
A Framework for Genetic Algorithms in Games

Vinícius Godoy de Mendonça Cesar Tadeu Pozzer Roberto Tadeu Raittz

1 Universidade Positivo, Departamento de Informática

2 Universidade Federal de Santa Maria, Departamento de Eletrônica e Computação
3Universidade Federal do Paraná, Curso de Tecnologia e Sistemas de Informação

Abstract

This article describes the architecture of a Genetic
Algorithm Framework, techniques and optimizations
used in its construction, a new selection algorithm
called Asymptotic Selection, considerations about the
use of this process in games and a usage example.

Keywords: artificial intelligence, genetic algorithms,
biological programming, optimization techniques,
evolutionary computation

Authors’ contact:
vinigodoy@gmail.com
pozzer@inf.ufsm.br
raittz@ufpr.br

1. Introduction

Artificial Intelligence (AI) for Games often needs to
deal with environments composed by several variables
with unknown exact behavior. Consider a game like
Sim City or Civilization, where the game AI advisor
could suggest for the player an administrative strategy.
This strategy should try to maximize several factors
like the incoming money, production rate and
technological advancements while reducing problems
like pollution and famine. The consequence of each
variable to the global scenario is not entirely
predictable but, usually, given a set of defined values,
it’s easy to evaluate the whole picture.

Traditional AI offers several search mechanisms
[Russel and Norvig 2003] which tries to find these
answers. Some of them tries to systematically search
the entire search space (like breadth-first search or A*).
While they surely lead to the best possible solution,
they may have a very long execution time. Another
option would be using a local space search, like hill
climbing search or Tabu search, but they tend to be
locked in local maximums.

Genetic Algorithms (GA), are in the last category
of the above two and try to use the principle of
evolution, normally found in natural systems, to search
for solutions to algorithmic problems [Schwab 2004].

The classical genetic algorithm defined by Holland
[Holland 1975] is divided into six steps [Charles et al.
2008]: population creation, fitness evaluation,

chromosome mating and mutation, deletion of lowest
fitness individuals and re-evaluation of the new
population. The last steps are repeated until the
convergence of the population to a good result.

One of the greatest advantages of GA is that it can
be considered a parallel search mechanism that tests
several different variables simultaneously [Charles et
al. 2008]. Also, it avoids local maximums by doing
mutations, and allowing searching of random areas of
the solution space.

Unfortunately, this technique is not well known
among the game developer community. There are few
books on the subject and even less containing practical
game situation examples. This article presents a
framework that allows developers to easily integrate
genetic algorithms into their games. The proposed
solution is both flexible and easy to use.

The article also discusses some optimizations made
in the framework. To improve understanding of the
proposed architecture, a sample test scenario is
provided in section 4.

2. Drawbacks of Genetic Algorithms

Time consuming evolution: Often evolution takes too
many generations, even with a good genome designed
with good operators [Schwab, 2004]. This is especially
true in the presence of deceptive problems [Charles et
al. 2008].

Evaluation by experimentation: Due to the great
number of crossover, mutation, selection and scaling
options, and due to the random nature of GAs, the only
way to find a good solution is by experimentation
[Schwab, 2004]. This also implies that a good genetic
algorithm framework must ensure that experimenting
is possible.

No guarantee of optimal solution: Just like any
stochastic selection algorithm [Russel and Norvig
2003], there’s no guarantee that the algorithm truly
converged to the global maximum. On the other hand,
for games finding good local maximum could be as
good as choosing the global maximum especially
because it could create a more human behavior
[Schwab, 2004].

SBC - Proceedings of SBGames'08: Computing Track - Technical Posters Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9216-3 72

Hard to debug: Due to the random nature of the
algorithm, it’s hard to tell why a given implementation
is not working.

3. Framework description

This section describes the entire framework
organization and design considerations.

3.1. Domain specific classes

The first step when dealing with any genetic algorithm
is to represent the problem in a form of a genome
structure, and provide a fitness function to evaluate a
specific individual.

In the proposed framework, there’s a clear
distinction between the concepts of an Individual and
of a Genome. Such is not the case in several
implementations like Schwab [2004], Charles et al.
[2008] Jones [2008] and Obitko[1998]. So, the
Individual has three very important roles:

1. To provide business methods for accessing
domain specific properties;

2. To implement a common GA interface, allowing
the framework to work;

3. To act as a Mediator [Gamma et al., 1995], for
its genome structure and manipulation.

Notice that the individual models the business
problem, so, it should be implemented by the
framework user.

