
Design and implementation of a flexible hand gesture command
interface for games based on computer vision

João L. Bernardes
1
 Ricardo Nakamura

2
 Romero Tori

1

1,2
Escola Politécnica da USP, PCS, Brazil

1
Centro Universitário SENAC, Brazil

Figure 1: Gestures2Go

Abstract

This paper describes a command interface for games

based on hand gestures defined by postures, movement

and location. The large variety of gestures thus

possible increases usability by allowing a better match

between gesture and action. The system uses computer

vision requiring no sensors or markers on the user or

background. The analysis of requirements for games,

the architecture and implementation are discussed, as

well as the results of several tests to evaluate how well

each requirement is met.

Keywords: computer vision, gesture recognition,

human-computer interaction, electronic games

Authors’ contact:
{joao.bernardes, ricardo.nakamura}@poli.

usp.br, tori@acm.org

1. Introduction

The possibility of relaying commands to a computer

system using one's own hands and gestures has

interested researches and users for a long time and was

one of the first topics in user interface research, partly

because it uses well-developed, everyday skills

[Bowman 2005]. With the computational capacity

available today and widespread use of image capture

devices, even in domestic systems it is possible to

implement this sort of interaction using computer

vision. This brings the benefit of leaving the user's

hands free of any gloves, cables or sensors.

Gestures2Go, the system described here, provides this

functionality and its implementation (in C++,

illustrated in figure 1) is focused on electronic games.

Games are an ideal platform to test and popularize

new user interface systems, for several reasons, such as

an increased user willingness to explore in this medium

[Starner et al. 2004]. There are many examples of

academic research developing and studying new

interfaces with games, particularly incorporating

Augmented Reality [Bernardes et al., 2008]. The game

industry has also introduced new (or of previously

restricted use) interfaces and devices to the public.

From the joystick to increasingly complex gamepads

and controllers shaped as musical instruments, from

datagloves to "pistols" that function as pointing devices

and even haptic devices [Novint 2009], many are such

examples, to the point that, today, some professionals

are encouraged to play games to improve job-related

skills [Dobnik 2004].

On the other hand, both the industry and academia

acknowledge that new, more natural (and hopefully

fun) interfaces are one way to attract new consumers to

this economically important but still restricted market

[Kane 2005]. And in the past few years, the search for

these interfaces has been more widespread, continuous,

well-publicized and commercially successful. After a

popular gaming platform introduced motion and tilt

detection in a simpler controller as its most innovating

feature [AiLive 2007], motion detection was quickly

added to other platforms and games and continues to

be researched and improved upon. Several portable

gaming systems, in particular, are taking advantage of

motion and tilt sensing, touchscreens and even

microphones in their interface. More recently still a

project was unveiled to add interaction based on

recognition of full-body motion, speech and faces to a

popular platform [Snider 2009].

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

89

Despite this ebullience in game interfaces, the use

of hand gestures, especially leaving the user's hands

free, has seen little academic or commercial research in

this area and is usually limited to analyzing only hand

movement or a small number of hand postures. One of

Gestures2Go's objectives is greater flexibility, to allow

the use of a greater variety of gestures (currently

defined by hand postures, movement or location and

using both hands). Another important goal is that it

must be easy to use for both players and developers.

Gestures2Go should also be usable with existing games

(designed for traditional interfaces) and allow

multimodal interaction. These and other requirements

arose, during system design, from an analysis focusing

specifically on gestures and on game applications.

Many of the same requirements exist in other

applications as well, such as education or virtual and

augmented reality, and the authors believe this system

may be well suited for these applications, but will

leave this discussion outside the scope of this paper.

2. Related Work

A few works have been proposed recently to use free

hand gestures in games using computer vision. A

multimodal multiplayer gaming system [Tse et al.

2007] combines a small number of postures, their

location on a table-based interaction system and speech

commands to interact with games and discusses results

of using this platform to interact with two popular

games. Interpreting movements or postures of the arms

or the whole body is also usual. A body-driven

multiplayer game system [Laakso & Laakso 2006] uses

8 postures of the two arms viewed from above, plus

player location, to design and test the interaction in

several games. Going further, tests with both functional

prototypes and Wizard of Oz prototypes indicate that

body movement patterns (such as running, swimming

or flying), rather than specific gestures or trajectories,

may be used to trigger similar actions on game

characters [Hoysniemi et al. 2005].

 Other tools facilitate the use of gesture recognition

for applications in general, not only games.

ICondensation [Isard & Blake 1998] is a probabilistic

framework that allows the combination of different

observation models, such as color and contours.

HandVu [Kolsch et al. 2004] also uses condensation

but provides a simpler interface to track hands in six

predefined postures using skin color and a "flock" of

Haar-like features. GART [Lyons et al. 2007] provides

a high level interface to machine learning via Hidden

Markov Models used to train and recognize gestures

that consist only of movements (detected by sensors

such as a camera, mouse or accelerometers). It is

interesting to note that HandVu and GART can be

combined to allow robust hand tracking and a larger

number of gestures (combining postures and

movement, like Gestures2Go) than either one isolated.

Finally, EyesWeb [Camurri et al. 2003] is a framework

with a graphical programming interface that presents

several tools and metrics for segmentation and analysis

of full body movements.

