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1. Introduction 

Artificial Intelligence (AI) for Games often needs to 
deal with environments composed by several variables 
with unknown exact behavior. Consider a game like 
Sim City or Civilization, where the game AI advisor 
could suggest for the player an administrative strategy. 
This strategy should try to maximize several factors 
like the incoming money, production rate and 
technological advancements while reducing problems 
like pollution and famine. The consequence of each 
variable to the global scenario is not entirely 
predictable but, usually, given a set of defined values, 
it’s easy to evaluate the whole picture.  

Traditional AI offers several search mechanisms 
[Russel and Norvig 2003] which tries to find these 
answers. Some of them tries to systematically search 
the entire search space (like breadth-first search or A*). 
While they surely lead to the best possible solution, 
they may have a very long execution time. Another 
option would be using a local space search, like hill 
climbing search or Tabu search, but they tend to be 
locked in local maximums. 

Genetic Algorithms (GA), are in the last category 
of the above two and try to use the principle of 
evolution, normally found in natural systems, to search 
for solutions to algorithmic problems [Schwab 2004].  

The classical genetic algorithm defined by Holland 
[Holland 1975] is divided into six steps [Charles et al.  
2008]: population creation, fitness evaluation, 

chromosome mating and mutation, deletion of lowest 
fitness individuals and re-evaluation of the new 
population. The last steps are repeated until the 
convergence of the population to a good result. 

One of the greatest advantages of GA is that it can 
be considered a parallel search mechanism that tests 
several different variables simultaneously [Charles et 
al.  2008]. Also, it avoids local maximums by doing 
mutations, and allowing searching of random areas of 
the solution space. 

Unfortunately, this technique is not well known 
among the game developer community. There are few 
books on the subject and even less containing practical 
game situation examples. This article presents a 
framework that allows developers to easily integrate 
genetic algorithms into their games. The proposed 
solution is both flexible and easy to use. 

The article also discusses some optimizations made 
in the framework. To improve understanding  of the 
proposed architecture, a sample test scenario is 
provided in section 4.  

2. Drawbacks of Genetic Algorithms 

Time consuming evolution: Often evolution takes too 
many generations, even with a good genome designed 
with good operators [Schwab, 2004]. This is especially 
true in the presence of deceptive problems [Charles et 
al.  2008].  

Evaluation by experimentation: Due to the great 
number of crossover, mutation, selection and scaling 
options, and due to the random nature of GAs, the only 
way to find a good solution is by experimentation 
[Schwab, 2004]. This also implies that a good genetic 
algorithm framework must ensure that experimenting 
is possible. 

No guarantee of optimal solution: Just like any 
stochastic selection algorithm [Russel and Norvig 
2003], there’s no guarantee that the algorithm truly 
converged to the global maximum. On the other hand, 
for games finding good local maximum could be as 
good as choosing the global maximum especially 
because it could create a more human behavior 
[Schwab, 2004]. 
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Hard to debug: Due to the random nature of the 
algorithm, it’s hard to tell why a given implementation 
is not working.  

3. Framework description 

This section describes the entire framework 
organization and design considerations.   

3.1. Domain specific classes 

The first step when dealing with any genetic algorithm 
is to represent the problem in a form of a genome 
structure, and provide a fitness function to evaluate a 
specific individual. 

In the proposed framework, there’s a clear 
distinction between the concepts of an Individual and 
of a Genome. Such is not the case in several 
implementations like Schwab [2004], Charles et al.  
[2008] Jones [2008] and Obitko[1998]. So, the 
Individual has three very important roles: 

1. To provide business methods for accessing 
domain specific properties; 

2. To implement a common GA interface, allowing 
the framework to work; 

3. To act as a Mediator [Gamma et al., 1995], for 
its genome structure and manipulation. 

Notice that the individual models the business 
problem, so, it should be implemented by the 
framework user.  

This approach has two major advantages: 

1. The fitness function may use user-friendly 
methods to evaluate an individual, not manipulating 
the genome directly. This also makes the fitness 
function fully tolerant to genome structure changes; 

2. The genetic framework does not depend upon a 
specific genome structure. User defined structures may 
be created and different implementations can be tested; 

The fitness function is specified by an interface, 
and in case of C++ implementations a functor
[Vandevoorde and Josuttis 2003] may be used instead. 

3.2. Genome classes 

The framework already provides the BitGenome class, 
that helps user’s to model the problem as a bit string. 
This is the most common method [Schwab 2004 and 
Jones 2008]. BitGenome makes use of the Strategy
design pattern [Gamma et al. 1995] for its crossover 
and mutation methods.  

Two implementations of crossover are already 
provided: the point crossover method and a uniform 
crossover. Point crossover method provides a user-

defined number of crossover points, and could be used 
as a single or multi point crossover. For the mutation 
method, only the random mutation is provided.  

The class diagram below describes this structure: 

Figure 2: Bit genome –a possible individual internal structure 

3.3. Scaling classes 

Scaling is a common and optional technique to avoid 
the so called “super individuals” [Schwab 2004, 
Charles et al.  2008], that is, individuals with a score so 
high that they easily dominate the entire population. 
These may be a problem, since they may represent just 
a local maximum. The framework provides two 
common kinds of scaling: a rank scale and a sigma 
truncation scale [Schwab, 2004].  

3.4. Selection function 

The framework provides three selection methods 
proposed by Schwab [2004]: Tournament Selection, 
Roulette Wheel Selection and Stochastic Selection. 

