sampled from the contour in the 

feature vectors is, somewhat arbitrarily, set at 128. This 

number has shown to be small enough to allow fast 

computation and large enough that it is not necessary 

to worry about choosing points near remarkable 

contour features (usually local maxima and minima 

corresponding to tips and bases of fingers). 

 G2gSCMRecognition implements both posture and 

movement recognition. Posture recognition consists 

simply of comparing the feature vector obtained from 

the real hand's captured image with each vector for all 

the possible postures and finding the posture that 

minimizes the mean squared error between these two 

vectors. If the minimum error is still larger than a 

tolerance value, no posture is recognized (recognition 

returns a "not found" constant). 

Unlike other ES implementations, however, the 

observed vector is not made rotation-invariant during 

recognition (by rotating it during each comparison so 

extremal points coincide with the model). While some 

tolerance in posture recognition is desired, rotation-

invariance is not. Should this operation prove 

necessary, to avoid incorrect results due to the 

accumulation of many small errors caused by a small 

rotation, it could still be implemented while leaving the 

algorithm sensitive to rotation because recognition uses 

yet another feature: the angle between the highest point 

in the contour and the centroid. This feature, also 

provided by G2gSCMAnalysis, is currently used to 

speed up recognition by discarding, before the 

calculation of the mean squared error, any posture with 

an angle that differs by more than a certain tolerance 

from the one in the observed image. The highest point 

(usually a fingertip) is easy to determine because the 

contour-finding algorithm is implemented in a way to 

always find this point first. This angle could also be 

used to account for hand rotation if the vector of 

distances was made rotation-invariant, but tests so far 

have not shown the need for this operation. 

The analysis also provides the centroid's absolute 

location in the image and its area (or number of pixels), 

which are used for movement recognition. Only 12 

movements are recognized: left, right, up, down, back, 

forward, 4 diagonals, clockwise and counter-clockwise 

approximate rotations. The movement is temporally 

segmented by the gesture's initial and final postures, so 

it can be identified as one of these possibilities by a 

simple set of conditions, similar to a two stage scheme 

described in the literature [Mammen et al. 2001]. For 

the back and forward movements, the initial and final 

posture of the hand must be the same, since this 

movement is estimated by the variation in area. 

In the current implementation, a gesture may be 

defined by movements and initial relative locations of 

both hands, but only postures of the dominant one 

(currently the right hand, but the next version will 

allow choosing left or right) are identified. There are 

now 41 postures available. Adding more postures is 
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quite simple and others were considered and could 

have been added, but they were either meaningless, 

quite hard to perform or had the same contour in a 2D 

image. With this number of available postures and 

movements, and remembering that a gesture might 

consist of one or two postures, or a movement bound 

by two postures that may be different (except when 

moving back or forward), there are almost 20,000 

available gestures for the dominant hand alone, even 

before considering its location relative to the head or 

the movement of the other hand. 

Finally, Desc2Input's implementation in the current 

version, for MS Windows only, has only two public 

methods: associate and sendDesc. The associate 

method receives a description (a string, representing a 

gesture or any other event, such as stepping on a 

dancing mat's "button") and the system input (key 

press, mouse move or click) and parameters (such as 

key or position) associated to that description. The 

sendDesc method only receives a description and 

indicates that Desc2Input must generate the associated 

input (which is broadcast to all windows). A priority 

for future versions is making this module easier to use, 

adding alternatives that require little programming 

(leaving the association of gestures and commands to 

an external configuration file, for instance). 

5. Tests and Results 

Four prototype applications were created to test the 

system in different conditions. The first priority was to 

verify the posture analysis and recognition strategy, 

independent of segmentation. To accomplish that, 120 

already segmented pictures of hands in different 

postures were stored and ran through the analysis and 

recognition modules. These images were segmented 

using the same algorithm described before but were 

chosen manually at moments when it worked 

adequately (as in the examples shown in figure 3). 

pinkyR 

 
point 

 

pinky 

 
 

pointL 

 

 

 

 

thumb up 

Figure 3: Sample segmented postures used in static tests 

To allow the comparison of every posture with 

every other one, the angle difference between the 

highest point in each posture was discarded and the 

mean square error between the distance vectors was 

recorded. Table 1 shows the results, truncated to the 

nearest decimal, of one such test, comparing 15 

postures. More postures are not shown due to the 

limited space. This particular test was chosen 

specifically because it contains similar postures that 

show problematic results. 