 The literature regarding gesture recognition in

general is vast and a complete review is beyond the

scope of this paper, especially since established and

comprehensive reviews [Pavlovic et al. 1997] as well

as more recent but still comprehensive discussions

[Imai et al. 2004] are available. Other works, when

relevant to this implementation or future developments,

are discussed in the correspondent sections.

3. HCI and Game-specific requisites

Both the use of gestures and having games as an

application bring specific requirements to an interface

and analyzing these requirements was one of the most

important steps in designing Gestures2Go. For gesture-

based interfaces, current research [Bowman et al. 2005,

Shneidermann et al. 1998] point out the following:

 Gestures are most often used to relay singular

commands or actions to the system, instead of tasks

that may require continuous control, such as

navigation. Therefore, it is recommended that gestures

be part of a multimodal interface [Bowman et al.

2005]. This also brings other advantages, such as

decoupling different tasks in different interaction

modalities, which may reduce the user's cognitive load.

So, while gestures have been used for other interaction

tasks in the past, including navigation [Mapes &

Moshel 1995], Gestures2Go's primary requisite is to

allow their use to issue commands. Issuing commands

is a very important task in most games, usually

accomplished by pressing buttons or keys. Often,

games feature a limited number of commands, not even

requiring all the buttons in a modern gamepad. Since

other tasks, especially navigation, are very common as

well, another requirement that naturally arises is that

the system must allow multimodal interaction.

Massively Multiplayer Online games (MMOs), in

particular, often have much of their actual gameplay

consisting of navigation plus the issuing of several

commands in sequence [Fritsch et al. 2005].

 Gesture-based interfaces are almost always

"invisible" to the user, i.e. they contain no visual

indicators of which commands may be issued at any

particular time or context. To reduce short term

memory load, therefore, the number of possible

gestures in any given context, but not necessarily for

the entire application, must be limited (typically to 7±2

[Miller 1956], or approximately 5 to 10 gestures). The

gestures must also be highly learnable, chosen from the

application domain so the gesture matches the intended

command. Changing gears in a racing game, for

instance, could be represented by pulling a fist towards

or away from the user with the hand relatively low, as

if driving a stick shift car, and pausing the game could

be associated with an open palm extended forward, a

well-known gesture meaning "stop". This means that

while the system is not required to deal with a large

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

90

number of different gestures at any one time (which

simplifies the implementation), being flexible by

having a large number of possible gestures to choose

from, so the interface designer may pick the most

appropriate to associate with each user action, is indeed

a requirement. Systems that violate either of these two

requirements, requiring the memorization of a large

number of gestures or limiting the space of possible

gestures to only a few postures or movements, make

the interface harder to learn and later to remember,

reducing its usability.

 The examples above (changing gears and stop) also

show that the choice of each gesture for the interface

depends not only on the application, context and

command, but is also heavily culture-dependant,

because the cognitive meaning of gestures may vary. In

the case of gesture-based games, therefore, and with

games being such a global market, localization could

also entail changing which gesture is associated with

each action [Bernal-Merino 2007]. All this leads to the

requirement that the vocabulary of gestures in each

context of the interface, while small, must be as simply

and quickly modifiable as possible. Systems that

require retraining for each set of possible gestures, for

instance, could prove problematic in this case, unless

such training could be easily automated.

 The interface should also accept small variations

for each gesture. Demanding that postures and

movements be precise, while possibly making the

recognition task easier, makes the interaction

considerably harder to use and learn, demanding not

only that the user remember the gestures and their

meanings but also train how to do them precisely,

greatly reducing usability.

 It could be argued that, for particular games,

reducing the usability could actually be part of the

challenge presented to the player (the challenge could

be remembering a large number of gestures, or learning

how to execute them precisely, for instance). While the

discussion of whether that is a good game design

practice or not is beyond the scope of this paper,

Gestures2Go opts for the more general goal of

increasing usability as much as possible. This agrees

with the principle that, for home and entertainment

applications, ease of learning, reducing user errors,

satisfaction and low cost are among the most important

design goals [Shneidermann et al. 1998].

 The system should also allow playing at home with

minimal setup time required. Players prefer games

where they can be introduced to the action as soon as

possible, even while still learning the game and the

interface [Hong 2008]. Therefore, the system should

not require specific background or lighting conditions,

complex calibration or repeated training. Allowing the

use of the gesture-based interface with conventional

games is also advantageous to the user, providing new

options to enjoy a larger number of games. From the

developer point of view, the system should be as easy

as possible to integrate within a game, without

requiring specific knowledge of areas such as computer

vision or machine learning.