This approach has two major advantages:

1. The fitness function may use user-friendly
methods to evaluate an individual, not manipulating
the genome directly. This also makes the fitness
function fully tolerant to genome structure changes;

2. The genetic framework does not depend upon a
specific genome structure. User defined structures may
be created and different implementations can be tested;

The fitness function is specified by an interface,
and in case of C++ implementations a functor
[Vandevoorde and Josuttis 2003] may be used instead.

3.2. Genome classes

The framework already provides the BitGenome class,
that helps user’s to model the problem as a bit string.
This is the most common method [Schwab 2004 and
Jones 2008]. BitGenome makes use of the Strategy
design pattern [Gamma et al. 1995] for its crossover
and mutation methods.

Two implementations of crossover are already
provided: the point crossover method and a uniform
crossover. Point crossover method provides a user-

defined number of crossover points, and could be used
as a single or multi point crossover. For the mutation
method, only the random mutation is provided.

The class diagram below describes this structure:

Figure 2: Bit genome –a possible individual internal structure

3.3. Scaling classes

Scaling is a common and optional technique to avoid
the so called “super individuals” [Schwab 2004,
Charles et al. 2008], that is, individuals with a score so
high that they easily dominate the entire population.
These may be a problem, since they may represent just
a local maximum. The framework provides two
common kinds of scaling: a rank scale and a sigma
truncation scale [Schwab, 2004].

3.4. Selection function

The framework provides three selection methods
proposed by Schwab [2004]: Tournament Selection,
Roulette Wheel Selection and Stochastic Selection.

The traditional roulette wheel selection is described
as follows [Obitko, 1998]:

S� sum_of_all_fitness_scores(population)
r � random(0, S)
for each individual in population
 s � s +individual.fitness()
 if (s > r) then return individual
next

Figure 3: Traditional Roulette Wheel Selection

Exactly the same implementation is also found in
Jones, 2008. This implementation assumes that the
population is sorted in descending order.

The problem with this approach is that iterates
through the population every time an individual must
be selected. Since iteration is a time-consuming task,
using this approach could be time killing for games. So
an optimized implementation of the same algorithm
was provided, allowing the iteration to occur only
once:

SBC - Proceedings of SBGames'08: Computing Track - Technical Posters Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9216-3 73

S� sum_of_all_fitness_scores(population)
for int i = 1 to desired_individuals_count do
 r[i] � random(0,S)
next i
sort(r) //ascending order
lowest � 0, sum � 0, i� 0
for individual in population
 s � s + individual.fitness()
 while (r[lowest] < s)
 selected[i] � individual
 i� i+1
 lowest � lowest+1
 wend
next
return selected

Figure 4: Optimized roulette wheel selection

3. The generation class also provides several defaults,
based in the common options [Schwab, 2004]. These
are: a crossover rate of 75%, an elitism rate of 5%, a,
mutation rate of 100% (but it considers that user will
use the BitGenome, which default is 1% per bit),
Roulette Wheel Selection and no scaling;

4. BitGenome fully implements the Individual
interface, so it could be used directly. Off course, this
will remove the benefits described in section 3.1, but
allow a very simple usage of the framework;

4. Usage sample

To exemplify the usage of the framework, let’s
consider a Sim City like game where the player must
manage the plantation of sugar maple (for biodiesel)
and food. Player uses industry and food taxes to
stimulate or decelerate each one of these plantation
options.

 Increasing the sugar maple fields will stimulate the
industry, so the player will earn more money with
taxes and the population will have more jobs. On the
other hand, too many maple fields mean that the food
will get more expensive, and it’s quite possible that
some people will get hungry. Increasing the food
fields allow the player to make food cheaper, but it will
slow down the industry. This could generate
unemployment, and no working people will not buy
any food or pay any taxes. They also generate other
problems, such as crimes, not considered in our
analysis. The exact impact of each parameter variation
was configured by the game designer, in a script.

 Now, let’s consider an implementation of an
advisor that suggests for the player a good approach
about how to configure these taxes.

 The first step is to configure an individual that
contains all parameters that can be changed. They are
the biodiesel industry tax and the food tax. We use the
BitGenome structure to represent these taxes. The first

7 bits are used to store the industry tax and the last 7
bits to store the food tax.

 After that, we will create the Fitness Function. The
fitness function will use a game function that given the
two taxes calculate the incoming money, rate of hungry
people and rate of unemployed people. Notice that this
function is commonly found in this kind of game, since
it is also used for the game mechanics and to give
support to the player decision.