In all cases the correct posture was identified (i.e. 

had the minimum error), as shown by the values with a 

gray background in table 1. In 8 cases, however, 

incorrect postures showed a low error as well (shown 

in bold on white). The system considers error values 

below 1 as possible matches. So, if "pinkyR" had not 

been one of the possible postures, for instance, "pinky" 

would have been accepted by the system as "pinkyR". 

Figure 3 shows these problematic postures. Two of 

these cases (pinky and pinkyR, point and pointL) are 

postures where a single finger is raised and that differ 

from each other by this finger's angle. Using the angle 

of the highest point as a feature eliminates these 

incorrect matches. The other mismatch that might have 

occurred is between the postures with the pinky up and 

the thumb up posture, but as seen in figure 3, these 

postures are actually quite similar. In all these static 

tests, all postures were recognized correctly but a few 

similar ones showed possible mismatches. In the test 

illustrated by table 1, for instance, only 8 comparisons 

in 225 were possible mismatches, approximately 3.5%. 

Table 1: Sample static posture comparison 

 

A second test application shows identified postures 

in real time and allows the verification of the effects of 

the segmentation. It requires a few seconds for setup, 
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showing a region on the screen that the user must 

"cover" with a region of skin so initial averages and 

deviations for skin color can be determined. While the 

application allows this to be done several times (to 

capture, for instance, the colors of the palm and back 

of the hand as well as face regions), showing either 

many or any single region of skin have always given 

similar results during tests. The application also 

includes the options of recording and removing a 

known background and can either show a color image 

of the foreground or a monochrome image of the 

segmented skin regions. While showing the 

monochrome image, if a posture is identified the 

application also displays its description on the bottom 

of the screen. This application also identifies and 

displays the 8 possible movements. Actually, a gesture 

was defined for each movement, all 8 having as both 

initial and final posture a closed fist (which is very 

accurately identified by the system). The images 

labeled as "Erosion" and "Posture" in figure 1 are 

actually regions from screenshots of this application. 

 During the tests with this application, analysis and 

recognition continued to perform well when the images 

were well segmented. Often, however, a finger, usually 

the thumb or pinky, would disappear from the 

segmented image or only parts of the fingers would 

show, leading to postures not being recognized or for 

mismatches (such as an open palm identified as 

mimicking a claw). This was mostly due to problems 

with the illumination and image capture, such as a 

bloom showing between the fingers if the open hand 

was in front of a light source or bright light sources 

reflecting specularly from large regions of skin. Both 

make large skin regions show as white. Even in these 

environments with no controlled (and problematic) 

illumination, the system identified the right posture 

most of the time. Another problem that occurred during 

these tests happened when the long sleeves worn by the 

subjects slid down the wrist, showing a portion of the 

forearm. Only 2 or 3 centimeters needed to show to 

cause a dramatic drop in the recognition's quality. 

During these tests, the movements were always 

recognized correctly. 

 While Gestures2Go should be primarily used to 

issue commands with gestures, a third application was 

built to evaluate its use to select objects, replacing the 

use of the mouse. A posture was associated with 

moving the mouse and relative changes in hand 

position while that posture was recognized were 

mapped to relative positions in the mouse pointer using 

Desc2Input. Two other postures were associated with 

left and right clicks. The hand moved only in a small 

region of a 640x480 image while the mouse should 

move over a 1024x768 region, so the linear mapping 

between movements increased the hand's vertical and 

horizontal movements by different constants to apply it 

to the mouse. The system was still relatively easy to 

use even to click on smaller objects on the screen. 

 Finally, postures, movements, using the hand to 

move the mouse pointer and click and the use of a 

dancing mat for navigation were put together in a 

fourth test application which was used to control a 

popular MMO. Using the hand to move the mouse 

pointer and clicking was only necessary to manipulate 

some objects in the scenery. A gesture was associated 

with the command to select the next possible target and 

several gestures were associated with different actions 

to be performed on this target. This interface was 

especially adequate to this particular MMO because 

most actions are accompanied by easily identifiable 

hand motions of the player's avatar, so the mapping 

between gesture and game action was natural, very 

visible and enjoyable. To navigate in the game world 

using the dancing mat, it was connected to the 

computer's parallel port and a class was created to read 

its inputs and send them to Desc2Input to be translated 

as the arrow keys and commands for actions such as 

jumping. Because in systems derived from Windows 

NT only applications running in kernel mode can 

access the parallel port, it was necessary to either write 

a device driver or use an existing one. Using Inpout32 

[logix4u 2009] was the chosen solution. It is a DLL 

with an embedded driver and functions for reading and 

writing to the parallel port (inp32 and out32). Up to the 

time of this writing, unfortunately, permission to use 

this MMO's name and images had not yet been granted 

by the publisher. 