 Finally, processing and response times are

important requirements. Despite the growing

availability of multi-core gaming platforms, it is still

desirable that gesture recognition processing time be as

low as possible, freeing processing power to other

tasks such as artificial intelligence and physical

simulation. It is limited by the acceptable response

time, which, in turn, depends on the game. Performing

a gesture, for instance, will almost always be slower

than pressing a button or key, so this sort of interface is

probably not a good choice for reflex-based games

such as first person shooters. A genre that has already

been mentioned as a good match for this sort of

interface is MMOs. Not only much of their gameplay

consists of navigation and issuing commands, MMOs

use several strategies to deal with network latency

[Fritsch et al. 2005] that also result in not penalizing

the slower input from gestures, when compared, for

instance, with button pressing. Such strategies include

reducing the number of commands necessary in a fixed

amount of time (for instance, it is common to "enter or

exit attack mode", instead of repeating a command for

each attack) and accepting the queuing of only one new

command while the action triggered by the last one has

not finished (and actions are set up to take some time,

usually spent with animations or special graphical

effects). In the game Everquest 2, for instance, Fritsch

et al. report that the use of these strategies, with actions

usually taking 1000ms, makes the game playable with

latencies of up to 1250ms. A more practical bound,

however, pointed after the analysis of several related

works, is around 250ms for interactive games

[Henderson & Bhatti 2003]. In a setup such as the one

described above, that would leave one second to be

divided between gesture performance and system

response time and this is the parameter that will be

used for Gestures2Go. This applies, of course, even for

games designed for regular interfaces. When designing

a game specifically to explore gestures, similar game

design strategies or even new ones could be adopted to

compensate for the time the user spends performing the

gesture.

4. Gestures2Go

Because one of the requirements for this system was

ease of use, both for the player and the developer, it

was named Gestures2Go to imply that the gesture

recognition is ready to go, to take home, with little

extra work. It consists of an abstract framework that

divides the system in modules and defines the interface

between these modules and, currently, of a single,

simple implementation of this framework. It is

important to note that the requirements discussed in

section 3 apply to the current implementation, which is

focused on games, and not to the abstract framework.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

91

The computational task of identifying a gesture

from a known vocabulary of possibilities is often

divided in gesture modeling, analysis and recognition

[Pavlovic et al. 1997].

Gesture modeling consists in how a gesture is

defined by the system, from a computational point of

view (since definitions of gesture abound in other

areas). Gesture2Go's abstract framework defines a

gesture as an initial hand posture, an optional

movement of the entire hand through an arbitrary path

and a final posture, which is optional if the movement

is omitted but mandatory otherwise. The starting

location of the hand, relative to the user's head (left or

right, above, below or roughly aligned with the head),

is also an optional parameter of this definition, since it

often changes the meaning of a gesture. This means

that a gesture may consist of a single posture, of an

initial and a final posture or of an initial posture, a

movement and a final posture, all depending or not on

the initial hand position. It also means that changes of

posture during the movement are not taken in

consideration, since these changes rarely have semantic

meaning [Quek 1994]. While the abstract framework

also includes variable parameters in the gesture

definition (such as speed or pointing direction), the

simple implementation described here does not deal

with parametric gestures. Finally, the abstract

framework does not specify how each part of the

gesture definition is actually modeled (each is

identified by a string or numerical ID), so it can vary in

each implementation. The hand posture could, for

instance, be modeled as a collection of values for the

degrees of freedom of a particular hand model, or it

could consist of a list of 2D or 3D points of the hand's

contour.

During the analysis phase, the gesture's spatial and

temporal parameters (which depend on each model) are

obtained from sensor data (in this case, from an image

or a set of images) and this data is used during the

recognition phase to identify the gesture within the

vocabulary of possibilities. Analysis and recognition

are often, but not necessarily, tightly inter-related.

4.1 The Abstract Framework

Figure 2 shows a UML Activity Diagram representing

Gesture2Go's object flow model.

G2gGesture is responsible for the gesture model,

while G2gAnalysis and G2gRecognition define the

interfaces for the classes that will implement gesture

analysis and recognition. To these activities are added

image capture and segmentation. G2gCapture provides

an interface for capturing 2D images from one or

multiple cameras or pre-recorded video streams

(mostly for testing). The images must have the same

size, but not necessarily the same color depth. A device

could provide, for instance, one or more color images

and a grayscale image to represent a dense depth map.

G2gSegmentation should usually find in the original

image(s) one or both hands and possibly the head (to

determine relative hand position).

Figure 2: Gesture2Go's Object Flow Model

 Figure 2 shows that the usual flow of information

in Gestures2Go in each time step is as follows: one or

more images serve as input to the image capture

model, which makes these images available as an

OpenCV's IplImage object [OpenCV 2009]. The

segmentation uses this image and provides a

segmented image as an object of the same class (and

same image size, but not necessarily color depth).

Based on the segmented image, the analysis provides a

collection of features as a G2gFeatureCol object which

are in turn used by the recognition to output a gesture.

G2gFeatureCol is a collection of G2gFeature

objects. G2gFeature contains a identifier string to

describe the feature and either a scalar and an array of

values (more often used) or an image (useful, for

instance, for features in the frequency domain).

G2gFeature already defines several identifiers, for

those features most often found in the gesture

recognition literature, to facilitate the interface between

analysis and recognition, but user-created identifiers

may also be used.

Desc2Input is an optional module that accompanies

but is actually separate from Gestures2Go. It is

responsible for facilitating, in a very simple way, both

multimodal input and integration with games or

engines not necessarily aware of Gesture2Go. It simply

translates its input, which is a description (a numerical

or string ID or a XML description, for instance) that

may be supplied either by Gestures2Go or any other

system (and here lies the possibility of multimodal

interaction), into another type of input, such as a

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

92

system input (like a key down event) or input data to a

particular game engine. In one of the tests, for instance,

gestures are used for commands and a dancing mat is

used for navigation.