The traditional roulette wheel selection is described 
as follows [Obitko, 1998]:  

S� sum_of_all_fitness_scores(population) 
r � random(0, S) 
for each individual in population  
 s � s +individual.fitness() 
 if (s > r) then return individual  
next 

Figure 3: Traditional Roulette Wheel Selection 

Exactly the same implementation is also found in 
Jones, 2008. This implementation assumes that the 
population is sorted in descending order. 

The problem with this approach is that iterates 
through the population every time an individual must 
be selected. Since iteration is a time-consuming task, 
using this approach could be time killing for games. So 
an optimized implementation of the same algorithm 
was provided, allowing the iteration to occur only 
once: 
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S� sum_of_all_fitness_scores(population) 
for int i = 1 to desired_individuals_count do 
 r[i] � random(0,S) 
next i 
sort(r) //ascending order 
lowest � 0, sum � 0, i� 0 
for individual in population 
 s � s + individual.fitness() 
 while (r[lowest] < s) 
  selected[i] � individual 
  i� i+1 
  lowest � lowest+1 
 wend 
next 
return selected 

Figure 4: Optimized roulette wheel selection 

3. The generation class also provides several defaults, 
based in the common options [Schwab, 2004]. These 
are: a crossover rate of 75%, an elitism rate of 5%, a, 
mutation rate of 100% (but it considers that user will 
use the BitGenome, which default is 1% per bit), 
Roulette Wheel Selection and no scaling; 

4. BitGenome fully implements the Individual 
interface, so it could be used directly. Off course, this 
will remove the benefits described in section 3.1, but 
allow a very simple usage of the framework; 

4. Usage sample 

To exemplify the usage of the framework, let’s 
consider a Sim City like game where the player must 
manage the plantation of sugar maple (for biodiesel) 
and food. Player uses industry and food taxes to 
stimulate or decelerate each one of these plantation 
options.  

  Increasing the sugar maple fields will stimulate the 
industry, so the player will earn more money with 
taxes and the population will have more jobs. On the 
other hand, too many maple fields mean that the food 
will get more expensive, and it’s quite possible that 
some people will get hungry.  Increasing the food 
fields allow the player to make food cheaper, but it will 
slow down the industry. This could generate 
unemployment, and no working people will not buy 
any food or pay any taxes. They also generate other 
problems, such as crimes, not considered in our 
analysis. The exact impact of each parameter variation 
was configured by the game designer, in a script.  
   
  Now, let’s consider an implementation of an 
advisor that suggests for the player a good approach 
about how to configure these taxes.  

  The first step is to configure an individual that 
contains all parameters that can be changed. They are 
the biodiesel industry tax and the food tax. We use the 
BitGenome structure to represent these taxes. The first 

7 bits are used to store the industry tax and the last 7 
bits to store the food tax. 

  After that, we will create the Fitness Function. The 
fitness function will use a game function that given the 
two taxes calculate the incoming money, rate of hungry 
people and rate of unemployed people.  Notice that this 
function is commonly found in this kind of game, since 
it is also used for the game mechanics and to give 
support to the player decision. 

  The advisor will prefer individuals that contain:
  1. No unemployment: People that don’t work are 
hungry, do not contribute to the incoming taxes, and 
generate social problems, so they will be avoided to the 
maximum; 
  2. The biggest income as possible; 
  3. Little famine; 
So, our fitness function could be: 

unsigned calculate(Individual individual) { 
   //First, discard invalid taxes 
   if (individual.getIndustryTax() > 100) 
       return 0; 
   if (individual.getFoodTax() > 100) 
      return 0; 

   //Then calculate the projection 
   Projection proj = calculateProjection( 
          individual.getIndustryTax(), 
          individual.getFoodTax()); 

   //Finally, calculate the score 
   int score = proj.earnedMoney *  
          1 – (proj.famineRate() + 
          5 * proj.unemploymentRate()); 

   //Limit the lowest score to zero. 
   return (unsigned) max(0, score); 
} 

Figure 5: Advisor fitness function 

  We can see that this advisor rejects unemployment 
five times more than famine. Also, earned money has a 
linear impact over the overall score and this impact is 
amortized by famine and unemployment.  

  Finally, let’s include a sample of the “suggest” 
function. The function will use the genetic algorithm 
defaults. Taxes is our individual class. We will use an 
optional generation constructor that receives an 
Abstract Factory [Gamma et al. 1995] and generate n 
individuals using this factory. 

Taxes Advisor::suggest() { 
   //Create a generation 
   Generation<Taxes> generation(factory, 30); 

   //Calls next() many times, for 500ms 
   generation.nextUntilTime(500); 

   //Returns the best individual 
   return generation.bestIndividual(); 
} 

Figure 6: A sample advisor implementation 

  Even if a local maximum is returned, it has good 
chances to be a good advice. That’s ok for this 
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implementation, since a human advisor is not perfect 
either, and could not see the best solution sometimes. 

5. Conclusion 

In this work, a genetic algorithm framework was 
presented, as well as its possible uses for games. Some 
optimization techniques were described, as well as 
several design considerations over the framework.  

 The asymptotic selection algorithm was presented, 
which gives advantages over speed when avoid scaling 
while using a simple implementation and easy of use.  

  The framework also presented a very flexible and 
customizable architecture, ideal for games. Most part 
of related works are suited for other areas like 
Galapagos (education) [AndrewMan, 2008] or Heat 
Exchangers [Tayal et. al 1998]. Similar work can be 
found for Java in JGAP [Meffert, 2008], but it does not 
leave a clear distinction in individual roles, like 
proposed here. 

  There are several options for future work, including 
increasing algorithm options in every step, introducing 
parallel processing and thread-safety to the framework 
or even creating self-adapting genome schemes. 

 The framework implementation is public and can 
be found in: http://sofiaia.sourceforge.net 
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