 The performance of each module was also tested, 

using a 3GHz Intel Core 2 Duo CPU and 2GB of RAM 

(the test process ran in only one core, however). Table 

2 shows approximate average times measured for each 

task in 375 tests (5 tests of 5s at 15 frames per second). 

Table 2: Performance 

Activity Time (ms) 

Segmentation 13.600 

Components 0.650 

Moments 0.013 Analysis 

Features 0.003 

10 Postures 0.002 
Recognition  

Movement <0.001 

Table 2 shows how segmentation is by far the most 

costly activity. During analysis, finding the connected 

components is also the most time consuming task, but 

still only takes less than a millisecond. Finding the 

image moments for one hand's connected component 

takes approximately 13µs only because OpenCV's 

function calculates up to third order moments, while 

the system only requires moments of orders 0 and 1, so 

this operation could be easily sped up, but it is clearly 

not a priority. Calculating all features needed for 

recognition and the recognition itself were extremely 

fast during these tests, at less than 5µs. That's assuming 

there are 10 possible postures (recognition time 

increases linearly with possible postures) and a worst 

case scenario where the angle difference is never above 

tolerance, so the mean square error between distance 

vectors is calculated for every possibility. Movement 
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recognition consists of only a few conditions and 

happened too fast to get accurate measurements. With 

these results, the system satisfies the requirement of 

low processing demand and should it be necessary to 

make it faster, it is trivial to parallelize the 

segmentation, either to run in more cores or to be done 

in the GPU. These processing times, however, indicate 

that finding a more robust segmentation strategy is 

much more important than increasing its performance. 

6. Conclusion 

This current implementation of Gestures2Go, focused 

specifically on games and other similar applications, 

satisfies most of the requirements for gesture-based 

interfaces and games which were studied during the 

system's design phase. 

 While there is need of some setup, to record the 

background and calculate the player's skin color 

parameters, this setup only takes a few seconds. Each 

execution step takes less than 15ms in a single 3GHz 

core, satisfying the requirements for low processing 

demand, especially considering that in most contexts 

the system must only differentiate between 5 to 10 

gestures. However, combining 41 (or more) postures of 

one hand and 12 movements and initial hand locations 

(relative to the head) for both hands creates a 

vocabulary of thousands of possible gestures, greatly 

increasing the chance that the interface designer can 

find an appropriate gesture to associate with an action. 

Desc2Input facilitates multimodal interaction and the 

system as a whole is quite tolerant to variations in 

gesture execution, both for postures and movements. 

 One requirement cannot be considered satisfied yet, 

however: simplifying the development of games with 

gestures. Desc2Input should be responsible for this 

requirement, but currently its interface only allows the 

association of descriptions and inputs by hard coding 

them using the associate function. Furthermore, its 

current version is provided as source code that must be 

included within the same project as the gesture 

recognition system and systems for interpreting other 

modes of interaction (such as the dancing mat used in 

one of the tests, or speech recognition). This makes the 

system's use by programmers much more complex than 

desired. It is a priority for future works, therefore, to 

develop a better interface for Desc2Input. The next 

system's version will allow the association of 

descriptions and inputs though an external xml 

configuration file and Desc2Input will be available not 

only as source code but as a DLL to include in projects 

as well as a standalone executable that receives 

descriptions via sockets from different modules 

responsible for complementary interaction modes. 

Gestures2Go will also include a standalone application 

that generates regular system inputs from command 

gestures so that this sort of interface may be used  with 

any other interactive application simply customizing a 

configuration file associating gestures to inputs, 

without requiring a single line of programming. 