Because this architecture consists mostly of

interfaces, it is possible to create a single class that,

through multiple inheritance, implements the entire

system functionality. This is usually considered a bad

practice in object orientation (should be avoided) and

is actually one of the reasons why aggregation is

preferred to inheritance [Eckel 2003]. There are design

patterns that could have been used to force the use of

aggregation and avoid multiple inheritance, but

Gestures2Go opts for allowing it for a reason. Gesture

recognition may be a very costly task in terms of

processing, and must be done in real time for the

purpose of interaction. Many algorithms may be better

optimized for speed when performing more than one

task (such as segmentation and analysis) together.

Furthermore, analysis and recognition are very tightly

coupled in some algorithms and forcing their

separation could be difficult. So, while it is usually

recommended to avoid using multiple inheritance and

to implement each task in a different class, making it

much easier to exchange one module for the other or to

develop modules in parallel and in teams, the option to

do otherwise exists, and for good reason.

Finally, all Gestures2Go classes must implement

init() and cleanup() methods which are preferred to

using the new and delete operators (the system is

implemented in C++) to avoid problems with multiple

inheritance and with synchronization.

4.2 Implementation

The requirement analysis pointed that an

implementation of the abstract framework described

above specifically for games should have the following

characteristics: minimum need for setup, low

processing demand even though the response time may

be relatively high, a high number of possible gestures

but with only a small and easily modifiable vocabulary

in any one context, tolerance to variations in the

execution of gestures, allow multimodal interaction

and make development of games using gestures as easy

as possible. With these requirements in mind and

assuming that a single player in the scene will interact

through gestures, this implementation attempts to find

the simplest solution for each of the activities shown in

figure 2.

 Segmentation is based on skin color, to find both

hands and the head. A G2gSimpleSkinSeg2 (a class

which implements G2gSegmentation) object performs

a simple threshold operation on the captured image, in

the HSV color space, taking in account both hue and

saturation. For most people, skin color lie in a small

interval between the red and yellow hues, due to blood

and melanin, respectively [Fleck & Forsyth 2009], so

using hue is a good way to identify a large range of

lighter or darker skin tones, even in different

illumination conditions. Saturation is used mostly to

remove regions that are either too light or too dark and

may end up showing a hue similar to the skin.

At first, fixed average values and tolerances were

adopted for the skin's hue and saturation. Testing in

different lighting conditions, environments and using

different cameras, however, showed large variations

for these values in the captured images, either due to

different lighting conditions or differences in the white

balance [Viggiano 2004] performed automatically by

the cameras (and, in most cases, with no "off" option).

G2gSimpleSkinSeg2 was then incremented with

methods to accumulate and calculate averages and

standard deviations for hue and saturation of several,

arbitrary rectangular skin-colored regions. This allows

an application to add a quick calibration step so the

segmentation may use adequate skin hue and saturation

values for the threshold operation.

Finally, after tests in an environment where the

background actually has a hue very similar to the

skin's, a fixed background removal operation was

added as an option. Figure 1 shows a sample result of

this operation. Even with a color tolerance of 50 in a

256x256x256 RGB space, about half of the pixels do

not match the recorded background (not showing as

black), even when this background is far enough that

its actual appearance is unlikely to change due to the

presence of the hand. This problem is minimized by

applying a 3x3 erosion operation after the background

removal, also illustrated in figure 1, but due to local

corrections imposed by the camera a region around the

foreground elements still shows, looking like an "aura"

around the color segmented hand images in figure 1.

The system, currently, does not segment the arm

from the hand, which imposes the limitation that users

must wear long sleeves. This is considered a serious

limitation. Even without any information about hand

posture, for most of them the arm could be segmented

by finding the direction of its major axis, finding the

point of minimum width or abrupt change in direction

along this axis (the wrist) and segmenting there [Yoon

et al. 2006]. This does not work well if only a small

length of arm is showing, however, or for certain

postures (such as preparing a "karate chop").

Other segmentation strategies that do not require

knowledge of the hand's posture were attempted, such

as using color histograms and probabilities instead of

the simple average and deviation, as well as the use

contour information, but so far showed little

improvement and more computational cost.

 The first step of the analysis activity, implemented

in the G2gSCMAnalysis class, is to find the connected

components in the segmented image. The system does

not assume that the background is fixed or that there

are no other skin colored regions in the image, but it

does presume that the player using gestures is the

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

93

closest person to the camera, so it can assume that the

three largest connected components correspond to the

user's hands and face. There is also a minimum number

of pixels for a connected component to be accepted as

a region of interest. If only 2 components above this

minimum size are found, the system assumes that the

missing component corresponds to the user's non-

dominant hand and if only one is present, it is assumed

to be the head (the head was cropped from figures 1

and 3). To further simplify the identification of the

hands and head, this implementation assumes that the

left hand is the leftmost region with the head in the

middle and the right hand to the right. While this

certainly limits user movements and the number of

possible gestures, it was considered a valid limitation

in this case and, during informal testing, was accepted

with no complaint from the users, who obeyed it most

of the time even when not informed of it. This first step

also reduces noise left after the segmentation and

eliminates from the analysis other people who might

wander in the background.

 Analysis and recognition of the gestures themselves

adopt a divide and conquer strategy [Wu & Huang

1999], separating the recognition of hand posture and

hand movements. Postures are recognized through

estimation by synthesis (ES), i.e. the real hand's image

is compared with images synthesized from a 3D hand

model so that 3D posture information (the parameters

used to model the hand's posture) is obtained

comparing only 2D images, instead of trying to match

a 3D model to the real image, which can be accurate

but computationally expensive and complicated by the

presence of postures with self occlusion [Imai et al.