 The advisor will prefer individuals that contain:
 1. No unemployment: People that don’t work are
hungry, do not contribute to the incoming taxes, and
generate social problems, so they will be avoided to the
maximum;
 2. The biggest income as possible;
 3. Little famine;
So, our fitness function could be:

unsigned calculate(Individual individual) {
 //First, discard invalid taxes
 if (individual.getIndustryTax() > 100)
 return 0;
 if (individual.getFoodTax() > 100)
 return 0;

 //Then calculate the projection
 Projection proj = calculateProjection(
 individual.getIndustryTax(),
 individual.getFoodTax());

 //Finally, calculate the score
 int score = proj.earnedMoney *
 1 – (proj.famineRate() +
 5 * proj.unemploymentRate());

 //Limit the lowest score to zero.
 return (unsigned) max(0, score);
}

Figure 5: Advisor fitness function

 We can see that this advisor rejects unemployment
five times more than famine. Also, earned money has a
linear impact over the overall score and this impact is
amortized by famine and unemployment.

 Finally, let’s include a sample of the “suggest”
function. The function will use the genetic algorithm
defaults. Taxes is our individual class. We will use an
optional generation constructor that receives an
Abstract Factory [Gamma et al. 1995] and generate n
individuals using this factory.

Taxes Advisor::suggest() {
 //Create a generation
 Generation<Taxes> generation(factory, 30);

 //Calls next() many times, for 500ms
 generation.nextUntilTime(500);

 //Returns the best individual
 return generation.bestIndividual();
}

Figure 6: A sample advisor implementation

 Even if a local maximum is returned, it has good
chances to be a good advice. That’s ok for this

SBC - Proceedings of SBGames'08: Computing Track - Technical Posters Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9216-3 74

implementation, since a human advisor is not perfect
either, and could not see the best solution sometimes.

5. Conclusion

In this work, a genetic algorithm framework was
presented, as well as its possible uses for games. Some
optimization techniques were described, as well as
several design considerations over the framework.

 The asymptotic selection algorithm was presented,
which gives advantages over speed when avoid scaling
while using a simple implementation and easy of use.

 The framework also presented a very flexible and
customizable architecture, ideal for games. Most part
of related works are suited for other areas like
Galapagos (education) [AndrewMan, 2008] or Heat
Exchangers [Tayal et. al 1998]. Similar work can be
found for Java in JGAP [Meffert, 2008], but it does not
leave a clear distinction in individual roles, like
proposed here.

 There are several options for future work, including
increasing algorithm options in every step, introducing
parallel processing and thread-safety to the framework
or even creating self-adapting genome schemes.

 The framework implementation is public and can
be found in: http://sofiaia.sourceforge.net

References

ANDREWMEN, GalapagosGA Framework. Available from:
http://sourceforge.net/projects/galapagosga [accessed
August, 2008]

CHARLES, D., FYFE, C., LIVINGSTONE D., MCGLINCHEY, S.,
Biologically Inspired Artificial Intelligence for Computer
Games, IGI Publishing, 105-138.

JONES, M. T., 2008. Artificial Intelligence: A Systems
Approach. Infinity Science Press Inc., 195-247.

SMED, J., HAKONNEN, H., 2006. Algorithms and Networking
for Computer Games. John Willey and Sons, 205.

SCHWAB, B., 2004, AI Game Engine Programming, Thomson
Delmar Learning, 413-452.

NORVIG, P. AND RUSSEL, S.J., 2003. Artificial Intelligence: A
Modern Approach, Prentice Hall, 116-119.

VANDEVOORDE D., JOSUTTIS N. M., 2003. C++ Templates –
The complete guide, Addison Wesley, 417-474

OBITKO., MAREK. 1998. Introduction to Genetic Algorithms,
[online],Hochschule für Technik und Wirtschaft Dresden.
Available from: http://obitko.com/tutorials/genetic-
algorithms/ [accessed August, 2008].

GAMMA E., RICHARD H. JOHNSON, R, VLISSIDES, J. 1995.
Design Patterns – Elements of reusable object-oriented
software, Addinson-Wesley Longman Inc.

HOLLAND, J. H., 1975. Adaptation in natural and artificial
systems, Ann Arbor MI, University of Michigan Press.

TAYAL, MANYSH C., FU YAN, DIWEKAR URMILLA, Optimal
for Heat Exchangers: A genetic algorithm framework.
http://pubs.acs.org/cgi-
bin/abstract.cgi/iecred/1999/38/i02/abs/ie980308n.html
[accessed August, 2008].

MEFFERT, K., Java Generic Algorithm Platform (JGAP),
Available from: http://jgap.sourceforge.net/ [accessed
August, 2008].

SBC - Proceedings of SBGames'08: Computing Track - Technical Posters Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9216-3 75