Another standalone application is in development to 

facilitate this configuration: instead of editing the 

configuration file directly, the user simply shows initial 

and final posture to the system and selects, in a 

graphical interface, movements, locations and which 

input that gesture must generate. A final improvement 

in this area is the integration of Gestures2Go with a 

game engine, but this depends on the engine's 

architecture and is beyond this paper's scope. 

 Another priority for future works is improving the 

segmentation. One of the system's requirements is that 

it must not demand controlled or special lighting or 

unusual or expensive equipment and, under those 

severe limitations, the segmentation actually works 

considerably well. But it is still the less robust part of 

the system and causes frequent and noticeable errors 

under some lighting conditions. Several robust 

probabilistic solutions exist to track hands and their 

contours, such as using variations of the condensation 

algorithm [Isard & Blake 1998]. Most of these 

solutions require knowledge either of one fixed hand 

posture, or a small number of postures and a transition 

model between them [Liu & Jia 2004] which 

complicates the addition of new postures and gestures. 

Even these methods often use depth data to aid in 

segmentation. Other methods do not require a known 

model for the hand but only track its position, not the 

contour, which is necessary for Gestures2Go. One 

promising approach that will be tested as soon as 

possible within this system is tracking the hand and its 

contour with no hand model information by using 

Kalman filters to estimate both the hand's movement 

and the positions of control points of curves that define 

hand shape [de Bem & Costa 2006]. This strategy will 

be adopted if tests show that its performance and 

accuracy are adequate while tracking enough control 

points to model a rapidly changing hand contour. 

 Using depth data [Nakamura & Tori 2008] is 

another planned improvement to the system, both to 

the segmentation and to allow a greater number of 

postures, such as pointing postures. Lastly, formal 

usability tests must be conducted to determine whether 

the interaction techniques using Gestures2Go in a 

MMO are effective in the context of games. 

References 

AILIVE, 2007. LiveMove White Paper. Available from: http: 

//www.ikuni.com/papers/LiveMoveWhitePaper_en.pdf 

[Accessed 24 July 2009]. 

BERNARDES, J. ET AL, 2008. Augmented Reality Games In: 

Extending Experiences: Structure, analysis and design of 

computer game player experience. Lapland University 

Press, p. 228-246. 

BERNAL-MERINO, M., 2007. Localization and the Cultural 

Concept of Play. Available from: http://www. 

gamecareerguide.com/features/454/localization_and_the_

cultural_.php [ Accessed 24 July 2009]. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

97



BOWMAN, 2005. 3D User Interfaces: Theory and Practice. 

Addison-Wesley. 

CAMURRI ET AL., 2003. Analysis of expressive gestures in 

human movement: the EyesWeb expressive gesture 

processing library. In: Proc. XIV Colloquium on Musical 

Informatics. 

DE BEM, R., COSTA, A., 2006. Rastreamento de visual de 

múltiplos objetos utilizando uma abordagem livre de 

modelo. In: Proc. XVI Congresso Brasileiro de 

Automática, 2760-2765. 

DOBNIK, V., 2004. Surgeons may err less by playing video 

games. Available from: http://www.msnbc.msn.com/id/ 

4685909 [Accessed 24 July 2009]. 

ECKEL, B., 2003. Thinking in C++. Prentice Hall. 

FLECK, M. & FORSYTH , D., 2009. Naked people Skin Filter. 

Available from: http://www.cs.hmc.edu/ ~fleck/naked-

skin.html [Accessed 24 July 2009]. 

FRITSCH ET AL., 2005. The Effect of Latency and Network 

Limitations on MMORPGs (A Field Study of Everquest 

2). In: Proc. of NetGames '05. 

HENDERSON & BHATTI, 2003. Networked Games – a QoS-

Sensitive Application for QoS-Insensitive Users? In: 

Proc. ACM SIGCOMM 2003 Workshops. 

HONG, T., 2008. Shoot to Thrill. In: Game Developer 15(9) 

p. 21-28. 

HOYSNIEMI ET AL., 2005. Children’s Intuitive Gestures in 

Vision-Based Action Games. In: Communications of the 

ACM 48(1), p.44-50. 

IMAI, A. ET AL., 2004. 3-D Hand Posture Recognition by 

Training Contour Variation. In: Proc. Automatic Face 

and Gesture Recognition 2004, p. 895-900. 

ISARD, M., BLAKE, A., 1998. ICondensation: Unifying low-

level and high-level tracking in a stochastic framework. 