2004]. Unlike most applications of ES methods,

however, here it is not necessary to determine hand

posture continuously and differentiate between

postures with only small differences. Because tolerance

of variation in postures is one of the system's

requirements, it is not only acceptable but necessary

that small differences in posture be disregarded. This

implementation, therefore, may sidestep one of the

most serious complication of ES methods. It only

needs to compare the real hand image with a small

number of possible postures, instead of thousands of

possibilities. When no acceptable match is found, the

system simply assumes the user is not performing a

command gesture.

 As in other ES methods [Shimada et al. 2001, Imai

et al. 2004], the features G2gSCMAnalysis provides are

based on the hand's 2D contour. The most important

feature is a vector of the distances between the hand's

centroid and a fixed number of points on the contour.

These points are shown in figure 1. This vector is

normalized in the analysis, so the maximum distance

always corresponds to the same value and the features

are scale-invariant, reducing the influence of the

distance between the hand and the camera. All features

for the vocabulary of possible, modeled postures are

pre-calculated so only those for the real hand need to

be determined in each execution step. Currently the

number of points sampled from the contour in the

feature vectors is, somewhat arbitrarily, set at 128. This

number has shown to be small enough to allow fast

computation and large enough that it is not necessary

to worry about choosing points near remarkable

contour features (usually local maxima and minima

corresponding to tips and bases of fingers).

 G2gSCMRecognition implements both posture and

movement recognition. Posture recognition consists

simply of comparing the feature vector obtained from

the real hand's captured image with each vector for all

the possible postures and finding the posture that

minimizes the mean squared error between these two

vectors. If the minimum error is still larger than a

tolerance value, no posture is recognized (recognition

returns a "not found" constant).

Unlike other ES implementations, however, the

observed vector is not made rotation-invariant during

recognition (by rotating it during each comparison so

extremal points coincide with the model). While some

tolerance in posture recognition is desired, rotation-

invariance is not. Should this operation prove

necessary, to avoid incorrect results due to the

accumulation of many small errors caused by a small

rotation, it could still be implemented while leaving the

algorithm sensitive to rotation because recognition uses

yet another feature: the angle between the highest point

in the contour and the centroid. This feature, also

provided by G2gSCMAnalysis, is currently used to

speed up recognition by discarding, before the

calculation of the mean squared error, any posture with

an angle that differs by more than a certain tolerance

from the one in the observed image. The highest point

(usually a fingertip) is easy to determine because the

contour-finding algorithm is implemented in a way to

always find this point first. This angle could also be

used to account for hand rotation if the vector of

distances was made rotation-invariant, but tests so far

have not shown the need for this operation.

The analysis also provides the centroid's absolute

location in the image and its area (or number of pixels),

which are used for movement recognition. Only 12

movements are recognized: left, right, up, down, back,

forward, 4 diagonals, clockwise and counter-clockwise

approximate rotations. The movement is temporally

segmented by the gesture's initial and final postures, so

it can be identified as one of these possibilities by a

simple set of conditions, similar to a two stage scheme

described in the literature [Mammen et al. 2001]. For

the back and forward movements, the initial and final

posture of the hand must be the same, since this

movement is estimated by the variation in area.

In the current implementation, a gesture may be

defined by movements and initial relative locations of

both hands, but only postures of the dominant one

(currently the right hand, but the next version will

allow choosing left or right) are identified. There are

now 41 postures available. Adding more postures is

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

94

quite simple and others were considered and could

have been added, but they were either meaningless,

quite hard to perform or had the same contour in a 2D

image. With this number of available postures and

movements, and remembering that a gesture might

consist of one or two postures, or a movement bound

by two postures that may be different (except when

moving back or forward), there are almost 20,000

available gestures for the dominant hand alone, even

before considering its location relative to the head or

the movement of the other hand.

Finally, Desc2Input's implementation in the current

version, for MS Windows only, has only two public

methods: associate and sendDesc. The associate

method receives a description (a string, representing a

gesture or any other event, such as stepping on a

dancing mat's "button") and the system input (key

press, mouse move or click) and parameters (such as

key or position) associated to that description. The

sendDesc method only receives a description and

indicates that Desc2Input must generate the associated

input (which is broadcast to all windows). A priority

for future versions is making this module easier to use,

adding alternatives that require little programming

(leaving the association of gestures and commands to

an external configuration file, for instance).

5. Tests and Results

Four prototype applications were created to test the

system in different conditions. The first priority was to

verify the posture analysis and recognition strategy,

independent of segmentation. To accomplish that, 120

already segmented pictures of hands in different

postures were stored and ran through the analysis and

recognition modules. These images were segmented

using the same algorithm described before but were

chosen manually at moments when it worked

adequately (as in the examples shown in figure 3).

pinkyR

point

pinky

pointL

thumb up

Figure 3: Sample segmented postures used in static tests

To allow the comparison of every posture with

every other one, the angle difference between the

highest point in each posture was discarded and the

mean square error between the distance vectors was

recorded. Table 1 shows the results, truncated to the

nearest decimal, of one such test, comparing 15

postures. More postures are not shown due to the

limited space. This particular test was chosen

specifically because it contains similar postures that

show problematic results.

In all cases the correct posture was identified (i.e.

had the minimum error), as shown by the values with a

gray background in table 1. In 8 cases, however,

incorrect postures showed a low error as well (shown

in bold on white). The system considers error values

below 1 as possible matches. So, if "pinkyR" had not

been one of the possible postures, for instance, "pinky"

would have been accepted by the system as "pinkyR".

Figure 3 shows these problematic postures. Two of

these cases (pinky and pinkyR, point and pointL) are

postures where a single finger is raised and that differ

from each other by this finger's angle. Using the angle

of the highest point as a feature eliminates these

incorrect matches. The other mismatch that might have

occurred is between the postures with the pinky up and

the thumb up posture, but as seen in figure 3, these

postures are actually quite similar. In all these static

tests, all postures were recognized correctly but a few

similar ones showed possible mismatches. In the test

illustrated by table 1, for instance, only 8 comparisons

in 225 were possible mismatches, approximately 3.5%.

Table 1: Sample static posture comparison

A second test application shows identified postures

in real time and allows the verification of the effects of

the segmentation. It requires a few seconds for setup,

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

95

showing a region on the screen that the user must

"cover" with a region of skin so initial averages and

deviations for skin color can be determined. While the

application allows this to be done several times (to

capture, for instance, the colors of the palm and back

of the hand as well as face regions), showing either

many or any single region of skin have always given

similar results during tests. The application also

includes the options of recording and removing a

known background and can either show a color image

of the foreground or a monochrome image of the

segmented skin regions. While showing the

monochrome image, if a posture is identified the

application also displays its description on the bottom

of the screen. This application also identifies and

displays the 8 possible movements. Actually, a gesture

was defined for each movement, all 8 having as both

initial and final posture a closed fist (which is very

accurately identified by the system). The images

labeled as "Erosion" and "Posture" in figure 1 are

actually regions from screenshots of this application.

 During the tests with this application, analysis and

recognition continued to perform well when the images

were well segmented. Often, however, a finger, usually

the thumb or pinky, would disappear from the

segmented image or only parts of the fingers would

show, leading to postures not being recognized or for

mismatches (such as an open palm identified as

mimicking a claw). This was mostly due to problems

with the illumination and image capture, such as a

bloom showing between the fingers if the open hand

was in front of a light source or bright light sources

reflecting specularly from large regions of skin. Both

make large skin regions show as white. Even in these

environments with no controlled (and problematic)

illumination, the system identified the right posture

most of the time. Another problem that occurred during

these tests happened when the long sleeves worn by the

subjects slid down the wrist, showing a portion of the

forearm. Only 2 or 3 centimeters needed to show to

cause a dramatic drop in the recognition's quality.

During these tests, the movements were always

recognized correctly.

 While Gestures2Go should be primarily used to

issue commands with gestures, a third application was

built to evaluate its use to select objects, replacing the

use of the mouse. A posture was associated with

moving the mouse and relative changes in hand

position while that posture was recognized were

mapped to relative positions in the mouse pointer using

Desc2Input. Two other postures were associated with

left and right clicks. The hand moved only in a small

region of a 640x480 image while the mouse should

move over a 1024x768 region, so the linear mapping

between movements increased the hand's vertical and

horizontal movements by different constants to apply it

to the mouse. The system was still relatively easy to

use even to click on smaller objects on the screen.

 Finally, postures, movements, using the hand to

move the mouse pointer and click and the use of a

dancing mat for navigation were put together in a

fourth test application which was used to control a

popular MMO. Using the hand to move the mouse

pointer and clicking was only necessary to manipulate

some objects in the scenery. A gesture was associated

with the command to select the next possible target and

several gestures were associated with different actions

to be performed on this target. This interface was

especially adequate to this particular MMO because

most actions are accompanied by easily identifiable

hand motions of the player's avatar, so the mapping

between gesture and game action was natural, very

visible and enjoyable. To navigate in the game world

using the dancing mat, it was connected to the

computer's parallel port and a class was created to read

its inputs and send them to Desc2Input to be translated

as the arrow keys and commands for actions such as

jumping. Because in systems derived from Windows

NT only applications running in kernel mode can

access the parallel port, it was necessary to either write

a device driver or use an existing one. Using Inpout32

[logix4u 2009] was the chosen solution. It is a DLL

with an embedded driver and functions for reading and

writing to the parallel port (inp32 and out32). Up to the

time of this writing, unfortunately, permission to use

this MMO's name and images had not yet been granted

by the publisher.

 The performance of each module was also tested,

using a 3GHz Intel Core 2 Duo CPU and 2GB of RAM

(the test process ran in only one core, however). Table

2 shows approximate average times measured for each

task in 375 tests (5 tests of 5s at 15 frames per second).

Table 2: Performance

Activity Time (ms)

Segmentation 13.600

Components 0.650

Moments 0.013 Analysis

Features 0.003

10 Postures 0.002
Recognition

Movement <0.001

Table 2 shows how segmentation is by far the most

costly activity. During analysis, finding the connected

components is also the most time consuming task, but

still only takes less than a millisecond. Finding the

image moments for one hand's connected component

takes approximately 13µs only because OpenCV's

function calculates up to third order moments, while

the system only requires moments of orders 0 and 1, so

this operation could be easily sped up, but it is clearly

not a priority. Calculating all features needed for

recognition and the recognition itself were extremely

fast during these tests, at less than 5µs. That's assuming

there are 10 possible postures (recognition time

increases linearly with possible postures) and a worst

case scenario where the angle difference is never above

tolerance, so the mean square error between distance

vectors is calculated for every possibility. Movement

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

96

recognition consists of only a few conditions and

happened too fast to get accurate measurements. With

these results, the system satisfies the requirement of

low processing demand and should it be necessary to

make it faster, it is trivial to parallelize the

segmentation, either to run in more cores or to be done

in the GPU. These processing times, however, indicate

that finding a more robust segmentation strategy is

much more important than increasing its performance.