In: Proc. 5th European Conf. Computer Vision. 

KANE, B., 2005. Beyond the Gamepad panel session. 

Available from: http://www.gamasutra.com/features/ 

20050819/kane_01.shtml [Accessed 24 July 2009]. 

KOLSCH, ET AL.,  2004. Vision-based Interfaces for Mobility. 

In: Proc. Intl. Conf. on Mobile and Ubiquitous Systems. 

LAAKSO, S., LAAKSO, M., 2006. Design of a Body-Driven 

Multiplayer Game System. In: ACM CCIE 4(4). 

LIU, Y., JIA, Y., 2004. A Robust Hand Tracking and Gesture 

Recognition Method for Wearable Visual Interfaces and 

its Applications. In: Proc. ICIG '04. 

LOGIX4U, 2009. Inpout32.dll for Windows 98/2000/NT/XP. 

Available from: http://logix4u.net/Legacy_Ports/Parallel_ 

ort/npout32.dll_for_Windows_98/2000/NT/XP.html 

Accessed 24 July 2009]. 

LYONS, H. ET AL., 2007. Gart: The gesture and activity 

recognition toolkit. In Proc. HCI International 2007. 

MAMMEN, J.; CHAUDHURI, S. & AGARWAL, T. Simultaneous 

Tracking Of Both Hands By Estimation Of Erroneous 

Observations. In: Proc. British Machine Vision 

Conference 2001. 

MAPES, D., MOSHEL, J.,1995. A Two Handed Interface for 

Object Manipulation in Virtual Environments. In: 

Presence: Teleoperators and Virtual Environments 4(4), 

p. 403-416. 

MILLER, G., 1956. The Magical Number Seven, Plus or 

Minus Two: Some Limits on Our Capacity for 

Processing Information. In: The Psychological Review 

63, p. 81-97. 

NAKAMURA, R., TORI, R., Improving Collision Detection for 

Real-Time Video Avatar Interaction. In: Proc. X Symp. 

on Virtual and Augmented Reality, p. 105-114. 

NOVINT, 2009. Novint Falcon. Available from: 

http://home.novint.com/products/novint_falcon.php 

[Accessed 24 July 2009]. 

OPENCV, 2009. Available from: http://sourceforge.net/ 

projects/opencvlibrary/ [Accessed 24 July 2009]. 

PAVLOVIC ET AL., 1997. Visual Interpretation of Hand 

Gestures for Human Computer Interaction: A Review. 

IEEE Transactions on Pattern Analysis and Machine 

Intelligence 19(7), p. 677-695. 

QUEK, 1994. Towards a vision-based hand gesture interface. 

In: Proc. Virtual Reality Software and Technology 

Conference 1994. 

SHIMADA ET AL., 2001. Real-time 3-D Hand Posture 

Estimation based on 2-D Appearance Retrieval Using 

Monocular Camera. In: Proc. Int. Workshop on RATFG-

RTS, p. 23–30. 

SHNEIDERMANN, 1998. Designing the user interface: 

strategies for effective human-computer interaction. 

Addison Wesley, 3. ed. 

SNIDER, M., 2009. Microsoft unveils hands-free gaming. In: 

USA Today, 1 June 2009. Available from: http://www. 

usatoday.com/tech/gaming/2009-06-01-hands-free-

microsoft_N.htm [Accessed 24 July 2009]. 

STARNER ET AL., 2004. Mind-Warping. In: Proc. ACM 

SIGCHI Advances in Computer Enternatainment 2004, p. 

256-259. 

TSE ET AL., 2007. Multimodal Multiplayer Tabletop 

Gaming. In: ACM CIE 5(2). 

VIGGIANO, J., 2004. Comparison of the accuracy of different 

white balancing options as quantified by their color 

constancy. In: Proc. of the SPIE 5301, p. 323-333. 

WU, Y., HUANG, T., 1999. Capturing Articulated Human 

Hand Motion: A Divide-and-Conquer Approach. In: 

Proc. IEEE Int'l Conf. Computer Vision, p. 606-611. 

YOON, T. ET AL., 2006. Image Segmentation of Human 

Forearms in Infrared Image. In: Proc. 28 IEEE EMBS 

Annual International Conf., p. 2762-2765. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

98