6. Conclusion

This current implementation of Gestures2Go, focused

specifically on games and other similar applications,

satisfies most of the requirements for gesture-based

interfaces and games which were studied during the

system's design phase.

 While there is need of some setup, to record the

background and calculate the player's skin color

parameters, this setup only takes a few seconds. Each

execution step takes less than 15ms in a single 3GHz

core, satisfying the requirements for low processing

demand, especially considering that in most contexts

the system must only differentiate between 5 to 10

gestures. However, combining 41 (or more) postures of

one hand and 12 movements and initial hand locations

(relative to the head) for both hands creates a

vocabulary of thousands of possible gestures, greatly

increasing the chance that the interface designer can

find an appropriate gesture to associate with an action.

Desc2Input facilitates multimodal interaction and the

system as a whole is quite tolerant to variations in

gesture execution, both for postures and movements.

 One requirement cannot be considered satisfied yet,

however: simplifying the development of games with

gestures. Desc2Input should be responsible for this

requirement, but currently its interface only allows the

association of descriptions and inputs by hard coding

them using the associate function. Furthermore, its

current version is provided as source code that must be

included within the same project as the gesture

recognition system and systems for interpreting other

modes of interaction (such as the dancing mat used in

one of the tests, or speech recognition). This makes the

system's use by programmers much more complex than

desired. It is a priority for future works, therefore, to

develop a better interface for Desc2Input. The next

system's version will allow the association of

descriptions and inputs though an external xml

configuration file and Desc2Input will be available not

only as source code but as a DLL to include in projects

as well as a standalone executable that receives

descriptions via sockets from different modules

responsible for complementary interaction modes.

Gestures2Go will also include a standalone application

that generates regular system inputs from command

gestures so that this sort of interface may be used with

any other interactive application simply customizing a

configuration file associating gestures to inputs,

without requiring a single line of programming.

Another standalone application is in development to

facilitate this configuration: instead of editing the

configuration file directly, the user simply shows initial

and final posture to the system and selects, in a

graphical interface, movements, locations and which

input that gesture must generate. A final improvement

in this area is the integration of Gestures2Go with a

game engine, but this depends on the engine's

architecture and is beyond this paper's scope.

 Another priority for future works is improving the

segmentation. One of the system's requirements is that

it must not demand controlled or special lighting or

unusual or expensive equipment and, under those

severe limitations, the segmentation actually works

considerably well. But it is still the less robust part of

the system and causes frequent and noticeable errors

under some lighting conditions. Several robust

probabilistic solutions exist to track hands and their

contours, such as using variations of the condensation

algorithm [Isard & Blake 1998]. Most of these

solutions require knowledge either of one fixed hand

posture, or a small number of postures and a transition

model between them [Liu & Jia 2004] which

complicates the addition of new postures and gestures.

Even these methods often use depth data to aid in

segmentation. Other methods do not require a known

model for the hand but only track its position, not the

contour, which is necessary for Gestures2Go. One

promising approach that will be tested as soon as

possible within this system is tracking the hand and its

contour with no hand model information by using

Kalman filters to estimate both the hand's movement

and the positions of control points of curves that define

hand shape [de Bem & Costa 2006]. This strategy will

be adopted if tests show that its performance and

accuracy are adequate while tracking enough control

points to model a rapidly changing hand contour.

 Using depth data [Nakamura & Tori 2008] is

another planned improvement to the system, both to

the segmentation and to allow a greater number of

postures, such as pointing postures. Lastly, formal

usability tests must be conducted to determine whether

the interaction techniques using Gestures2Go in a

MMO are effective in the context of games.

References

AILIVE, 2007. LiveMove White Paper. Available from: http:

//www.ikuni.com/papers/LiveMoveWhitePaper_en.pdf

[Accessed 24 July 2009].

BERNARDES, J. ET AL, 2008. Augmented Reality Games In:

Extending Experiences: Structure, analysis and design of

computer game player experience. Lapland University

Press, p. 228-246.

BERNAL-MERINO, M., 2007. Localization and the Cultural

Concept of Play. Available from: http://www.

gamecareerguide.com/features/454/localization_and_the_

cultural_.php [Accessed 24 July 2009].

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

97

BOWMAN, 2005. 3D User Interfaces: Theory and Practice.

Addison-Wesley.

CAMURRI ET AL., 2003. Analysis of expressive gestures in

human movement: the EyesWeb expressive gesture

processing library. In: Proc. XIV Colloquium on Musical

Informatics.

DE BEM, R., COSTA, A., 2006. Rastreamento de visual de

múltiplos objetos utilizando uma abordagem livre de

modelo. In: Proc. XVI Congresso Brasileiro de

Automática, 2760-2765.

DOBNIK, V., 2004. Surgeons may err less by playing video

games. Available from: http://www.msnbc.msn.com/id/

4685909 [Accessed 24 July 2009].

ECKEL, B., 2003. Thinking in C++. Prentice Hall.

FLECK, M. & FORSYTH , D., 2009. Naked people Skin Filter.

Available from: http://www.cs.hmc.edu/ ~fleck/naked-

skin.html [Accessed 24 July 2009].

FRITSCH ET AL., 2005. The Effect of Latency and Network

Limitations on MMORPGs (A Field Study of Everquest

2). In: Proc. of NetGames '05.

HENDERSON & BHATTI, 2003. Networked Games – a QoS-

Sensitive Application for QoS-Insensitive Users? In:

Proc. ACM SIGCOMM 2003 Workshops.

HONG, T., 2008. Shoot to Thrill. In: Game Developer 15(9)

p. 21-28.

HOYSNIEMI ET AL., 2005. Children’s Intuitive Gestures in

Vision-Based Action Games. In: Communications of the

ACM 48(1), p.44-50.

IMAI, A. ET AL., 2004. 3-D Hand Posture Recognition by

Training Contour Variation. In: Proc. Automatic Face

and Gesture Recognition 2004, p. 895-900.

ISARD, M., BLAKE, A., 1998. ICondensation: Unifying low-

level and high-level tracking in a stochastic framework.

In: Proc. 5th European Conf. Computer Vision.

KANE, B., 2005. Beyond the Gamepad panel session.

Available from: http://www.gamasutra.com/features/

20050819/kane_01.shtml [Accessed 24 July 2009].

KOLSCH, ET AL., 2004. Vision-based Interfaces for Mobility.

In: Proc. Intl. Conf. on Mobile and Ubiquitous Systems.

LAAKSO, S., LAAKSO, M., 2006. Design of a Body-Driven

Multiplayer Game System. In: ACM CCIE 4(4).

LIU, Y., JIA, Y., 2004. A Robust Hand Tracking and Gesture

Recognition Method for Wearable Visual Interfaces and

its Applications. In: Proc. ICIG '04.

LOGIX4U, 2009. Inpout32.dll for Windows 98/2000/NT/XP.

Available from: http://logix4u.net/Legacy_Ports/Parallel_

ort/npout32.dll_for_Windows_98/2000/NT/XP.html

Accessed 24 July 2009].

LYONS, H. ET AL., 2007. Gart: The gesture and activity

recognition toolkit. In Proc. HCI International 2007.

MAMMEN, J.; CHAUDHURI, S. & AGARWAL, T. Simultaneous

Tracking Of Both Hands By Estimation Of Erroneous

Observations. In: Proc. British Machine Vision

Conference 2001.

MAPES, D., MOSHEL, J.,1995. A Two Handed Interface for

Object Manipulation in Virtual Environments. In:

Presence: Teleoperators and Virtual Environments 4(4),

p. 403-416.

MILLER, G., 1956. The Magical Number Seven, Plus or

Minus Two: Some Limits on Our Capacity for

Processing Information. In: The Psychological Review

63, p. 81-97.

NAKAMURA, R., TORI, R., Improving Collision Detection for

Real-Time Video Avatar Interaction. In: Proc. X Symp.

on Virtual and Augmented Reality, p. 105-114.

NOVINT, 2009. Novint Falcon. Available from:

http://home.novint.com/products/novint_falcon.php

[Accessed 24 July 2009].

OPENCV, 2009. Available from: http://sourceforge.net/

projects/opencvlibrary/ [Accessed 24 July 2009].

PAVLOVIC ET AL., 1997. Visual Interpretation of Hand

Gestures for Human Computer Interaction: A Review.

IEEE Transactions on Pattern Analysis and Machine

Intelligence 19(7), p. 677-695.

QUEK, 1994. Towards a vision-based hand gesture interface.

In: Proc. Virtual Reality Software and Technology

Conference 1994.

SHIMADA ET AL., 2001. Real-time 3-D Hand Posture

Estimation based on 2-D Appearance Retrieval Using

Monocular Camera. In: Proc. Int. Workshop on RATFG-

RTS, p. 23–30.

SHNEIDERMANN, 1998. Designing the user interface:

strategies for effective human-computer interaction.

Addison Wesley, 3. ed.

SNIDER, M., 2009. Microsoft unveils hands-free gaming. In:

USA Today, 1 June 2009. Available from: http://www.

usatoday.com/tech/gaming/2009-06-01-hands-free-

microsoft_N.htm [Accessed 24 July 2009].

STARNER ET AL., 2004. Mind-Warping. In: Proc. ACM

SIGCHI Advances in Computer Enternatainment 2004, p.

256-259.

TSE ET AL., 2007. Multimodal Multiplayer Tabletop

Gaming. In: ACM CIE 5(2).

VIGGIANO, J., 2004. Comparison of the accuracy of different

white balancing options as quantified by their color

constancy. In: Proc. of the SPIE 5301, p. 323-333.

WU, Y., HUANG, T., 1999. Capturing Articulated Human

Hand Motion: A Divide-and-Conquer Approach. In:

Proc. IEEE Int'l Conf. Computer Vision, p. 606-611.

YOON, T. ET AL., 2006. Image Segmentation of Human

Forearms in Infrared Image. In: Proc. 28 IEEE EMBS

Annual International Conf., p. 2762-2765.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

98

